
Neural Networks

Volker Tresp

Winter 2024-2025

1

Introduction

• In many applications, data might be uniformly distributed in input space, but com-

plexity in y-space might be nonuniform

• In the next slide the function has two areas of high complexity; RBF approaches, with

a notion of uniform complexity, have problems

2

Sigmoidal Basis Functions

• A sigmoidal basis function has the form

sig(vx+ v0)

where

sig(arg) =
1

1+ exp(−arg)

• The function is only complex near its center where arg ≈ 0

• Important: To get the location and the slope at the center, we need to

adapt the inner parameters v0, v. There is no closed-form solution for the esti-

mate of those parameters: we need to use gradient-based approaches like SGD

3

Several Sigmoidal Basis Functions

• With several weighted sigmoidal basis functions, we are able to model a variety of

functions with local complexity

f(x) = w0 +
H∑

h=1

wh sig(vhx+ vh,0)

4

Overcomplete Basis

• Another approch would be to select a sparse subset in an overcomplete basis

• This is the approach used in Wavelets, Sparse coding, ...

5

Multidimensional Input Space

• With several sigmoidal basis functions, we are able to model a variety of functions

with local complexity in a high dimensional input space

f(x) = w0 +
H∑

h=1

wh sig

vh,0 +
M∑
j=1

vh,jxj


• This equation describes neural network, more specifically, a Multilayer Perceptron with

one hidden layer

6

Dimensionality Reduction

• Note that the neural network can also performs dimensionality reduction: in the figure,

any components orthogonal to (0.5,0.75)T are ignored

• So neural networks are well suited for largeM , small smoothnessm and noisy features,

if the function has high complexity only in the projection on some low-dimensional

subspaces

7

Neural Networks: Essential Advantages

• Neural Networks are universal approximators: any continuous function can be approx-

imated arbitrarily well (with a sufficient number of neural basis functions)

• Naturally, they can solve the XOR problem and at the time (mid 1980’s) were consid-

ered the response to the criticism by Minsky and Papert with respect to the limited

power of the single Perceptron

• Important advantage of Neural Networks: a good function fit can often (for a large

class of important function classes) be achieved with a small number of neural basis

functions

• Neural Networks scale well with input dimensions

8

Flexible Models: Neural Networks

• For regression, the output of a neural network is the weighted sum of basis functions

ŷ = f(x) = w0 +
H∑

h=1

whsig(x
Tvh)

• Note, that in addition to the output weights w, the neural network also has inner

weights vh

9

Notation

• x = 1, x1, . . . , xj, . . . , xM : inputs (with constant)

• z = 1, z1, z2, . . . , zh, . . . , zH : Outputs of the H hidden units (with constant)

• vh,j: weight from input j to hidden unit h

• y: single neural network output; H(M +1)+ (H +1) adjustable parameters

• wh: weight from hidden unit h to output y

• y1, . . . , yk, . . . , yK : K neural network outputs; H(M + 1) + K(H + 1) ad-

justable parameters

• wk,h: weight from hidden unit h to output k

10

Neural Basis Functions

• Special form of the basis functions

zh = sig(xTvh) = sig

vh,0 +
M∑
j=1

vh,jxj


using the logistic function

sig(arg) =
1

1+ exp(−arg)

• Adaption of the inner parameters vh,j of the basis functions!

