
The Perceptron

Volker Tresp

Winter 2024-2025

1

Elements in Learning Tasks

• Collection, cleaning and preprocessing of training data

• Definition of a class of learning models. Often defined by the free model parameters

in a learning model with a fixed structure (e.g., a Perceptron) (model structure

learning: search about model structure)

• Selection of a cost function which is a function of the data and the free parameters

(e.g., a score related to the number of misclassifications in the training data as a

function of the model parameters); a good model has a low cost

• Optimizing the cost function via a learning rule to find the best model in the

class of learning models under consideration. Typically this means the learning of the

optimal parameters in a model with a fixed structure

2

Prototypical Learning Task

• Classification of printed or handwritten digits

• Application: automatic reading of postal codes

• More general: OCR (optical character recognition)

3

Reshaping of the Raw Data (2-D) into Pattern Vectors (1-D),
which are then the Rows in a Learning Matrix

4

Binary Classification for Digit “5”

5

Supervised Machine Learning

• x ∈ RM is an input, i.e., an element in an M -dimensional vector space

• Consider a function f : RM → R

• We have x 7→ f(x)

• Consider f(xi) to be a predicted attribute of entity i (e.g., income)

6

Expected Output

• In general, we are interested in the expected output y ∈ R, given that we know x

ŷ(x) = f(x) = E(y|x)

Sometimes, we apply another transformation, e.g.,

ŷ(x) = sig(f(x)) = E(y|x)

• Example 1: if x represents a machine-generated written digit, and y indicates if

the digit is a“5”(y = 1) or another digit (y = 0), then ŷ(x) ∈ {0,1}, since it is
possible to classify machine generated written digits perfectly

• Example 2: if x represents a human-generated written digit, and y indicates if the

digit is a “5” (y = 1) or another digit (y = 0), then ŷ(x) ∈ [0,1], since it is

impossible to classify human-generated written digits perfectly

7

Machine Learning Setting (cont’d)

• The function f(x) is sometimes called the“true function”or the“underlying function”

or the“data generating function”, or, in engineering, the system

• fw(x) is a model (function) with parameter vector w ∈ RMP ; MP is the number

of model parameters

• The goal of learning is to find a ŵ ∈ RMP such that

fŵ(x) ≈ f(x)

• In supervised learning, we “learn” ŵ, based on a training data set {(xi, yi)}Ni=1,

where N is the number of training data points

8

Data Matrix for Supervised Learning

M number of inputs (input attributes)
Mp number of free parameters
N number of training patterns

xi = (xi,0, . . . , xi,M)T

input vector for the i-th pattern
xi,j j-th component of xi
X = (x1, . . . ,xN)T (design matrix)
yi target for the i-th pattern

y = (y1, . . . , yN)T

vector of all targets

di = (xi,0, . . . , xi,M , yi)
T

i-th pattern
D = {d1, . . . ,dN} (training data)

x = (x0, x1, . . . , xM)T ,
generic (test) input

y target for x
ŷ(x) model estimate

9

Fine Details on the Notation

• x is a generic input and xj is its j-th component. y is a generic output

• xi is the i-th data point in the training data set and xi,j is its j-th component. yi
is the target associated with xi

• xi,0 = x0 = 1

• y is the vector of all targets

• Also note that xi is a column vector but it appears as a row in X

• For linear models, Mp = M +1, i.e., the number of free parameters is the number

of inputs plus 1

10

Data Matrix from Facts

• Assume that I measure the height of Jack, and the result is 186cm

• “height” is the name of column j,“Jack” is the name of the row i

• “185” is the entry in row i and column j

• In machine learning, e.g., we want to predict the weight of an unseen person based

on the age and the height of the person

• “height”,“age” ,“weight”are the names of the columns, where the last column (here:

“weight”) contains the targets

11

Model

• fw(x) is a model function with parameters w

• wopt are the optimal model parameters, based on the training data (according to

some cost function; might not be unique)

• f(x) is the“true”but unknown function that (hypothetically) generated the data

• Sometimes (but not in general) the true function can be represented by one to the

model functions. Then wtrue are the parameters of that model (might not be unique)

• In classical statistics, one is often interested in the distance between wopt and wtrue

• In machine learning, one is often interested in the distance between fwopt and fwtrue

12

A Biologically Motivated Model

13

Examples of Input-Output Problems (Supervised Learning
Problems)

• A biological system needs to make a decision, based on available sensor information

• An OCR system classifies a hand written digit

• A forecasting system predicts tomorrow’s energy consumption

14

Supervised Learning

• In supervised learning one assumes that in training both inputs X and outputs y are

available; in testing, the model only knows x and the goal is to predict y

• For example, an input pattern might reflect the attributes of an object and the target

is the class membership of that object

• The goal is the correct classification for new patterns (e.g., new objects)

• Linear classifier: one of the simplest but surprisingly powerful classifiers

• A linear classifier is particularly suitable, when the number of inputs M is large;

if M is not large, one can transform the input data into a high-dimensional space

(preprocessing), where a linear classifier might be able to solve the problem; this idea

is central to a large portion of the lecture (basis functions, neural networks, kernel

models)

• A linear classifier can be realized by a Perceptron, a single formalized neuron!

