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e As with the Perceptron we start with

an activation functions that is a linearly

¥ weighted sum of the inputs
-~ u
7 _
h(X) — Z W44
h. 7=0
(Note: xg = 1 is a constant input, so

that wq is the bias)
e The activation is the output (no thresh-

olding)

y = fw(x) = h(x)

e Regression: the target function can take

on real values



o Consider only binary inputs with =; ; € {0, 1}

o When x; ; switches from O to 1 and the other inputs remain fixed (intervention),
the j-th input adds to the output the quantity w;, independent of context, i.e.,
independent of the other inputs! (the average causal effect is identical to the individual

causal effect)

e Recall that for the perceptron, the effect of an input on the output does critically
depend on context: When x; ; switches from O to 1 and the other inputs remain
fixed (intervention), dependent on the other inputs, the output might stay as is, or

changes from 1 to —1 or from —1 to 1



e Squared-loss cost function:

N
— 2
cost(w) = 3 (i — fw(x:))
1=1
e The parameters that minimize the cost function are called least squares (LS) estimators
W, = arg min cost(w)
W

e For visualization, we take M = 1 (although linear regression is often applied to

high-dimensional inputs)



One-dimensional regression:
fw(z) = wo + wiz

w = (wg, wy)?

Squared error:

N
cost(w) = > (yi — fw(z:))?
1=1
Goal:

W), = arg m“ifn cost(w)
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LINEARE REGRESSION: Daten und wahre Funktion
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General Model:

M
i = fw(x) = wo+ Y wjz;

j=1

W = (w07w17"'wM)T

Xi = (17xi,17 K 7332',M)T
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Contribution to the Cost Function of one Data Point

cost,




The vector of all predictions at the training data is
Y1
L = XWwW
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Initialize parameters (typically using small random numbers)

Adapt the parameters in the direction of the negative gradient

With fw(x;) = S0 o wja;

N
cost(w) = ) (y; — fw(x:))?
i=1

The parameter gradient is (Example: w)

ocost

N
— _92 Z(yz — fW(Xi))x’i,j
1=1

8wj

A sensible learning rule is

N
Wj —— Wj +n Z(yz - fW(Xi))xi,j
=1
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e ADALINE: ADAptive LINear Element
e The ADALINE uses stochastic gradient descent (SGD)

e lLet Xt and y¢ be the training pattern in iteration t. The we adapt, t = 1,2, ...

wj<_wj+n(yt_:ly\t)xt,] j=0,1,2,....M

e 17 > O is the learning rate, typically O < n << 0.1
e Depending again on the difference (“delta”) (y+ — %¢), this is again called a delta rule

e This is identical to the Perceptron learning rule (see Appendix in the lecture on the
Perceptron). But, for the Perceptron y; € {—1,1}, and g € {—1,1}
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e The ADALINE is optimized by SGD

e Online Adaptation: a physical system constantly produces new data: the ADALINE
(SGD in general) can even track changes in the system

e With a fixed training data set the least-squares solution can be calculated analytically
in one step (least-squares regression)
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N
cost(w) = > (y; — fw(x:))?
i—1

= (y - Xw)(y — Xw)

y = (y1,..,yn)’

xl,O CIZLM
xN,O 33N7M
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e A necessary condition for an optimum is that

dcost(w)
Oow

=0
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N
o fu(z1) = z1wy and cost(wy) = > it (y; — z4,1w1)?
e (chain rule: inner derivative times outer derivative)

N
ocost(wy) 3 O(y; — x;,1w1)

ow1

5 2(y; — x; 1w1)
i=1 w1

N N N
= -2 Z 23,1 (Y — T5,1w1) = —2 Z Zi,1Yi T 2w1 Z T3,1%4,1

e Thus

N -1 N
wige = D wiazi1 | Y iy
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o fw(x)=xIwand cost(w) = (y — Xw){(y — Xw)

e (chain rule: inner derivative times outer derivative)

e Thus

ocost(w)  O(y — Xw)
ow - ow

2(y — Xw)