11

Hard and Soft (sigmoid) Transfer Functions

• First, the activation function of the neu-

rons in the hidden layer are calculated as

the weighted sum of the inputs as

h(x) =
M∑
j=0

wjxj

(note: x0 = 1 is a constant input, so

that w0 corresponds to the bias)

• The sigmoid neuron has a soft (sigmoid)

transfer function

Perceptron : ŷ = sign(h(x))

Sigmoidal neuron: ŷ = sig(h(x))

12

Transfer Function

13

Separating Hyperplane

• Definition of the hyperplane

sig

 M∑
j=0

vh,jxj

 = 0.5

which means that:

M∑
j=0

vh,jxj = 0

• “carpet over a step”

14

Architecture of a Neural Network

15

Variants

• For a 2-class neural network classifier apply the sigmoid transfer function to the

output neuron, and calculate

ŷ = sig(f(x)) = sig(zTw)

• For multi-class tasks (e.g., recognizing digits 0,1, . . . ,9), one uses several output

neurons. For example, to classify K digits

ŷk = sig(fk(x)) = sig(zTwk) k = 1,2, . . . ,K

and one decides for class l, with l = argmaxk(ŷk)

• (Nowadays on typically uses the softmax cost function (discussed further down)

• A Neural Network with at least one hidden layer is called a Multilayer Perceptron

(MLP)

16

Architecture of a Neural Network for Several Classes

17

Learning Multiple-Class Classifiers

• The goal again is the minimization of the squared error calculated over all training

patterns and all outputs

cost =
N∑

i=1

costi

with costi =
∑K

k=1(yi,k − ŷi,k)
2

• The least squares solution for V cannot be calculated in closed-form

• Typically both W and V are trained via (stochastic) gradient descent

18

Adaption of the Output Weights

• The gradient of the cost function for an output weight for pattern i becomes

∂costi
∂wk,h

= −2δi,kzi,h

where

δi,k = sig′(zTi wk)[yi,k − ŷi,k]

is the back propagated error signal (error back propagation). Note, that δi,k is at-

tached to an output node k.

19

Adaption of the Output Weights (cont’d)

• The pattern based gradient descent learning becomes (pattern: i, output: k, hidden:

h):

wk,h ← wk,h + ηδi,kzi,h

• Another example of a delta-rule

20

The Derivative of the Sigmoid Transfer Function with Respect
to the Argument

... can be written elegantly as

sig′(in) =
exp(−in)

(1 + exp(−in))2
= sig(in)(1− sig(in))

Thus

δi,k = ŷi,k(1− ŷi,k) (yi,k − ŷi,k)

21

Adaptation of the Input Weights

• The gradient of an input weight with respect to the cost function for pattern i becomes

∂costi
∂vh,j

= −2δi,hxi,j

with the back propagated error

δi,h = sig′(xTi vh)
K∑

k=1

wk,hδi,k = zi,h(1− zi,h)
K∑

k=1

wk,hδi,k

• Note, that δi,h is attached to hidden node h.

22

Adaptation of the Input Weights (cont’d)

• For the pattern based gradient descent, we get (pattern: i, hidden: h, input: j):

vh,j ← vh,j + ηδi,hxi,j

23

Pattern-based Learning

• Iterate over all training patterns

• Let xi be the training data point at iteration t

– Apply xi and calculate zi, ŷi (forward propagation)

– Via error backpropagation calculate the δi,h, δi,k

– Adapt

wk,h ← wk,h + ηδi,kzi,h

vh,j ← vh,j + ηδi,hxi,j

• All operations are“local”: biologically plausible

24

Complexity Analysis

• Neural networks work well in all situations covered in the discussion on basis function,

except for Case I. (curse of dimensionality)

• In particular, they offer an excellent solution for Case Ia (sparse basis).

25

Neural Networks and Overfitting

• In comparison to conventional statistical models, a Neural Network has a huge number

of free parameters, which might easily lead to over fitting

• The two most common ways to fight over fitting are regularization and stopped-

training

• Let’s first discuss regularization

26

Neural Networks: Regularization

• We introduce regularization terms and get

costpen =
N∑

i=1

costi + λ1

K∑
k=1

H∑
h=0

w2
k,h + λ2

H∑
h=0

M∑
j=0

v2h,j

• The learning rules change to (with weight decay term, the constant bias is typically

not regularized)

wk,h ← wk,h + η

(
δi,kzi,h −

λ1
N

wk,h

)

vh,j ← vh,j + η

(
δi,hxi,j −

λ2
N

vh,j

)

