
Kernels

Volker Tresp
Winter 2024-2025

1



Infinite Dimensions

• In the lecture on complexity, we derived the equation: Mϕ = O(AM) and working

in high dimensions with the brute force approach can never work

• Today, we will see that this is not quite correct

• With kernels, we can work even with Mϕ →∞

• The idea is to represent the solution in a form that does not require the calculation

of the weights

2



Dataset Size

• So far, we implied: the more data the better

• (Unfortunately), this is also not quite true with kernels

3



Smoothness Assumption

• In the lecture on basis functions, the assumption was that f(xi′) can be approximated

by a weighted sum of basis functions; in the lecture on neural networks by a weighted

sum of learned basis functions; in the lecture on deep neural networks by a weighted

sum of highly complex learned basis functions

• Alternatively, it might make sense to have a preference for smooth functions: func-

tional values close in input space should have similar functional values

• In the next figure it might make sense that the functional values at xi and xi′ are

similar (smoothness assumption)

• Thus, one might prefer the smooth (continuous) function in favor of the dashed

function

4





Introduction Kernels

• One can implement smoothness assumptions over kernel functions

• A kernel function k(xi,xi′) = kxi(xi′) determines, how neighboring functional

values are influenced when f(xi) is given

• Example: Gaussian kernel

5





Kernels and Basis Functions

• It turns out that there is a close relationship between kernels and basis functions:

k(xi,xi′) = kxi(xi′) =

Mϕ∑
j=1

ϕj(xi)ϕj(xi′)

• It follows the symmetry: k(xi,xi′) = kxi(xi′) = k(xi′,xi) = kxi′(xi)

• Thus: given the Mϕ basis functions, this equation gives you the corresponding kernel

• (Note the kernel is a function of weighted basis functions. The weight ϕj(xi) are the

amplitudes of the basis functions at xi)

• As we see later: For positive definite kernels, we can also go the other way: given the

kernels I can give you a corresponding set of basis functions (not unique)

6





Kernel Prediction

• Regression

ŷ(xi′) =
N∑

i=1

vik(xi,xi′)

• Classification

ŷ(xi′) = sign

 N∑
i=1

vik(xi,xi′)


• The solution contains as many kernels as there are data points N (independent on

the number of underlying basis functions Mϕ)

7



Kernels: Infinite Number of Basis Functions

• Thus with Mϕ → ∞ : I can work with a finite number N of kernels, instead of an

infinite number of basis functions

• Thus no matter how many training data points: a perfect fit can be possible (with

λ/σ2 → 0)

• So in neural networks, one makes a model of basis functions more flexible by intro-

ducing hidden parameters for tuning the basis functions, with kernels one makes the

model more flexible by working with an infinite number of fixed basis functions

8



One Kernel for Each Data Point

9





Starting with the Cost Function

• We start with the penalized least squares cost function for models with basis functions

• Regularized cost function

costpen(w) =
N∑

i=1

(yi −
Mϕ∑
j=1

wjϕj(xi))
2 + λ

Mϕ∑
j=1

w2
j

= (y −Φw)T (y −Φw) + λwTw

where Φ is the design matrix design with (Φ)i,j = ϕj(xi) .

10



Implicit Solution

• We calculate the first derivatives and set them to zero,

∂costpen(w)

∂w
= −2ΦT (y −Φw) + 2λw = 0

It follows that one can write,

wpen =
1

λ
ΦT (y −Φwpen)

11



Approach

• This is not an explicit solution (wpen appears on both sides of the equation). But we

know now, that we can write the solution as a linear combination of the input vectors

wpen = ΦTv =
N∑

i=1

viϕ⃗(xi)

• Note that we have a sum over N data points (and not Mϕ basis functions)

12



Kernel Model

• We immediately get,

f̂(xi′) =

Mϕ∑
j=1

wj,penϕj(xi′) = ϕ⃗(xi′)
Twpen

= ϕ⃗(xi′)
TΦTv =

N∑
i=1

vik(xi,xi′)

with v = (v1, . . . , vN)T and

k(xi,xi′) = ϕ⃗(xi)
T ϕ⃗(xi′) =

Mϕ∑
j=1

ϕj(xi)ϕj(xi′)

• But note that not all functions that can be represented by the basis functions can be
written in this form, only the functions that minimize the cost function!

