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Classification

• Classification is the central task of pattern recognition

• Sensors supply information about an object: to which class does the object belong

(dog, cat, ...)?
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Overlapping Classes

• The beauty of Machine Learning is that a few model classes (neural networks, kernel

approaches, ...) can be applied to almost any supervised learning task

• This hides a bit that the data settings can be quite different

• There are problems where class boundaries are well defined but maybe quite complex;

an example is OCR; here Deep Neural Networks, manifold learning and kernel systems

are quite effective; this concerns often our Cases I and II

• In other applications there is little structure in the data and classes overlap; this the

situation encountered in many healthcare applications (biomedicine); this concerns

often our Cases III and IV

• Often, the problem is not as much to separate classes, but to show that there is a

signal at all; the question might be if there is a detectable positive effect of the new

medication!
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Linear Classifiers

• Linear classifiers separate classes by a linear hyperplane

• In high dimensions a linear classifier often can separate the classes

• Linear classifiers cannot solve the exclusive-or problem

• In combination with basis functions, kernels or a neural network, linear classifiers can

form nonlinear class boundaries
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• First, the activation function of the neurons in the hidden layer are calculated as the

weighted sum of the inputs xi as

h(x) =
M∑
j=0

wjxj

(note: x0 = 1 is a constant input, so that w0 corresponds to the bias)

• The sigmoid neuron has a soft (sigmoid) transfer function

Perceptron : ŷ = sign(h(x))

Sigmoid function: ŷ = sig(h(x))
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Binary Classification Problems

• We will focus first on binary classification where the task is to assign binary class labels

yi = 1 and yi = 0 (or yi = 1 and yi = −1 )

• We already know the Perceptron. Now we learn about additional approaches

– I. Generative models for classification

– II. Logistic regression

– III. Classification via regression
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Two Linearly Separable Classes
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Two Classes that Cannot be Separated Linearly
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The Classical Example not two Classes that cannot be
Separated Linearly: XOR
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Separability is not a Goal in Itself. With Overlapping Classes
the Goal is the Best Possible Hyperplane
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I. Generative Model for Classification

• In a generative model one assumes a probabilistic data generating process (likelihood

model). Often generative models are complex and contain unobserved (latent, hidden)

variables

• Here we consider a simple example: data is generated from class-specific Gaussian

distributions

• First we have a model how classes are generated P (y). y = 1 could stand for a

good customer and y = 0 could stand for a bad customer.
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Generative Model for Classification (cont’d)

• Then we have a model how attributes are generated, given the classes P (x̃|y). This
could stand for

– Income, age, occupation (x̃) given a customer is a good customer (y = 1)

– Income, age, occupation (x̃) given a customer is not a good customer (y = 0)

• Using Bayes formula, we then derive P (y|x̃): the probability that a given customer is
a good customer y = 1 or bad customer y = 0, given that we know the customer’s

income, age and occupation
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How is Data Generated?

• New: We assume that the observed classes yi are generated with probability

P (yi = 1) = κ = sig(q) P (yi = 0) = 1− κ1 = 1− sig(q)

with 0 ≤ κ ≤ 1.

• In a next step, a data point x̃i has been generated from P (x̃i|yi)

• (Note, that x̃i = (xi,1, . . . , xi,M)T , which means that x̃i does not contain the

bias xi,0)

• We now have a complete model: P (yi)P (x̃i|yi)
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Bayes’ Theorem

• To classify a data point x̃i, i.e. to determine the yi, we apply Bayes theorem and get

P (yi|x̃i) =
P (x̃i|yi)P (yi)

P (x̃i)

P (x̃i) = P (x̃i|yi = 1)P (yi = 1)+ P (x̃i|yi = 0)P (yi = 0)
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Birches versus Ashes

• The last figure also nicely exemplifies the problem of overlapping classes

• Given brightness level as input, one cannot separate the classes and this problem

cannot be solved by a more powerful classifier!