27

Artificial Example

• Data for two classes (red/green circles) are generated

• Classes overlap

• The optimal separating boundary is shown dashed

• A neural network without regularization shows over fitting (continuous line)

28

Same Example with Regularization

• With regularization (λ1 = λ2 = 0.02) the separating plane is closer to the true

class boundaries

• The training error is smaller with the unregularized network, the test error is smaller

with the regularized network

29

Optimized Regularization Parameters

• The regularization parameter is varied between 0 and 0.15

• The vertical axis shows the test error for many independent experiments

• The best test error is achieved with regularization parameter 0.07

• The test error varies a lot with no regularization

30

Variations

• Use more than one hidden layer (see deep learning)

• Use tanh(arg) ∈ (−1,1) instead of sig(arg) ∈ (0,1)

• For the tanh(arg), use targets y ∈ {−1,1}, instead of y ∈ {0,1}

• Often: Use tanh(arg) in the hidden layer and sig(arg) in the output layer (for

binary classes) and softmax(arg) for multiple classes

31

Cross-entropy Cost Function for Binary Classification

• We use ŷ = sig(η) with η = zTw

• The likelihood for pattern i is Li = ŷ
yi
i (1− ŷi)

1−yi (to be maximized)

• With yi ∈ {0,1}, the cross-entropy loss for pattern i is the logarithm of the negative

log-likelihood, as

costCEi = −yi log ŷi − (1− yi) log(1− ŷi)

= −yiη + log(1 + exp(η))

and the gradient becomes

∂costCEi
∂wh

= −(yi − ŷi)zi,h

• (homework!) Nowadays, the cross-entropy cost function is typically being used

32

Delta Rules

• Thus, for the cross-entropy cost function, we get for the delta-rule:

δi = (yi − ŷi).

with ŷi ∈ (0,1)

• This is identical to the delta-rule for the Perceptron, only there, ŷi ∈ {0,1}

• Recall that for the (old-style) neural network for binary classification,

δi = sig′(zTi w)(yi − ŷi)

33

Cross-entropy Cost Function for Multiple Classes

• Often the outputs are mutual exclusive: a handwritten digit is exactly one out of 10

digit

• As activation, one uses the softmax function with fi,k =
∑H

h=0wk,hzi,h

ŷi,k =
exp fi,k∑K

k′=1 exp fi,k′

• The likelihood for pattern i is Li =
∏

k ŷ
yi,k
i,k (to be maximized)

• The cost term (one hot encoding with yi,k ∈ {0,1}) is the logarithm of the negative

log-likelihood, as

costCEi =

−∑
k

yi,k exp fi,k

+

log
K∑

k′=1

exp fi,k′


34

Cross-entropy Cost Function for Multiple Classes (cont’d)

• The partial derivative,

∂costCEi
∂wk,h

= −(yi,k − ŷi,k)zi,h

• (homework!) Nowadays, the cross-entropy cost function is being used

35

Regularization with Stopped-Training

• In the next picture you can see a typical behaviour of training error and test error as

a function of training time (an epoch is one pass through all data during learning)

• As expected the training error steadily decreases with epochs

• As expected, the test error first decreases as well; maybe surprisingly there is a mini-

mum, after which the test error increases

• Explanation: During training, the degrees of freedom in the neural network slowly

increase; with too many degrees of freedom, overfitting occurs

• It is possible to regularize a neural network by simply stopping the adaptation at the

right moment (regularization by stopped-training)

36

Optimizing the Learning Rate η

• Convergence can be influenced by the learning rate η

• Next figure: if the learning rate is too small, convergence can be very slow, if too

large the iterations can oscillate and even diverge

• The learning rate can be adapted to the learning process (“Adaptive Learning Rate

Control”); a popular variant is called Adaptive Moment Estimation (Adam) (see deep

learning lecture)