13



A New Form of the Cost Function

• We can substitute the constraints, and obtain as a cost function with kernel weights
as free parameters

costpen(v) = (y −ΦΦTv)T (y −ΦΦTv) + λvTΦΦTv

= (y −Kv)T (y −Kv) + λvTKv

Explicitly

costpen(v) =
N∑

i=1

yi −
N∑

i′=1

vjk(xi,xi′)

2

+ λ
N∑

i=1

N∑
i′=1

vivi′k(xi,xi′)

Here K is an N ×N matrix with elements

14



ki,i′ = ϕ⃗(xi)
T ϕ⃗(xi′) =

Mϕ∑
j=1

ϕj(xi)ϕj(xi′)

• An important result: We can write the cost function, such that only dot

products of the basis functions appear (i.e., the kernels), but not the

basis functions themselves!



Kernel Parameters

• Now we can take the derivative of the cost function with respect to v (note, that

K = KT )

∂costpen(v)

∂v
= 2K(Kv − y) + 2λKv

such that (if K is full rank)

vpen = (K+ λI)−1y

15



Kernel Prediction

• A prediction can be written as (w,v are the penalized least squares solutions)

f̂(xi′) = ϕ⃗(xi′)
Tw = ϕ⃗(xi′)

TΦTv =
N∑

i=1

vik(xi,xi′)

with

k(xi,xi′) = ϕ⃗(xi)
T ϕ⃗(xi′)

T

• Another important result: we can write the solution such that only dot products are

used; the solution can be written as a weighted sum of N kernels.

• We want to point out again, that not each function that can be written as
∑

j wjϕj(xi′)

can be expressed in this way, only a subset of the functions and in particular that one

which minimizes the cost function based on the specific N training data points!

16



One Kernel for Each Data Point

17



With only One Training Data Point

• With only one training data point we get

f(xi′) = v1k(x1,xi′)

• As discussed previously:

18



Manifold View

• Computationally, kernel approaches can deal with functions in high dimensions and

with a high bandwidth! Computation scales as N3, independent of Mϕ and only

weakly dependent on M

• If data are on a low-dimensional manifold in high dimensions, Gaussian kernels would

be placed on the manifold and the kernel width can be adapted to fit the complexity

of the function on the manifold (Case Ib (manifold))

• Thus ϵ can also be quite small for test data points on the manifold

• Outside the manifold, f(xi′) → 0 and ϵ can be quite large; kernel solutions might

not perform well when the test data is not on the manifold of the training data

19





One-class classification (OCC)

• Using the same argument, kernel systems might perform well in one-class classification

(one only has data points for class 1 and not data points for class 0)

• The kernel prediction in regions of input space on or closer to the manifold will be

larger that in regions of input space far away from the manifold

• Thus if the prediction of a test data point gives an output >> 0, the data point is

“normal”, if the output ≈ 0, the data point might be an outlier (abnormal, novel)

• This can be employed in condition monitoring

20



Comments and Interpretation of a Kernel

• This is interesting, since there can be more basis functions than data points; in partic-

ular this result is valid, even if we work with an infinite number of basis functions!

• It is even possible to start with the kernels, without knowing exactly, what the under-

lying basis functions are

21



Input Space

• A dot product between to data points in input space is

xTi xi′ =
M∑
j=1

xi,jxi′,j

which is the linear kernel

22



Basis Function Space

• A dot product between two data points in basis function space is

ϕ⃗(xi)
T ϕ⃗(xi′) =

Mϕ∑
j=1

ϕj(xi)ϕj(xi′) = k(xi,xi′)

and this is exactly the kernel which belongs to this basis function space!

