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Discriminant Model

• The probability that the output (random) variable (class probability) Y assumes the

value cat, given that the input is x, is

P (Y = cat|x) = sig(fw(x))

• This is the basis for DNNs: classifying cats from no cats

• x can be a pixel image (with 1 Mio pixel values) or M << 1 Mio features derived

from the image

• P (Y = cat|x) = 0.9 is my confidence that x describes a cat

• P (Y = cat|x) = 0.9 means: If I observe the same input x 10 times, then in 9

out of ten times it will show a cat
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Preamble

• “Thermodynamik ist ein komisches Fach. Das erste Mal, wenn man sich damit befasst,

versteht man nichts davon. Beim zweiten Durcharbeiten denkt man, man haette nun

alles verstanden, mit Ausnahme von ein oder zwei kleinen Details. Das dritte Mal,

wenn man den Stoff durcharbeitet, bemerkt man, dass man fast gar nichts davon

versteht, aber man hat sich inzwischen so daran gewoehnt, dass es einen nicht mehr

stoert.” Arnold Sommerfeld
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Example: Students in Munich

• Let’s assume that there are Ñ = 50000 students in Munich. The set of all students

in Munich Ω is called the population

• Ñ is the size of the population, often assumed to be infinite

• Formally, I put all 50000 students in an urn (bag)

• I randomly select a student: this is called an (atomic) event or an experiment and

defines a random process

• ω: The selected student is an outcome of the experiment and defines a row in the

data matrix; if Jack was selected, then ω = Jack
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Sample

• A particular student will be picked with elementary probability 1/Ñ

• Performing the experiment N times produces a sample (training data set) D of size

N

• An analysis of the sample can give us insight about the population (statistical infer-

ence)

• Sampling with replacement: I return the student to the urn after the experiment;

then, at any time, P (ω = Jack) = 1/Ñ ; this is easier to analyse

• Sampling without replacement: I do not return the student to the urn after the ex-

periment; this is how a normal data matrix is formed
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Random Variable

• On each selected student, we perform a measurement, i.e., height H, and the result

(outcome) of the measurement is a value, e.g., (tiny, small, medium, tall, huge); H

is called a random variable

• A random variable (e.g., Height) is a function (measurement) of the outcome (e.g.,

Jack) of the random experiment; its value is a function of the outcome; we write

Height(Jack) = tall

• Physics view: Height is the measurement type, Jack the entity on which the mea-

surement is performed, and tall is the outcome

• Data matrix (table) view: Height is a name of a column in a data matrix, Jack the

name of the row and tall the entry in row and column
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Probability

• In statistics, one estimates the probability from the sample (the training data)

• Then the probability that a randomly picked student has height H = h is defined as

P (H = h) =
Ñh

Ñ
= lim

N→∞

Nh

N

with 0 ≤ P (H = h) ≤ 1; N →∞ indicates a sampling with replacement

• Nh is the number of times that a selected student is observed to have height H = h
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Sample / Training Data

• I can estimate

P̂ (H = h) =
Nh

N
≈ P (H = h)

• This is the number of times that we observe the value of h in column H in the data

matrix, divided by the number of observations N

• In statistics one is interested in how well P̂ (H = h) (the probability estimate derived

from the sample) approximates P (H = h) (the probability in the population)

• Note the importance of the definition of a population: P (H = h) might be different,

when I consider individuals in Munich or Germany

• Thus the population plays an important role in a statistical analysis

• Note that the randomness enters through the sampling process: Jack’s height is not

random
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Law of Large Numbers

• Law of Large Numbers (Bernoulli)

P{|Nh/N − P (H = h)| < ϵ} → 1 as N →∞
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Statistics and Probability

• Probability is a mathematical discipline developed as an abstract model and its con-

clusions are deductions based on axioms (Kolmogorov axioms)

• Statistics deals with the application of the theory to real problems and its conclusions

are inferences or inductions, based on observations (Papoulis: Probability, Random

variables, and Stochastic Processes)

• Frequentist or classical statistics and Bayesian statistics apply probability in slightly

different ways
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Joint Probabilities

• Now assume that we also measure weight (size) S with weight attributes very light,

light, normal, heavy, very heavy. Thus S is a second random variable

• Similarly

P (S = s) = lim
N→∞

Ns

N

• We can also count co-occurrences

P (H = h, S = s) = lim
N→∞

Nh,s

N

This is called the joint probability distribution of H and S
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Marginal Probabilities

• It is obvious that we can calculate the marginal probability P (H = h) from the

joint probabilities

P (H = h) = lim
N→∞

∑
sNh,s

N

=
∑
s

P (H = h, S = s)