• The only way to solve this issue is to use more features (inputs, sensors); for example

one might measure spectral amplitudes at different frequencies, including infrared

• Another problem might be that the brightness detector is unreliable (“noisy labels”)
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Class-specific Distributions

• To model P (x̃i|yi) one can chose an application specific distribution

• A popular choice is a Gaussian distribution (normal discriminant analysis)

P (x̃i|yi = l) = N (x̃i; µ⃗
(l),Σ)

with

N
(
x̃i; µ⃗

(l),Σ
)
=

1

(2π)M/2
√
|Σ|

exp

(
−
1

2

(
x̃i − µ⃗(l)

)T
Σ−1

(
x̃i − µ⃗(l)

))
• Note, that both Gaussian distributions have different modes (centers) but the same

covariance matrices. This has been shown to often work well
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Class-specific Distributions

• To model P (x̃i|yi) one can chose an application specific distribution

• A popular choice is a Gaussian distribution (normal discriminant analysis)

P (x̃i|yi = l) = N (x̃i; µ⃗
(l),Σ)

= N (x̃i; lµ⃗
(1) + (1− l)µ⃗(0),Σ)

= N (x̃i; l(µ⃗
(1) − µ⃗(0)) + µ⃗(0),Σ)
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Maximum-likelihood Estimators for Modes and Covariances

• One obtains a maximum likelihood estimators for the modes

ˆ⃗µ
(l)

=
1

Nl

∑
i:yi=l

x̃i

• One obtains as unbiased estimators for the covariance matrix

Σ̂ =
1

N −M

1∑
l=0

∑
i:yi=l

(x̃i − ˆ⃗µ
(l)

)(x̃i − ˆ⃗µ
(0)

)T
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Expanding the Quadratic Terms in the Exponent

• Note that

−
1

2

(
x̃i − µ⃗(l)

)T
Σ−1

(
x̃i − µ⃗(l)

)
= −

1

2
x̃Ti Σ

−1x̃i −
1

2
µ⃗(l)

T
Σ−1µ⃗(l) + µ⃗(l)

T
Σ−1x̃i
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The Difference of the Quadratic

• Now we calculate the difference of the quadratic terms of the two Gaussians

−
1

2

(
x̃i − µ⃗(0)

)T
Σ−1

(
x̃i − µ⃗(0)

)
+

1

2

(
x̃i − µ⃗(1)

)T
Σ−1

(
x̃i − µ⃗(1)

)
= −

1

2
x̃Ti Σ

−1x̃i −
1

2
µ⃗(0)

T
Σ−1µ⃗(0) + µ⃗(0)

T
Σ−1x̃i

+
1

2
x̃Ti Σ

−1x̃i +
1

2
µ⃗(1)

T
Σ−1µ⃗(1) − µ⃗(1)

T
Σ−1x̃i

• .... since two terms cancel,

=
(
µ⃗(0) − µ⃗(1)

)T
Σ−1x̃i −

1

2
µ⃗(0)

T
Σ−1µ⃗(0) +

1

2
µ⃗(1)

T
Σ−1µ⃗(1)
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A Posteriori Distribution

• It follows that

P (yi = 1|x̃i) =
P (x̃i|yi = 1)P (yi = 1)

P (x̃i|yi = 1)P (yi = 1)+ P (x̃i|yi = 0)P (yi = 0)

=
1

1+ P (x̃i|yi=0)P (yi=0)
P (x̃i|yi=1)P (yi=1)

=
1

1+ exp(− log(P (x̃i|yi=1)P (yi=1)
P (x̃i|yi=0)P (yi=0))

= sig[log(P (x̃i|yi = 1))+log(P (yi = 1))−log(P (x̃i|yi = 0)−logP (yi = 0))]

= sig
(
w0 + x̃Ti w̃

)
= sig

w0 +
M∑
j=1

xi,jwj
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Weights

• We get (w̃ is without w0)

w̃ = Σ−1
(
µ⃗(1) − µ⃗(0)

)
• Note that w̃ is independent of κ and is thus independent of the class proportions in

the training data! This is important, e.g., for case-control studies

• Recall: sig(arg) = 1/(1 + exp(−arg))
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Bias Term

• We get,

w0 = q +
1

2
µ⃗(0)

T
Σ−1µ⃗(0) −

1

2
µ⃗(1)