23



Gaussian Process: Prior Mean Function

• Kernel solutions can be derived from different perspectives; we consider Gaussian

processes

• Assume that the prior distribution of of the basis function weights has a zero

mean and a unit covariance

w ∼ N (0, I)

• Then, a priori, the functions have zero mean ϕ⃗(x)× 0 = 0

24



Gaussian Process: Prior Covariance

• Then, a priori, the covariance matrix of the functional values at two inputs is

Σ(f(xi);f(xi′))
=

(
ϕ⃗T (xi)Σwϕ⃗(xi) ϕ⃗T (xi)Σwϕ⃗(xi′)
ϕ⃗T (xi′)Σwϕ⃗(xi) ϕ⃗T (xi′)Σwϕ⃗(xi′)

)

=

(
k(xi,xi) k(xi,xi′)
k(xi′,xi) k(xi′,xi′)

)
• Special case: varprior(f(xi)) = k(xi,xi)

• This interpretation is used in Gaussian processes: the kernel represents the covariance

between the function values, evaluated at different inputs

25



Gaussian Process: Prediction

• Note, how cool this is: we can deal with probabilities over functions, not just functions

themselves

• f(·) has an infinite number of functional values; P (f(·)) is describes as an infinite

Gaussian with zero mean (the most likely function a priori is f(x) = 0) and a

nontrivial covariance, described by the above equations (a priori: before training data

points are available)

• A posteriori, the mean becomes the prediction as described

µp(xi′) =
N∑

i=1

v
pen
i k(xi,xi′)

with (as before) vpen = K−1y (we assume zero noise for the measurements)

26



Gaussian Process: Uncertainty in the Prediction

• The a posteriori covariance kernel becomes

kp(xi,xi′) = k(xi,xi′)− kT (xi)K
−1k(xi′)

where k(xi) is a vector containing the kernel values between xi and all training data

points

• Special case:

varpost((f(x
′
i)) = varprior((f(x

′
i))− kT (x′i)K

−1k(x′i)

• Gaussian processes are popular in safety critical applications, like robotics: they provide

an estimate of the uncertainty of the prediction and they“know when they don’t know”

• With noisy measurements, set K← K+ σ2I in the previous equations

27



Computational Complexity

• When N >> Mϕ it is computationally more efficient to work with basis functions

(requiring M3
ϕ +M2

ϕN operations). When Mϕ >> N , the kernel version is more

efficient, requiring N3 + N2Mϕ operations. If the kernels are known a priori (i.e.,

if they do not need to be calculates via dot product), the kernel solution requires N3

operations.

28



Mercer’s Theorem

• Still, not all functions are valid kernel functions. Mercer’s theorem addresses that

issue

• (From Vapnik: The nature of statistical learning theory. Springer, 2000)

• Mercer’s Theorem: To guarantee, that the symmetric functions k(xi,xi′) = k(xi′,xi)

from L2 permits an expansion as

k(xi,xi′) =
∞∑

h=1

λhϕ
T
h (xi)ϕh(xi′)

with positive coefficients λh > 0, it is necessary and sufficient, that∫ ∫
k(xi,xi′)g(xi)g(xi′) dxidxi′ > 0

for all g ̸= 0, for which ∫
g2(xi′)dxi′ <∞

29



• The theorem says, that for so-called positive-definite kernels (“Mercer kernels”), a

decomposition in basis functions is possible!

• Each kernel-matrixK is then also positive definite, aTKa > 0, for all vectors a ̸= 0.