• This is called marginalization

• I can calculate the marginal probability from the joint probability (without going back

to the counts)
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Conditional Probabilities

• One is often interested in the conditional probability. Let’s assume that I am interested

in the probability distribution of S for a given height H = h. Since I need a different

normalization I get

P (S = s|H = h) = lim
N→∞

Nh,s

Nh

So I count the co-occurrences, but I normalize by Nh

13



Conditional Probabilities (cont’d)

• Then,

P (S = s|H = h) =
P (H = h, S = s)

P (H = h)

• Relationship to machine learning: H = h is the input and S = s is the output

• Conditioning is closely related to the definition of a population: P (S = s|H = h)

is the same as P (S = s) in a population which is restricted to students withH = h
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Product Rule and Chain Rule

• It follows: product rule

P (S = s,H = h) = P (S = s|H = h)P (H = h)

= P (H = h|S = s)P (S = s)

• and chain rule

P (x1, . . . , xM) = P (x1)P (x2|x1)P (x3|x1, x2) . . . P (xM |x1, . . . , xM−1)
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Bayes Formula

• If I know P (S = s|H = h), does it tell me anything about P (H = h|S = s)?

Is it the same thing?

• No, but the relationship is given by Bayes formula
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Bayes Formula (con’t)

• We use the definition of a conditional probability,

P (H = h|S = s) =
P (H = h, S = s)

P (S = s)

P (S = s|H = h) =
P (H = h, S = s)

P (H = h)

• Thus we get Bayes’ formula

P (H = h|S = s) =
P (S = s|H = h)P (H = h)

P (S = s)

and another ways of writing this:

P (H = h|S = s) = P (S = s|H = h)
P (H = h)

P (S = s)
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Evidence

• Evidence

P (S = s) =
∑
h

P (S = s|H = h)P (H = h)

• This equation the basis for generative AI: P (H = h) is a simple distribution, P (S =

s|H = h) is modelled by a DNN, P (S = s) is a complex distribution

• Special deterministic case: If s = f(h), i.e., P (S = s|H = h) = δ(s− f(h)),

i.e., s follows deterministically from h

P (S = s) =
∑

f(h)=s

P (H = h)

(Note that this is not the same as E(S) =
∑

h f(h)P (H = h))

• If f(h) is invertible, with h = g(s), P (S = s) = P (H = g(s)); g(s) is called

the encoder and f(h) is called the decoder or generator
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Independent Random Variables

• Independence: two random variables are independent, if,

P (S = s,H = h) = P (S = s)P (H = h|S = s)

= P (S = s) P (H = h)
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Simplified Notation

• The expression P (X = x) is often simplified as P (x)

• Thus instead of writing P (H = 185cm), we write P (185cm)

• Joint: P (X = x, Y = y) ≡ P (x, y)

• Marginalization: P (Y = y) =
∑

x P (X = x, Y = y) becomes

P (x) =
∑
x

P (x, y)

• Sometimes X stands for the event X = x with some unspecified x; thus one sees

also P (X), P (X,Y ), and

P (X) =
∑
X

P (X,Y )
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Summary

• Conditional probability

P (y|x) =
P (x, y)

P (x)
with P (x) > 0

• Product rule

P (x, y) = P (x|y)P (y) = P (y|x)P (x)

• Chain rule

P (x1, . . . , xM) = P (x1)P (x2|x1)P (x3|x1, x2) . . . P (xM |x1, . . . , xM−1)

• Bayes’ theorem

P (y|x) =
P (x, y)

P (x)
=

P (x|y)P (y)

P (x)
P (x) > 0

• Marginal distribution

P (x) =
∑
y

P (x, y)
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• Independent random variables

P (x, y) = P (x)P (y|x) = P (x)P (y)



Simplifications for Supervised Learning

• I one is only interested in the conditional probability P (Y |x1, . . . xM), then x1, . . . xM
can be“designed”

• E.g., if the input is height and the output is weight, I can select systematically people

based on height, but I cannot select them based on weight

• E.g., if the input is the cause and the output is effect, I can set the cause (give

medication or not) and record the outcome; but I cannot only select patients, where

the medication has worked

• (Of course, for many other reasons, the selected inputs should correspond to the

population I am interested in)
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Marginalization and Conditioning: Basis for Probabilistic
Inference

• P (I, F, S) where I = 1 stands for influenza, F = 1 stands for fever, S = 1

stands for sneezing

• What is the probability for influenza, when the patient is sneezing, but temperature is

unknown, P (I|S)?