T
Σ−1µ⃗(1)
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Comments

• This specific generative model leads to linear class boundaries

• But we do not only get class boundaries, we get probabilities

• Although we have used Bayes formula, the analysis was frequentist. A Bayesian anal-

ysis with a prior distribution on the parameters is also possible
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Comments (cont’d)

• If the two class-specific Gaussians have different covariance matrices (Σ(0),Σ(1))

the approach is still feasible but one would need to estimate two covariance matrices

and the decision boundaries are not linear anymore; still, one can simply apply Bayes

rule to obtain posterior probabilities

• The generalization to multiple classes is straightforward: simply estimate a different

Gaussian for each class (with shared covariances or not) and apply Bayes rule

• Generative-Discriminative pair : (1) Gaussian Analysis (as a generative model) and (2)

logistic regression as a discriminant model

• Generalization to basis functions is straight forward: x is replaced by ϕ⃗(x)

• With an explicit P (x̃i|yi = l) = N (x̃i; µ⃗
(l),Σ), we can apply Bayes formula for

a posteriori class estimation

• This is not easy, or even impossible, e.g., for GANs, which are able to generate samples

but where the likelihood is not easily evaluated (likelihood free methods)
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Special Case: Naive Bayes

• With diagonal covariances matrices, one obtains a Naive-Bayes classifier

P (x̃i|yi = l) =
M∏
j=1

N (xi,j; l(µ
(1)
j − µ

(0)
j ) + µ

(0)
j , σ2j )

• The naive Bayes classifier has considerable fewer parameters but completely ignores

class-specific correlations between features; this is sometimes considered to be naive

• Even more naive (all Gaussian have identical variance):

P (x̃i|yi = l) =
M∏
j=1

N (xi,j; l(µ
(1)
j − µ

(0)
j ) + µ

(0)
j , σ2)
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Logistic Regression from Naive Bayes

• We have parameters, for the latter case,

wj =
1

σ2

(
µj

(1) − µj
(0)
)

w0 = q +
1

2σ2

∑
j

((
µ
(0)
j

)2
−
(
µ
(1)
j

)2)

• Note that wj is completely independent of inputs other than xj; adding or removing

other inputs does not change wj;

• In contrast w0 depends on all dimensions

• The smaller σ2, the sharper the transition
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Special Case: Bernoulli Naive Bayes

• Naive Bayes classifiers are popular in text analysis with often more than 10000 features

(key words). For example, the classes might be SPAM (l = 1) and no-SPAM (l = 0)

and the features are keywords in the texts

• Instead of a Gaussian distribution, a Bernoulli distribution is employed
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Special Case: Bernoulli Naive Bayes

• P (wordj = 1|l = 1) = γj,s = sig(aj,s) is the probability of observing word

wordj ∈ {0,1} in the document for SPAM documents (Bernoulli distribution)

• P (wordj = 1|l = 0) = γj,n = sig(aj,n) is the probability of observing word

wordj in the document for non-SPAM documents
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Special Case: Bernoulli Naive Bayes (cont’d)

• Then, the posterior is

P (SPAM = 1|doc) =

κ
∏

j γ
wordj
j,s (1− γj,s)

1−wordj

κ
∏

j γ
wordj
j,s (1− γj,s)

1−wordj + (1− κ)
∏

j γ
wordj
j,n (1− γj,n)

1−wordj

• Simple ML estimates are γj,s = Nj,s/Ns and γj,n = Nj,n/Nn

(Ns is the number of SPAM documents in the training set, Nj,s is the number of

SPAM documents in the training set where wordj is present)

(Nn is the number of no-SPAM documents in the training set, Nj,n is the number

of no-SPAM documents in the training set where wordj is present)
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Special Case: Bernoulli Naive Bayes (cont’d)

• Note, that we can also write, using the equations on the logistic function,

P (SPAM = 1|doc) = sig(w0 +
∑
j

wjwordj)

with re-parametrization and logit identity,

wj = aj,s − aj,n

w0 = q −
∑
j

log(1 + exp aj,s) +
∑
j

log(1− exp aj,n)

• Generative-Discriminative pair: (1) Bernoulli naive Bayes classifier and (2) logistic

regression
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II. Logistic Regression

• In I. (Generative models for classification) we first defined a generative model for

P (x, y); from this model we then derived P (y|x) = P (y)P (x|y) which models

x given y (generative modelling)

• Here, we model the reverse P (y|x) (standard supervised learning)

• With logistic regression as the discriminant version, we model discriminatively

ŷi = P (y = 1|xi) = sig
(
xTi w

)
(now we include the bias xTi = (xi,0 = 1, xi,1, . . . , xi,M−1)

T ). sig() as defined

before (logistic function).