= 22X (y — Xw) = —2XTy 4+ 2XT'Xw

Wy, = (XTX)_l xTy
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LINEAR REGRESSION: LS-Loesung (rot)
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Complexity (linear in IN): al
3 2 il

O(My + NMy) il

0

o = 0.75,w1 = 2.13
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LS-Regression (octave/matlab)

octave:198> M LS-REGRESSION

pectave:198> N = &;

octave:191> M=4&;

octave:192> noiseStdv = 8.2;

pctave:193> X = randni{N, M}; % design matrix
goctave:194> wirue = rand(M, 1); % true paraeters
octave:196> wirue'

dans =

B.79811 @.39886 @.95385  B.67458

octave:196> % target vector; nolse variance = @.2%2
octave:196> y = X * wtrue + noiseStdv #randn(N,1);
octave:197> % lepast squares weights

potave:197> wls = invi(X'=X) * X' % y;

pctave:198> wls'

ans =

B.85735  @.21487  1.8426%  B.79489

pectave:199s

octave:199> % average trainimg cost:

pctave:199> XTest = randni{M, M); % design matrix

potave:288> ytest = XTest % witrue + noiseStdv srandn{M,1):

octave:281> AverageCostTrain = (y — ¥Xawls)' = {(y — X&kwls)/N
AverageCostTrain = @8.80839384

pctave:202> AverageCostTest = (ytest — XTesteswls)' & (ytest - XTestswls)/N
AverageCostTest = 8.B47%87



e \We have used

iXW = x7 iWTW = 2wW
OwW OwW

e Comment: one also finds the conventions,

iXW — X in
OwW OwW

W:2WT

o
OwW

0
—W

Ow

— w!iXw=(X4+X"w

'Xw=wl'(X+ X
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The map w — y = XWw is the forward model

The map y — w = (X X)"1X Ty is the inverse model

Xt = (XTX)"1XT is called the Moore-Penrose pseudo inverse (generalized in-

verse); (Roger Penrose won the 2020 Nobel Prize in Physics)

Machine learning is an “inverse” problem
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When N >> M), the LS solution is stable (small changes in the data lead to small
changes in the parameter estimates)

When N < My, then there are many solutions which all produce zero training error

Of all these solutions, one selects the one that minimizes Z;WZO wJQ- = wl'w (reg-
ularised solution)

Even with N > My, it is advantageous to regularize the solution, in particular with
noise on the target
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e Regularised cost function (Penalized Least Squares (PLS), Ridge Regression, Weight
Decay): the influence of a single data point should be small

costP(w) = Z(yz (%)) + A Z w

7=0

—1

Wpen = (XTX + /\1) xTy

Derivation:

JCcostPe (w)

5 = 2XT(y — Xw) + 22w = 2[- X'y + (XTX 4+ AI)w]
W
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pctave:198> % L5-REGRESSION

. pctave:198> N = &;

PLS-Regression octave:191> M=4;
pctave:192> nolseStdv = B8.2;

{DCtE‘-I'EmeﬂEh:I pctave:193> X = randn({N, M); % design matrix
octave:1%4> wirue = rand(M, 1); % true paraeters
octave:1956> wtrue'
ans =

B.79811 B. 39084 B.95345 B.aT4L58

octave:196> % target vector; noise variance = 98.2%2
pctave:196> y = ¥ & witrue + nolseStdv srandn(N,1);
octave:197> % least squares weights

octave:l97> wls = invi(X'#X) * X' * y;

pctave:198> wls'

ans =

8.85725 a.21487 1.846289 B, 7489

poctave:l99:

pctave:199> ¥ average training cost:

pctave: 199> XTest = randni{M, M); % design matrix
octave:2008> ytest = XTest *= wtrue + noiseStdv *randni(N,1);
octave: 201> AverageCostTrain = (y = ¥ewls)' & (y = Xéewls)/N