• Thus I need (conditioning) P (I = 1|S = 1) = P (I = 1, S = 1)/P (S = 1)

• I calculate via marginalization

P (I = 1, S = 1) =
∑
f

P (I = 1, F = f, S = 1)

P (S = 1) =
∑
i

P (I = i, S = 1)
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Expected Values

• Expected value

E(X) = EP (x)(X) =
∑
i

xiP (X = xi)

≈
1

N

N∑
k=1

xk = meanx

(with random observations)
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Variance

• The Variance of a random variable is:

var(X) =
∑
i

(xi − E(X))2P (X = xi) ≈
1

N − 1

∑
i

(xi − meanx)
2

• The Standard Deviation is its square root:

stdev(X) =
√
var(X)
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Covariance

• Covariance:

cov(X,Y ) =
∑
i

∑
j

(xi − E(X))(yj − E(Y ))P (X = xi, Y = yj)

≈
1

N − 1

∑
i

(xi − meanx)(yi − meany)

• Covariance matrix:

Σ[XY ],[XY ] =

(
var(X) cov(X,Y )

cov(Y,X) var(Y )

)
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Covariance, Correlation, and Correlation Coefficient

• Useful identity:

cov(X,Y ) = E(XY )− E(X)E(Y )

where E(XY ) is the correlation.

• The (Pearson) correlation coefficient (confusing naming!) is

r =
cov(X,Y )√

var(X)
√
var(Y )

• It follows that var(X) = E(X2)− (E(X))2 and

var(f(X)) = E(f(X)2)− (E(f(X)))2
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More Useful Rules

• We have, independent of the correlation between X and Y ,

E(X + Y ) = E(X) + E(Y )

and thus also

E(X2 + Y 2) = E(X2) + E(Y 2)

• For the variance of the sum of random variables,

var(X + Y ) = E[(X + Y − (E(X) + E(Y )))2]

= E[((X − E(X)) + (Y − E(Y )))2]

= E[(X −E(X))2] +E[(Y −E(Y ))2] + 2E[(X +E(X))(Y −E(Y )]

= var(X) + var(Y ) + 2cov(X,Y )

• Similarly,

var(X − Y ) = var(X) + var(Y )− 2cov(X,Y )
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Covariance Matrix of Linear Transformation

• Let w be a random vector with mean µ⃗w and covariance matrix Σw

• Let

y = Aw+ ϵ⃗

where A is a fixed matrix.

• Then y is a random vector with mean µ⃗y = Aµ⃗w and covariance

Σy = AΣwA
T + σ2I

• Special case (Gaussain distributions): P (w) = N (w; µ⃗w,Σw), P (y|w) =

N (y|Aw, σ2I) then P (y) = N (y;Aµ⃗w,AΣwAT + σ2I)

• Special case (σ2 = 0): Σy = AΣwAT
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Continuous Random Variables

• Probability density

f(x) = lim
∆x→0

P (x ≤ X ≤ x+∆x)

∆x

• Thus

P (a < x < b) =

∫ b

a
f(x)dx

• The distribution function is

F (x) =

∫ x

−∞
f(x)dx = P (X ≤ x)
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Expectations for Continuous Variables

• Expected value

E(X) = EP (x)(X) =

∫
xP (x)dx

• Variance

var(X) =

∫
(x− E(x))2P (x)dx

• Covariance:

cov(X,Y ) =

∫ ∫
(x− E(X))(y − E(Y ))P (x, y)dxdy
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Joint Gaussian Distributions

• Let z = (x;y), µ⃗ = (µ⃗x; µ⃗y); thus z can be partitioned into x and y

• With

Σ =

(
Σx,x Σx,y

Σy,x Σy,y

)
we get

P (z) = N (z; µ⃗,Σ) =
1

(2π)M/2
√
|Σ|

exp

(
−
1

2
(z− µ⃗)T Σ−1 (z− µ⃗)

)
Here |Σ| is the determinant of Σ.
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Marginals

• For x,

P (x) = N (x; µ⃗x,Σx,x)

• For y,

P (y) = N (y; µ⃗y,Σy,y)
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Conditional Densities

• For the conditionals, we get

P (y|x) = N
(
y; µ⃗y +Σy,xΣ

−1
x,x(x− µ⃗x),Σy,y −Σy,xΣ

−1
x,xΣx,y

)
• With µ⃗y = 0 and µ⃗x = 0, we get E(y|x) = Σy,xΣ

−1
x,xx, which is an equation

relevant for Gaussian process regression

• For noisy measurements (independent additive Gaussian noise with variance σ2)

Σx,x ← Σx,x + σ2I
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