Diffusion Models, Stable Diffusion,
and CLIP

Volker Tresp
Winter 2024-2025

Diffusion Models

Assume a P(h,x) = P(x/h)P(h) = P(h|x)P(x)
x and h are both M -dimensional

Simple marginalization give us the generator
P(x) = / P(x|h) P(h)dh
Simple marginalization gives us an encoder

P(h) = /P(h|x)P(x)dx

We can approximate P(x) with the training images

We can then generate samples from P(h|x;) with any reasonable conditional distri-

bution

e Based on the (h%, x%) samples, we could learn a P(x|h); here we can use supervised

learning since inputs and outputs are defined by the samples

e This does not work very well since most x|h would not Alproduce meaningful images

We start with a forward Markov chain

T

P(hy,...,hp,x) = P(x)P(hi|x) || P(hs/hy_1)
t=2

The trick is to design (not learn) a very simple Markov chain (now h = h7); then

T
P(hrfx) = [P(hafx) [] P(hulby-1) dhy ... by
t=2

This is the forward model (encoder)

We assume an extremely simple model
P(h¢lhy_1) = N(hg; (1 — Br)hy_1, B)

The noise varianceis 0 < 81 < Bo... < B <1

e We get that P(hp|x) = N (hp|0, 1), thus we get our simple Gaussian distribution
back for hp

o From the chain, we generate samples (hj,..., h%,x%) (where x® is a training
image)

We now consider the backward Markov chain
T
P(hy,...,hy,x) = P(x|hy) || P(hy_1]hy)
t=2

We impose a very simple conditional backward model by learning

P(hy_1|hy) = N(hy_1; i(hy,), Bi1)
fi(he,t) is a DNN with M inputs and M outputs; the larger T' (can be a few
thousands), the better the approximation

ii(h¢, t) can be learned from the samples generated in the forward path

After learning convergences, we can sample from the backward path and generate
images!

The generator becomes

T
P(xihy) = [Pxlhy) [] P(hi-lho) dhy ... by
t=2

Given the encoder, the conditional probabilities of the decoder are not really Gaussian;

the Gaussian approximation can be motivated by a variational approximation
We can derive for the direct forward model

P(ht|X) = N(ht; \/O{_tX, (1 — Ozt)I)

with oy = Hi:l(l — Br) (ag is close to 1 for small ¢ and gets closer to O for
large t)

For the direct backward model, we use

P(x|hy) = N(x; hy — g(hy, t), (1 — ap)I)

Note that the expression hy — g(hy, t) can be thought of as a classical generator;

for a t < T' the generator becomes more local

g(hp,T) is approximated by a U-net

e We actually model g(hy, t); the relationship is

| 1 B
p(he, t) = =75, (ht mg(ht,t))

e In the pseudocode h = z

Algorithm 20.1: Training a denoising diffusion probabilistic model

Input: Training data D = {x,,}
Noise schedule {3,,..., 07}
Output: Network parameters w

fort e {1,...,T}do

| v Hfr:l [1 - ﬁ-,—) // Calculate alphas from betas

end for
repeat
X~D // Sample a data point
im{l,.,,,T} // Sample a point along the Markov chain

€ ~ N(€|0,I) // sample a noise vector
Zy 4—1;utx+\;1 — ;€ // Evaluate noisy latent wvariable
L(w) « |lg(z¢, w,t) —€||* // compute loss term

Take optimizer step
until converged

return w

Algorithm 20.2: Sampling from a denoising diffusion probabilistic model

Input: Trained denoising network g(z, w, t)
Noise schedule {53, ..., 587}
Output: Sample vector x in data space

T wﬂ[zlﬂ,l] // Sample from final latent space
forteT,...,2do

Crp H:_:l{l — B;) // Calculate alpha

// Ewvaluate network output

“(Ehwtt} — ﬁ {zl‘. - Vf;f_l—mg{zhw:t}}

€ ~ N(€|0,I) // Sample a noise vector

Zy—1 — p(Zy, w,t) + +/B1€ // Add scaled noise
end for

1 3 ~ .
X =T- {Zl - G’l—l_uJE{EnWJ}} // Final dencising step
return x

Stable Diffusion

Stable diffusion models, also known as latent diffusion models or LDMs
Use a VAE in a preprocessing step to map images to latent spaces and back