AverageCostTrain = 0.0839384
T ~ =Tytest — XKTestewls)' * [ytest — XTestswls)/ M
L—:::;:::EEEtTEEt = @.@8ATF07
T

octave: 283> ¥ PLS-REGRESSION

pctave: 203> lam=@.2

lam = ©.20088

pctave: 284> wpls = inv(X'+X + lam* eyvelM)}) * X' * y;
pctave: 285> wpls'

ans =

8.88884 B.25011 8.%7113 B.78294

pctave:2086> AverageCostTrain = (y — X4wpls)' * [y — X#wpls)/N
AverageCostTrain = @.00893845
=lytest — XTestswpls)' * [yiest — XTestswpls) /N

AverageCostTest = B.B8275686




e lLet X; and y+ be the training pattern in iteration t. Then we adapt, t = 1,2, ...

A
“w;] j=0,1,2,...,M

w; — wji +n[(yt — Ye)xr j — N
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We generated N = 100 data points with M = 3 inputs (wg = O is known)
x1 and x5 are highly correlated (x5 is generated from x1)
x3 is independent of all the other variables: x1, x5, and y

We generate output data with y = x1 + €, where € stands for independent noise
with standard deviation 0.2 and thus variance of 0.04.

Thus the true parameters are Wire = (1,0,0)1: Note that, y causally only
depends on 1

Thus the true function is
y=1><:1:1—|—0><:c2—|—0><5133—|—e
Thus, Wirge = (1,0,0)7 (without wg)
All variables x1, x>, x3,y are normalized to zero mean and variance 1
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Unidimensional analysis

Multidimensional analysis
(penalized least squares)



e In one-dimensional models, with only one input, the weights are identical to the sample
Pearson correlation coefficients (here: w; = 7; = » . y;x; j/N) between the

output and the input (equality only because of the normalization of the variables)
—1<r; <1

e | obtain 1y = w1 = 0.99, ro = wy = 0.96, r3 = w3z = —0.21
e Explicitly, the three one-dimensional models are

y = 0.99x1 y = 0.96x> y= —0.21z3

In general, the expected Pearson correlation coefficient is defined as

Ty = COUgy/ (stdevystdevy )
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e The first Pearson correlation, r1 = 0.99, reflects the causal effect; its expected

value is 1, in the example

e The second Pearson correlation, 7o = 0.96, does not reflect a causal effect, but
reflects the fact that 1 and x5 are highly correlated, and thus also y and x5 (cor-

relation does not imply causality). lts expected value is 1, in the example

e The third Pearson correlation,r3 = —0.21 is correctly closer to O, but not really

small in magnitude (its expected value is O, in the example).
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o We get:

100 98 -—18
XX =] 98 100 -—16
~18 —16 100

Approximately Ncov(x); we see the strong correlation between x1 and o

0.255 —0.249 0.007
(X'xX)"'=| —0.249 0.253 —0.005
0.007 —0.005 0.010

Finally,
X!y = (99,97, —20)"

Thisis N x (71, 7o, ?3)T! We see the strong correlation between both 1 and x5
with y
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o We get
W, = (XIX)"1x?y = (1.137,-0.150, -0.018) "
e Interestingly, linear regression pretty much identifies the correct causality, with w1 =~

1 and wo = O ! The expected value of w1 actually is 1 and of w> actually is O.
Note the dramatic shift to O!
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e w3 = —0.018 is much closer to O, compared to the sample Pearson correlation
coefficient (r3 = —0.21)

e Overall, in regression, the causal influence of x1 stands out much more clearly!

e Both the influence of the correlated (non-causal) input x5 and the noise input x3 are
largely reduced
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® In regression: an input only has to model, what the other inputs could not model

e In a one-dimensional analysis: each input on its own tries to model the dependency

to y as well as possible!
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e We get with A = 0.6:

1006 98  —19
XX + AT = 98 100.6 —17
~19 —17 100.6

0.197 —0.191 0.005
(X'X4+AN"1=] -0.191 0.195 -0.003
0.005 —0.003 0.010

X'y = (99,97, —20)"