A symmetric matrix is positive definite iff all its eigenvalues are positive

• The results also generalize to the non-negative (positive-semidefinite) case



Kernel Design

• Linear Kernel

k(xi,xi′) = xTi xi′

The kernel matrix is then K = XXT . X is the design matrix (N ×M). (Recall

that the empirical correlation between the input dimensions is XTX)

• Polynomial kernel (1)

k(xi,xi′) = (xTi xi′)
d

The basis functions are all ordered polynomials of order d

• Polynomial kernel (2)

k(xi,xi′) = (xTi xi′+R)d

The corresponding basis functions are all polynomials of order d or smaller. R is a

tuning parameter

30



• Gauss-kernels (RBF-kernels)

k(xi,xi′) = exp

(
−

1

2s2
∥xi − xi′∥

2
)

These kernels correspond to infinitely many Gaussian basis functions

• Sigmoid (“neural network”) kernels

k(xi,xi′) = sig
(
xTi xi′

)





Generalization

• Recall that

f(xi) = ϕ⃗T (xi)w

f(xi′) = ϕ⃗T (xi′)w

• Then one can write

k(xi,xi′) = ϕ⃗(xi)
T ϕ⃗(xi′) =

(
∂f(xi)

∂w

)T (∂f(xi′)
∂w

)
which generalizes, to nonlinear models, e.g., to neural networks

• This is then called a neural tangent kernel

31



Comment on Valid Kernels

• A necessary condition is that k(xi,xi′) = k(xi′,xi)!

• So any function of ∥xi− xi′∥ would be a good candidate. These kernels also appear

symmetrical, like a Gaussian kernel

• But note that also any function of xTi xi′ would be a good candidate. They don’t

necessarily look symmetrical, like the linear kernel or the polynomial kernel

• Here is an example of a kernel that violates the necessary condition

k(xi,xi′) = xTi xi′+ α∥xi∥2

• The kernels discussed here are called dot-product kernels, Mercer kernels, or kernels

in a reproducing kernel Hilbert space

• Kernels are widely used in mathematics. The kernels used here should, for example,

not to be confused with the kernels used in kernel smoothing!

32



Sometimes it is Easier to Define Sensible Kernels than it is to
Define Sensible Basis Functions

• Example: Classification of chemical graphs

– Molecules can be described as graphs (structural formula, chemical graph theories)

– Task: I know from N molecules, if these have a particular medical effect (training
data). Can I predict the medical effect of a new molecule?

– Features which describe a chemical structure formula are difficult to describe; it
is easier to define graph kernels

• Example: Classification of a person in a social network

– Kernels reflect similarity with respect to a network topology. For example, one can
define a kernel based on the number of overlapping substructures of two persons
in their mutual neighborhoods

– A simple example: one forms a feature vector, where ϕi,i′ = 1 if node i is a
neighbor of node i′, and is zero otherwise; if a linear kernel is used, it simply
counts the number of common neighbors

33



Representer Theorem

• Representer Theorem: Let Ω be a strictly monotonously increasing function and let

loss() be an arbitrary loss function, then the minimizer of the loss function

N∑
i=1

loss(yi, f(xi)) +Ω(∥f∥ϕ)

can be represented as

f(xi′) =
N∑

i=1

vik(xi,xi′)

• ∥f∥ϕ =
√
⟨f , f⟩ϕ is a norm in a reproducing kernel Hilbert space (RKHS) and

includes ∥f∥ϕ =
√
wTw

• So kernel solutions are possible for all cost functions we are considering!

34



Dilemma

• Kernel approaches work well with data on low-dimensional manifolds (as discussed);

this might be their real strength! (Case Ib (manifold))

• Now consider that data is not on a manifold and a Gaussian kernel:

• If I assume the function is complex (high bandwidth) then I need many fixed basis

functions and a Gaussian kernel should have small width

• If I have a small kernel width, the kernel model will mostly predict zero, when the test

data point is a bit different from the training data point

• I would need a huge number of training data points to model the function well, but

then kernel models do not handle large data sets well

• Essentially I have to“assume” that the function has low bandwith and I use a kernel

with a large width; but then I am back to Cases II/III, which are not really challenging

35