15

The Perceptron: A Learning Machine

• The Perceptron was the first serious learning machine

• The Perceptron learning algorithm was invented in 1957 at the Cornell Aeronautical

Laboratory by Frank Rosenblatt

16

The Perceptron: Input-Output

17

1w
0w

1,ix10, ix

ih

iŷ

1, Mix

1Mw

• The Perceptron calculates first a sum of weighted

inputs

h(x) =
M∑
j=0

wjxj

(Note: x0 = 1 is a constant input, such that w0

can be though of as a bias); in biology this would

be the membrane potential; in computer science

it is called net input “’Net”; some authors call

this the pre-activation value

• With activation function sign(·), the binary

classification ŷ ∈ {1,−1} is calculated as

ŷ = sign(h(x))

ŷ is called the output or the post-activation

value

• The linear classification boundary (separating hy-

perplane) is defined by

h(x) = 0

h (M = 2)

18

The Decision Boundary / Separating Hyperplane (M = 2)

19

Linearities

• Not to get confused:

• 1: h(x) is a linear function

– With M = 1, h = w0 + w1x1

– With M = 2, h = w0 + w1x1 + w2x2

• 2: h(x) = 0 defines a linear hyperplane

– When M = 2, and with

h(x) = w0 + w1x1 + w2x2

in the separating hyperplane with h(x) = 0, x2 is a linear function of x1:

x2 = −
1

w2
(w0 + w1x1)

20

Perceptron as a Weighted Voting Machine

1w
0w

1,ix10, ix

ih

iŷ

1, Mix

1Mw

• The Perceptron is often displayed as a graphical

model with one input node for each input variable

and with one output node for the target

• The bias w0 determines the class when all inputs

are zero

• Consider only binary inputs with xi,j ∈ {0,1}
• When xi,j = 1 the j-th input votes with weight

|wj| for class sign(wj)

• Thus, the response of the Perceptron can be

thought of as a weighted voting for a class

21

Context-dependent Relevance and Explainability

• In context with the other inputs, an individual input might have no effect, or it might

be instrumental to change the output of the perceptron, e.g., form −1 to 1

• Challenge: could we define wj based on prior expert knowledge?

• There is a chance when the output is predicted wealth and the inputs are features

describing the person (income, number of bedrooms in home, ...); one reason why

this is still difficult is the correlation of inputs; if the same quantity is represented

twice as input (e.g., by accident) then the weights should halved

• Sometimes it is simply impossible; consider that the input j is a pixel in OCR; what

should be the weight of pixel j, i.e., wj for determining that a pattern is a 5?

• These are reasons why we need to learn the weights and we cannot determine them

by expert’s insight

• In explainable AI one goes the opposite and tries to explain what it means for an input

xj to have a certain weight parameter wj; this is a core problem in medical statistics

22

Perceptron Learning Rule

• We now need a learning rule to find optimal parameters w0, . . . , wM

• We define a cost function (loss function, objective function) that is dependent on the

training data and the parameters. When the training data and the model structure is

fixed, it is only a function of the parameters, cost(w)

• In the learning process (training), one attempts to find parameters that minimize the

cost function

wopt = argmin(cost(w))

23

The Perceptron Cost Function

• Goal: correct classification of the N training samples with targets {y1, . . . , yN}

• The Perceptron cost function is

cost = −
∑
i∈M

yih(xi) =
N∑

i=1

|−yih(xi)|+

where M ⊆ {1, . . . , N} is the index set of the currently misclassified patterns.

|arg|+ = max(arg,0).