• One now optimizes the likelihood of the conditional model

L(w) =
N∏

i=1

(
sig(xTi w)

)yi (
1− sig

(
xTi w

))1−yi
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Cross Entropy is the Negative Log-Likelihood Function

• Log-likelihood function

l =
N∑

i=1

yi log
(
sig
(
xTi w

))
+ (1− yi) log

(
1− sig

(
xTi w

))
• With the rules about the logistic function

l =
N∑

i=1

yi

(
xTi w

)
− log

(
1+ exp

(
xTi w

))
• Cross-entropy cost function (negative log-likelihood)

cost =
N∑

i=1

−yi
(
xTi w

)
+ log

(
1+ exp

(
xTi w

))
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SGD

• The gradient of the cross-entropy cost function is

∂l

∂wj
=

N∑
i=1

−yixi,j +
xi,j exp(x

T
i w)

1 + exp(xTi w)

=
N∑

i=1

−xi,j(yi − sig(xTi w) =
N∑

i=1

−xi,j(yi − ŷi)

• SGD becomes for step t

wj ← wj + η(yt − ŷt)xt,j
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Logistic Regression as a Generalized Linear Models (GLM)

• Consider a Bernoulli distribution with P (y = 1) = κ and P (y = 0) = 1 − κ,

with 0 ≤ κ ≤ 1

• In the theory of the exponential family of distributions, one sets

κ = sig(η)

Now we get valid probabilities for any η ∈ R!

• η is called the natural parameter and sig(·) the inverse parameter mapping for the

Bernoulli distribution
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Logistic Regression as a Generalized Linear Models (GLM)
(cont’d)

• This is convenient if we make η a linear function of the inputs and one obtains a

Generalized Linear Model (GLM)

P (yi = 1|xi,w) = sig(xTi w)

• Thus logistic regression is the GLM for the Bernoulli likelihood model
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Application to Neural Networks and other Systems

• Logistic regression essentially defines a new cost function

• It can be applied as well to neural networks, as we have done before,

P (yi = 1|xi,w) = sig(NN(xi))

or systems of basis functions or kernel systems
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Multiple Classes and Softmax

• Consider a multinomial distribution with P (y = c) = θc, with θc ≥ 0 and∑C
c=1 θc = 1. c is the class index and C is the number of classes

• We reparameterize (exponential family of distributions)

θc =
exp(ηc)∑C

c′=1 exp(ηc′)

• The ηc are unconstrained; softmax notation: θc = softmaxc(η⃗c)
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Multiple Classes and Softmax: GLM

• In GLM, we set ηc = xTwc and

ŷc = P (y = c|x) =
exp(xTwc)∑C

c′=1 exp(x
Twc′)
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Multiple Classes and Softmax (cont’d)

• The negative log-likelihood (softmax cross entropy) becomes

−l = −
N∑

i=1

 C∑
c=1

yi,cx
T
i wc − log

C∑
c=1

exp(xTi wc)
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Multiple Classes and Softmax (cont’d)

• The gradient becomes

−
∂l

∂wj,c
= −

∑
i

(
yi,c xi,j −

xi,j exp(x
T
i wc)∑C

c=1 exp(x
T
i wc)

)
and SGD becomes for iteration t

wj,c ← wj,c + ηxt,j(yt,c − ŷt,c)
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III. Classification via Regression

• Linear Regression:

f(xi,w) = w0 +
M−1∑
j=1

wjxi,j

= xTi w

• We define as target yi = 1 if the pattern xi belongs to class 1 and yi = 0 (or

yi = −1 ) if pattern xi belongs to class 0

• We calculate weights wLS = (XTX)−1XTy as LS solution, exactly as in linear

regression

• For a new pattern x we calculate f(x) = xTwLS and assign the pattern to class 1

if f(x) > 1/2 (or f(x) > 0 ) ; otherwise we assign the pattern to class 0
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Bias