37

Local Solutions

38

Local Solutions

39

SGD has Fewer Problems with Local Optima

40

Dealing with Local Optima

• Restart: Simply repeat training with different initial values and take the best one

• Committee: Repeat training with different initial values and take all of them: for

regression, simply average the responses, for classification, take a majority vote

41

Bagging

• Bagging: Bootstrap AGGregatING

• Committee as before, but each neural network is trained on a different bootstrap

sample of the training data

• Bootstrap sample: From N training data, randomly select N data points with re-

placement. This means one generates a new training data set with again N data

points but where some data points of the original set occur more than once and some

not at all

• If you apply this committee idea to decision trees you get Random Forests (used to

win many Kaggle competitions; now often beaten by deep neural networks)

42

Conclusion

• Neural Networks are very powerful and show excellent performance

• Training can be complex and slow, but one might say with some justification, that a

neural network really learns something: the optimal representation of the data in the

hidden layer

• Predictions are fast!

• Neural Networks are universal approximators and have excellent approximation prop-

erties

• Key: Basis functions are not predifined by some more or less smart procedure (as

in fixed basis function approaches) but the learning algorithm attempts to find the

“optimal”, problem specific basis functions

• Disadvantage: training a neural network is something of an art; a number of hyper

parameters have to be tuned (number of hidden neurons, learning rate, regularization

parameters, ...)

43

Conclusion (cont’d)

• Not all problems can be formulated as a neural network learning problem (but surpris-

ingly many real world problems)

• Disadvantage: A trained neural network finds a local optimum. The solution is not

unique, e.g. depends on the initialization of the parameters. Solutions: multiple runs,

committee machines

• Note added in 2016; Computing libraries like Theano, TensorFlow, Keras, and PyTorch

use symbolic differentiation; you never have to program backprop: calculating the

gradient manually is error prone and tedious for complex structured models

44

APPENDIX: Approximation Accuracy of Neural Networks

45

Complexity Measure

• How many hidden neurons are required for a certain approximation accuracy?

• Define the complexity measure Cf as∫
|ω||f̃(ω)| dω = Cf ,

where f̃(ω) is the Fourier transform of f(x). ω is the frequency vector in M

dimensions. Cf penalizes (assigns a high value to) rough functions containing high

frequency components!

• So, roughness ≈ Cf

• The target function class F now consists of all functions with a complexity measure

smaller or equal to Cf

• We consider again

∥f − g∥2B =
1

VB

∫
B
(f(x)− g(x))2dx

46

Here VB is the volume of the unit ball B in M dimensions

Main Result

• Our model classM consists of neural networks with one hidden layer

• Barron showed that for each target f(x), with a finite Cf , there is a neural network
with one hidden layer, with

∥f − fw∥2B ≤
4C2

f

H
(1)

• We can then estimate the number of neurons in the hidden layer as

H = O
(
accuracy× C2

f

)
The number of parameters is dominated by the number of parameters in the layer
between input and hidden; thus,

MP = O
(
M × accuracy× C2

f

)
• Recall that before we got for fixed basis functions

Mϕ = MP = O
(
accuracyM×roughness

)
47

Main Result (cont’d)

• For important function classes it could be shown that Cf only increases weakly (e.g.,

proportional) with M

• Examples where Cf only increases weakly (e.g., proportional) with M : The functions

become very smooth in high dimensions (Case III (smooth)), or in Case Ia (sparse

basis); neural networks also do well in Ib (manifold), and, of course, II (blessing) and

IV (smooth)

• Quellen: V. Tresp. Die besonderen Eigenschaften Neuraler Netze bei der Approxima-

tion von Funktionen. Kuenstliche Intelligenz, Nr. 4., 1995.

A. Barron. Universal Approximation Bounds for Superpositions of a Sigmoidal Func-

tion. IEEE Trans. Information Theory, Vol. 39, Nr. 3, 1993.

48