• Here, h(xi) =
∑M

j=0wjxi,j

• Obviously, we get cost = 0 only, when all patterns are correctly classified (then

M = ∅); otherwise cost > 0, since yi and h(xi) have different signs for misclas-

sified patterns

24

Contribution of one Data Point to the Cost Function

25

Gradient Descent

• Initialize parameters (typically small random values)

• In each learning step, change the parameters such that the cost function decreases

• Gradient descent: adapt the parameters in the direction of the negative gradient

• With

cost = −
∑
i∈M

yi

 M∑
j=0

wjxi,j

the partial derivative of the weights with respect to the parameters is (Example: wj)

∂cost

∂wj
= −

∑
i∈M

yixi,j

• Thus, a sensible adaptation rule is, ∀wj,

wj ←− wj + η
∑
i∈M

yixi,j

26

Gradient Descent with One Parameter

27

Gradient Descent with Two Parameters

28

The Perceptron Learning Rule

• In the actual Perceptron learning rule, one presents randomly selected currently mis-

classified patterns and adapts with only the currently selected pattern. This is bio-

logically more plausible and also leads to faster convergence. Let xt and yt be the

training pattern in the t-th step. One adapts t = 1,2, . . .

wj ←− wj + ηytxt,j j = 0, . . . ,M

• In the weight update, a weight increases, when (postsynaptic) yt and (presynaptic)

xt,j have the same sign; different signs lead to a weight decrease (compare: Hebb

Learning)

• η > 0 is the learning rate, typically 0 < η << 1

• Pattern-based learning is also called stochastic gradient descent (SGD)

29

Stochastic Gradient Descent

30

Comments

• Convergence proof: with sufficiently small learning rate η and when the problem is

linearly separable, the algorithm converges and terminates after a finite number of

steps

• If classes are not linearly separable and with finite η there is no convergence

31

Example: Perceptron Learning Rule, η = 0.1

32

Linearly Separable Classes

33

Convergence and Non-uniqueness

Separating plane prior
to adaptation

Different planes after
the next adaptation
step, depending on
which pattern is
presented next and
the learning rate; both
correctly classify all
patterns

34

Two Classes with Data Distributions that Cannot be Separated
with a Linear Classifier

35

The Classical Example for Linearly Non-Separable Classes: XOR

36

Learning Behavior for Nonseparable Classes

• The cost is minimum if as many data points as possible are correctly classified

• For the misclassified data points, |h| should be small; this is achieved with ∥w∥ → 0

which leads to instable learning behavior

• Next, we show the learning behavior for the linearly separable OR and the linearly

nonseparable XOR

• Training data are labelled as“1”and“-1”

37

Comments on the Perceptron

• With separable classes, convergence can be very fast

• A linear classifiers is a very important basic building block: with M → ∞ most

problems become linearly separable!

• In some case, the data are already high-dimensional with M > 10000 (e.g., number

of possible key words in a text)

• In other cases, one first transforms the input data into a high-dimensional (sometimes

even infinite) space and applies the linear classifier in that space: basis functions,

kernel trick, Neural Networks

• Considering the power of a single formalized neuron: how much computational power

might 100 billion neurons possess?

• Are there grandmother cells in the brain? Or grandmother areas?

38

Comments on the Perceptron (cont’d)

• The Perceptron learning rule is not much used any more

– No convergence, when classes are not separable

– Classification boundary is not unique, even in the case of separable classes

– Thus, wopt is not unique!

• Alternative learning rules:

– Optimal separating hyperplanes (Linear Support Vector Machine)

– Fisher Linear Discriminant

– Logistic Regression

39

More on Geometric Relationships

• In vector notation (introduced in a following lecture), the separating hyperplane is
defined as

xTw = 0 or x̃T w̃ = −w0

• Here, x = (x0, x1, . . . , xM)T , w = (w0, w1, . . . , wM)T

• And, x̃ = (x1, . . . , xM)T , w̃ = (w1, . . . , wM)T contains only the“real” inputs
without the first constant dimension

• A unit-length vector ẽ is orthogonal to the separating hyperplane

ẽ =
1

∥w̃∥
w̃

and it“hits” the separating hyperplane at

−
w0

∥w̃∥
ẽ

Here, ∥w̃∥ =
√
w̃⊤w̃ =

√∑M
j=1w

2
i

40

Recall: A Biologically Motivated Model

41

Pattern Recognition Paradigm

• von Neumann: ... the brain uses a peculiar statistical language unlike that employed

in the operation of man-made computers...

• A classification decision is done by considering the complete input pattern, and NOT

as a logical decision based on a small number of attributes nor as a complex logical

programm

• The linearly weighted sum corresponds more to a voting: each input has either a

positive or a negative influence on the classification decision

• Robustness: in high dimensions, a single —possible incorrect— input has little influ-

ence

42

Epilog

43

Why Pattern Recognition?

• Alternative approach to pattern recognition: learning of simple close-to deterministic

rules (naive expectation); advantage: explainability.