• Asymptotically, a LS-solution converges to the posterior class probabilities, although

a linear functions is typically not able to represent P (c = 1|x). The resulting class

boundary can still be sensible

• One can expect good class boundaries in high dimensions and/or in combination with

basis functions, kernels and neural networks; in high dimensions sometimes consistency

can be achieved. In essence it is necessary that the linear model can model the expected

probability P (c = 1|x)
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Classification via Regression with Linear Functions
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Classification via Regression with Radial Basis Functions
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Causal Effect

• Assume that all relevant inputs are considered in the model (no other confounders)

and that we use“Classification via Regression”

• The causal effect is independent of the individual, and can be estimated as

P (Y = 1|xi,1 = 1, xi,2, . . . , xi,M)−P (Y = 1|xi,1 = 0, xi,2, . . . , xi,M) = w1

• x1 = 1 means that the individual has received the treatment, and x1 = 0 means

that the individual has not received the treatment,

• Y = 1 means that the patient is healthy after the treatment
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Performance

• Although the approach might seem simplistic, the performance can be excellent (in

particular in high dimensions and/or in combination with basis functions, kernels and

neural networks). The calculation of the optimal parameters can be very fast!

• Classification via regression is commonly used in treatment effect prediction in medicine

if the influence of the treatment is small, on average
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Appendix: Useful Identities for
Logistic Regression
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Useful Identities for Logistic Regression

• Logistic function (sigmoid function): κ = sig(η) = 1/(1 + exp(−η))

• For the logarithm, we get

log(κ) = − log(1 + exp(−η)) = η − log(1 + exp(η))

• Another useful identity

exp a

exp a+ exp b
= sig(a− b)

• The inverse is the logit function:

η = logit(κ) = sig−1(κ) = log
κ

1− κ
= log(κ)− log(1− κ)
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Modelling Probabilities with Logistic Regression

• Let P (Y = 1|η) = κ = sig(η); then P (Y = 0|η) = (1−κ) = 1− sig(η)

• We can write concisely (l ∈ {0,1})

P (Y = l|η) = κl(1− κ)1−l

and the log-probability

logP (Y = l) = l logκ+ (1− l) log(1− κ)

• Another way of writing this is

P (Y = l|η) =
exp(lη)

1 + exp(η)
= exp[lη − log(1 + exp(η))]

and the log-probability becomes

logP (Y = l|η) = lη − log(1 + exp(η))
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Exercise: Bayes Inference

• Assume we know P (Y ) and the likelihood P (X|Y ), what is the posterior P (Y |X)?

• Prior (as before): P (Y = 1) = sig(q)

P (Y = l) = exp[lq − log(1 + exp(q))]

• Likelihood: P (X = 1|Y = 1) = sig(η1) and P (X = 1|Y = 0) = sig(η0)

• Can be written as

P (X = i|Y = 1) = exp(iη1 − log(1 + exp(η1)))

P (X = i|Y = 0) = exp(iη0 − log(1 + exp(η0)))
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Bayes Inference (cont’d)

• Posterior:

P (Y = 1|X = i)

=
P (Y = 1)P (X = i|Y = 1)

P (Y = 1)P (X = i|Y = 1)+ P (Y = 0)P (X = i|Y = 0)

=
sig(q)sig(η1)

i(1− sig(η1))
1−i

sig(q)sig(η1)i(1− sig(η1))1−i + (1− sig(q))sig(η0)i(1− sig(η0))1−i

• This can also be written as

=
exp(a)

exp(a) + exp(b)

where

a = q − log(1 + exp(q)) + iη1 − log(1 + exp(η1))

b = − log(1 + exp(q)) + iη0 − log(1 + exp(η0))
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Bayes Inference (cont’d)

• Thus,

P (Y = 1|X = i) = sig[i(η1−η0)+q−log(1+exp(η1))+log(1+exp(η0))]

= sig(w0 + w1i)

where

w1 = η1 − η0

w0 = q − log(1 + exp(η1)) + log(1 + exp(η0))
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