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Diffusion Models
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DDPM: Denoising Diffusion Probabilistic Model

• Assume a P (h,x) = P (x|h)P (h) = P (h|x)P (x)

• x and h are both M -dimensional

• Simple marginalization give us the generator

P (x) =

∫
P (x|h)P (h)dh

• Simple marginalization gives us an encoder

P (h) =

∫
P (h|x)P (x)dx

• We can approximate P (x) with the training images

• We can then generate samples from P (h|xi) with any reasonable conditional distri-

bution
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DDPM: Denoising Diffusion Probabilistic Model (cont’d))

• Based on the (hs,xs) samples, we could learn a P (x|h); here we can use supervised
learning since inputs and outputs are defined by the samples

• This does not work very well since most x|h would not Ã¼produce meaningful images
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A Markov Chain

• We start with a forward Markov chain

P (h1, . . . ,hT ,x) = P (x)P (h1|x)
T∏

t=2

P (ht|ht−1)

• The trick is to design (not learn) a very simple Markov chain (now h ≡ hT ); then

P (hT |x) =

∫
P (h1|x)

T∏
t=2

P (ht|ht−1) dh1 . . .hT

This is the forward model (encoder)

• We assume an extremely simple model

P (ht|ht−1) = N (ht; (1− βt)ht−1, βtI)

• The noise variance is 0 < β1 < β2 . . . < βT ≤ 1
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• We get that P (hT |x) = N (hT |0, I), thus we get our simple Gaussian distribution
back for hT

• From the chain, we generate samples (hs
1, . . . ,h

s
T ,x

s) (where xs is a training

image)



The Markov Chain Backwards

• We now consider the backward Markov chain

P (h1, . . . ,hT ,x) = P (x|h1)
T∏

t=2

P (ht−1|ht)

• We impose a very simple conditional backward model by learning

P (ht−1|ht) = N (ht−1; µ⃗(ht, t), βtI)

µ⃗(ht, t) is a DNN with M inputs and M outputs; the larger T (can be a few
thousands), the better the approximation

• µ⃗(ht, t) can be learned from the samples generated in the forward path

• After learning convergences, we can sample from the backward path and generate
images!

• The generator becomes

P (x|hT ) =

∫
P (x|h1)

T∏
t=2

P (ht−1|ht) dh1 . . .hT
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Direct Models

• Given the encoder, the conditional probabilities of the decoder are not really Gaussian;

the Gaussian approximation can be motivated by a variational approximation

• We can derive for the direct forward model

P (ht|x) = N (ht;
√
αtx, (1− αt)I)

with αt =
∏t

τ=1(1 − βτ) (αt is close to 1 for small t and gets closer to 0 for

large t)

• For the direct backward model, we use

P (x|ht) = N (x;ht − g(ht, t), (1− αt)I)

• Note that the expression ht − g(ht, t) can be thought of as a classical generator;

for a t < T the generator becomes more local

• g(hT , T ) is approximated by a U-net
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A Direct Backward Model

• We actually model g(ht, t); the relationship is

µ⃗(ht, t) =
1

√
1− βt

(
ht −

βt√
1− αt

g(ht, t)

)
• In the pseudocode h ≡ z

8







Stable Diffusion

9



Stable Diffusion

• Stable diffusion models, also known as latent diffusion models or LDMs

• Use a VAE in a preprocessing step to map images to latent spaces and back

• The diffusion model is applied to the latent state defined by the VAE; let h(x) be

the Mhidd < M -dimensional latent representation generated by the VAE

• h(x) assumes the role of the x before; all ht also have dimension Mhidd

• g(ht, t) is modelled as a U-net

• To provide information about the prompt, a BERT model provides an embedding

vector that is then used in form of cross attention in the U-net

• So we have both the VAE encoder-decoder and the diffusion encoder-decoder
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CLIP
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Contrastive Pretraining Using Clip

• The BERT model is pretrained on image annotations from the web using contrastive

learning; it enforces similar embeddings for matching text-image pairs

• Cost function, e.g.,

softmax((htext
i )Thimage

i )

htext
i is the text embedding vector generated from BERT and himage

i is the image

embedding vector generated, e.g., from a vision transformer (ViT)

• Often cosine distance is used instead of inner product

• Use embedding vector pairs (image-text) and mismatches of texts and mismatches of

images (batch size for the softmax: e.g., 2000)
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Concluding the Lecture

• The lecture was quite comprehensive

• We did not cover Deep Reinforcement Learning

• We did not cover Structured Distributions: Bayes nets, Markov nets

• We did not cover data on graphs (e.g., social networks), e.g., Graph Neural Networks
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