• One of the big mysteries in machine learning is why rule learning is not very successful

in predictive systems, although they might be useful to gain a degree of insight in a

domain

• Problems: the learned rules are often either trivial, known, or extremely complex and

very difficult to interpret

• This is in contrast to the general impression that the world is governed by simple rules.

Also, when we communicate some learned insight, it is often communicated by simple

probabilistic rule-like statements: “Rich people are often interested in buying a yacht,

unless they already own one!”

• Also: computer programs, machines ... follow simple deterministic rules? (This might

change in the area of deep learning)

44

Example: Birds Fly

• Define flying: using its own force, a distance of at least 20m, at least 1m high, at

least once every day in its adult life, ...

• A bird can fly if,

– it is not a penguin, or

– it is not seriously injured or dead

– it is not too old

– the wings have not been clipped

– it does not have a number of diseases

– it only lives in a cage

– it does not carry heavy weights

– ...

45

Pattern Recognition

• 90% of all birds fly

• Of all birds which do not belong to a flightless class 94% fly

• ... and which are not domesticated 96% ...

• Basic problem:

– Complexity of the underlying (deterministic) system

– Incomplete information

• Thus: success of statistical machine learning!

46

From Rules to Probabilities and High Dimensions

• Consider the statement: “Rich people are often interested in buying a yacht, unless

they already own one!”

• One cannot observe the desire to buy a yacht (unless one does interviews) but only

the fact (ownership of a yacht)

• We might translate this into a conditional probability P (Y |Wealth); right away we

need to deal with uncertainty, probabilities

• Now we might not know the wealth of a person, only some secondary attributes that

indicate a person’s wealth

• Since a larger number of those secondary attributes permits a better prediction of

one’s wealth, we can either use those to estimate a person’s wealth, and thus also

ones probability in buying a yacht, or one trains a probabilistic classifier with many

inputs, and limited explainability

• “...unless they already own one”: a fact which might be checked in some database

47

A Conversation

• “Who might want to buy my yacht?”“We should talk to Jack, I have the feeling that

he might be interested in buying your yacht!”

• “Why?”“He is rich, and does not have a yacht!”

• “How do you know that he is rich?”“Look at his car, his house, ...!”

• Hypothesis: the first evaluation “We should talk to Jack, I have the feeling that he

might be interested in buying your yacht!”might be done by some internal, potentially

high-dimensional, classifier, more or less unconsciously. When we need to justify our

opinion, we refer to some low dimensional explanation

• A posterior explanation and justification of a decision (“In neuropsychology the left

brain interpreter refers to the construction of explanations by the left brain in order

to make sense of the world by reconciling new information with what was known

before. The left brain interpreter attempts to rationalize, reason and generalize new

information it receives in order to relate the past to the present”, Schacter, Gazzaniga)

48

Example: Predicting Buying Pattern

49

Recall: Pawlow’s Dog

50

Conclusion

• One reason, why dependencies tend to be high-dimensional and statistical in nature is

that the input of interest, here wealth, is not available (latent, hidden); latent variable

models attempt to estimate these latent factors (see lecture on PCA)

• Another reason is that many individual factors contribute to a decision: as discussed,

the Perceptron can be thought of as a weighted voting machine

• Exceptions (where rule-learning might works as predictive systems):

– Technical human generated worlds (“Engine A always goes with transmission B”)

– Tax forms (although for a“just”fined-tuned tax system, the rules become complex

again); legal system; business rules (again: human generated)

– Natural laws under idealized conditions; under real conditions (friction, wind, ...)

laws become complex again; rules in chemistry; weather forecasting is done with

stochastic natural laws, but can also be done via purely statistical methods. But

natural laws where only discovered very late in history (Galileo, ...)

51

• Also language seems to happen more on the deterministic level; although language is

often used to justify a decision, and not to explain a decision. In making a decision

(vacationing in Italy), many issues are considered; after the decision, the

result is often communicated as a simple rule: “We will go to Italy, because

it has the best beaches!”

Delta-rule

• Another form of the update rule

• One adapts t = 1,2, . . ., for any pattern

wj ←− wj +
1

2
η(yt − ŷt)xt,j j = 0, . . . ,M

• Note, that (yt − ŷt) = 0 for correctly classified patterns

• This is called a delta rule, with δt = (yt − ŷt)

• The perceptron delta-rule (with ŷ = sign(h)) is formally identical to the ADALINE

delta-rule (with ŷ = h) and the logistic regression (sigmoid) delta-rule (with ŷ =

sig(h))

52