Wpen = (XITX 4+ AN "1X!y = (0.990, -0.005, —0.021) %

e Note that W» is even closer to ground truth!
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Penalized Least Squares

With large lambda, w;
and w, converge to
identical values

The test set error show
thatlambda = 0.6 is a
good value

Around lambda = 0.6
the weight estimates
are (0.98, 0.00, -0.02)
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Penalized Least Squares
Regression (lambda =
0.6):

With small N, weights
are close to 0 and test

set erroris large

With N>50, weight
estimates and test set
error and test set error
converges to the noise
variance of 0.04
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Assume same data

Consider that x5 is a treatment (medication) and y the outcome (healthy=1, after
treatment).

If | do a one-dimensional analysis, | would see a strong positive influence of x> on y
| might conclude that the treatment works

Only if | include the so-called confounder x1 in the regression model, it becomes

clear that the confounder x1 is the cause and not the treatment x5
| conclude that the treatment has no significant effect!

Recipe: Do a multidimensional regression model and include all relevant inputs!
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Example: Only patients without any other disease (x1 = 1) get the treatment, but
they get healthy (y = 1), independent of treatment (x5) (since their bodies can
focus on the disease of interest); still, this results in a correlation between treatment

(zo) and outcome (y)

Fisher's hypothesis (epidemiology): A certain gene variant (x1 = 1) causes lung
cancer, but also makes you want to smoke (x> = 1), but smoking itself has no effect

on lung cancer y; still, this results in a correlation between smoking (x5) and outcome

(v)

Now that we can measure genetic variance: Fisher's hypothesis is (mostly) wrong

But: Maybe a developing lung cancer makes you feel like you want to smoke
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Unidimensional analysis

Multidimensional analysis
(penalized least squares)



» Common cause (Fisher): a
genetic factor makes you

* Smoking is a
want to smoke and

cause of

lung cancer increases your chance of
« Stop getting lung cancer

smoking! * Smoking does not make a

difference

e * In all three case you see a

+ A developing lung cancer correlation (dependency)
makes you want to smoke between lung cancer and
(which might relieve some smoking

* You can predict
(probabilistically) lung

cancer (output) from
smoking (input)

strange feeling about your
lung)

* Smoking does not make a
difference



The Pearson correlation coefficients is independent of context, objective. Karl Pearson:
“| interpreted that sentence of Francis Galton (1822-1911) [his advisor] to mean that
there was a category broader than causation, namely correlation, of which causation
was only the limit, and that this new conception of correlation brought psychology,
anthropology, medicine, and sociology in large parts into the field of mathematical
treatment.”

But the Pearson correlation coefficient does not reflect causality (dependencies)

The regression coefficients display causal behavior, much more closely: causality anal-
ysis based on observed data requires complete models

“Gold standard™ prospective randomized controlled trial (RCT): assign patients ran-
domly to the treatment group

In epidemiological studies RCTs are often not ethical: you cannot just tell people
to start smoking; here one often needs to rely on (carefully analysed) retrospective
observational studies



If one is only interested in prediction accuracy: adding inputs liberally in regression
can be beneficial if regularization is used (in ad placements and ad bidding, hundreds

or thousands of features are used)

The weight parameters of useless (noisy) features become close to zero with regular-
ization (ill-conditioned parameters)

Regularization is especially important when N ~ My, or when N < M),

If parameter interpretation is essential or if, for computational reasons, one wants to

keep the number of inputs small:

— Forward selection; start with the empty model; at each step add the input that

reduces the error most

— Backward selection (pruning); start with the full model; at each step remove the

input that increases the error the least
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e But no guarantee, that one finds the best subset of inputs or that one finds the true

Inputs



8 Inputs, 97 data points; y: Prostate-specific antigen

LS 0.586
10-times cross validation error  Best Subset (3) | 0.574
Ridge (Penalized) | 0.540
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e Ranking in search engines (relevance of a web page to a query)

e Ad placements: where to put which advertizement on a web page, for a user with a

given user profile
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