The diffusion model is applied to the latent state defined by the VAE; let h(x) be
the My, 34 < M-dimensional latent representation generated by the VAE

h(x) assumes the role of the x before; all h; also have dimension Mjp,; 4
g(hy, t) is modelled as a U-net

To provide information about the prompt, a BERT model provides an embedding
vector that is then used in form of cross attention in the U-net

So we have both the VAE encoder-decoder and the diffusion encoder-decoder

10

High-Resolution Image Synthesis with Latent Diffusion Models
(A.K.A. LDM & Stable Diffusion)

Robin Rombach'?, Andreas Blattmann <, Dominik Lorenz'?, Patrick Esser,

Bjsm Ommer’ =

LML Munich, 2IWR, Heidelberg University, *Runway
CVPR 2022 (ORAL)

Image
embedding
/ space
VAE: i R Latent Space | €onditioning!
encoder of . Diffusion Process Eemanﬁq
. a .
Image X Denoising U-Net €g Text
€---oIIIIiit S Repres
vA.E . entations
decoder
(generator) | |7 T2, T—T T

Kv &----

denoising step crossattention switch skip connection concat

Figure 3. We condition LDMas either via concatenation or by a more genaral cross-attention mechanism.

U-net

1 64 B4
128 64 64 2
input
impe - - Guipis
[-
Eﬁe N _| segmentation
& = map
5| Hf & & o
=] o= o=
R ELE
W g u
¥ 105 12
E E
ZENE

= cONY 3x3, RelU
= copy and crop
max pool 2x2
4 up-conv 2x2
= cONV 1x1

1402

~

Predicted
noise

= UopuY /

Moisy latent L-Met (with attention)
14 11| S
e
A 4 * =
_..E g JELE
-; ---------- g i;
g
r ' = [
L|gl5 1z
. =
Time step L g 2
embedding .
Canditional

embedding

0., "0 0 ™,

g(x¢— 1|xr,E}

Transformer

Step 5: Use this []
conditioning to generate
a caption-aligned image

“An image of the face of a man

CLIP

11

The BERT model is pretrained on image annotations from the web using contrastive

learning; it enforces similar embeddings for matching text-image pairs

Cost function, e.g.,

softmax((hgemt)Thzmag)

rmage
)
embedding vector generated, e.g., from a vision transformer (ViT)

hgext is the text embedding vector generated from BERT and h is the image

Often cosine distance is used instead of inner product

Use embedding vector pairs (image-text) and mismatches of texts and mismatches of
images (batch size for the softmax: e.g., 2000)

12

Contrastive Pre-Training using CLIP

(1) Contrastive pre-training
~BERT
?F.PF:'.” '_:.":1: Text
aussis pup — . l
¥ ¥ ¥ .
T l || -]TH
— l. ||_'T|]| TJ]|_ T'| Il'T."i
—- i_: i: r: I.:'t:]: T] |:' r,.._-
m — Ii‘ q:l Iy TI: Iy T] I! I]_ Iy T:.q_'
i
I“'-
- - - | I" |
VIT (vision “»> & wif wT W Ty
transformer) ‘H
\
b

Embedding vector of image-3

Embedding
-~ wector of text-3

image—text softmax text—image softmax

- N txi- ¥ N - ¥
i=1 Ej:]E’ J Ej:lE’ g

Every positive pair is
normalized by all

negative pairs

Equation 1: CLIP uses softmax aperation. Accordingly. the similarity of evary pasitive-pair is normalized by
all negative pairs. Thus, every GPU makes maintains an MxM matrix for all pairwise similarities. This brings
quadratic complexity to CLIE

N N L] - -
1 1, for positive pairs.
L£=—-—— E E log 8t zy= pa

j=1 j=1 1 + e*s(txiy;+b) —1, for negative pairs.

Every pair (positive,/negative)
is independent of other pairs

Equation 2: SigLIF uses sigmaid operation and each image-text pair (positive or negative) s evaluated
independently. There is no need to maintain a global NxN normalization matrix. Accordingly, SigLIP loss can
bé evaluated incremantally lor large batch-slzas

The lecture was quite comprehensive
We did not cover Deep Reinforcement Learning
We did not cover Structured Distributions: Bayes nets, Markov nets

We did not cover data on graphs (e.g., social networks), e.g., Graph Neural Networks

13

