
Time Series and Sequential Data

Volker Tresp

Winter 2024-2025

1



Time Series Modelling

• I have to predict the total energy consumption of a city for tomorrow, based on certain

inputs (weather forecast: temperature, precipitation, wind; then: working day/holiday,

...)

• It would help to also consider the energy consumption of today and maybe of yesterday

as inputs

• Added complexity: If my goal is to predict the energy consumption two days in the

future, my own prediction for tomorrow becomes an input for the prediction for two

days in the future

• In time series modelling, outputs, and often also the inputs, are real numbers

2





Sequence Modelling

• Sequence classification (encoder): The input is a sentence, i.e., a sequence of words;

the output classifies the sentiment of the sentence

• Decoder or Generator models

• Encoder-decoder (sequence-to-sequence) modelling: The input is a sentence, i.e., a

sequence of words, in English; the output is the sentence translated into German

• In sequence modelling, inputs and outputs are typically discrete

3



I. Time Series Modelling: NARX
Models

4



Neural Networks for Time-Series Modelling

• Let yt, t = 1,2, . . . be the time-discrete time-series of interest (example: DAX)

• Let xt, t = 1,2, . . . denote a second time-series, that contains information on yt
(Example: Dow Jones)

• For simplicity, we assume that both yt and xt are scalars. The goal is the prediction

of the next value of the time-series

• We assume a system of the form

yt = f(yt−1, . . . , yt−T , xt−1, . . . , xt−T ) + ϵt

with i.i.d. random numbers ϵt, t = 1,2, . . . which model unknown disturbances

5



Neural Networks for Time-Series Modelling (cont’d)

• We approximate the function, using a neural network,

f(yt−1, . . . , yt−T , xt−1, . . . , xt−T )

≈ fw,V(yt−1, . . . , yt−T , xt−1, . . . , xt−T )

• A reasonable cost function is

cost(w,V) =
N∑

t=1

(yt − fw,V(yt−1, . . . , yt−T , xt−1, . . . , xt−T ))
2

6



Neural Networks for Time-Series Modelling (cont’d)

• It is important to note, that the neural network can be trained as before with simple

back propagation if in training all yt and all xt are known!

• This model is called a NARX model: Nonlinear Auto Regressive Model with external

inputs. Another name: TDNN (time-delay neural network)

• Note the ”convolutional“ idea in TDNNs: the same neural network is applied in all

time instances

7



Prediction

• For single step prediction, we use

ŷt = fw,V(yt−1, . . . , yt−T , xt−1, . . . , xt−T )

8



Self-supervised Learning

• The time-series provides its own labels

• No human labelling is necessary: self-supervised learning

9



Multiple-Step Prediction based on Multiple Step Prediction

• We can also train a model to predict τ time steps into the future; the prediction then

becomes

ŷt+τ = fτw,V(yt−1, . . . , yt−T , xt−1, . . . , xt−T )

• This is done in system simulation: the prediction based on detailed system models

might be computationally very expensive and cannot be done online; the idea is to

train a neural network predictive model off-line and then use that one online instead

of an expensive simulation

10



Mutiple-Step Prediction based on Single-Step Prediction

• Why not just iterate the single-step prediction? One issue is that my prediction is

uncertain, so I should consider that uncertainty; second: I do not have future inputs!

• One way is simulation; for yt we have the model as before, (t
′ = t, . . . , t+ τ )

yt′ = fw,V(yt′−1, . . . , yt′−T , xt′−1, . . . , xt′−T ) + ϵt′

• Using both we can generate samples for the future; for the noise I might assume a

Gaussian distribution ϵt ∼ N (0, σ2)

• Future inputs xt′, we either set to zero, or we develop a separate prediction model for

those as well

• For multiple-step prediction, we can simulate (i.e., sample) for the desired number of

time steps in the future (Monte-Carlo simulation) repeatedly and can derive estimated

means, variances, and covariances

11



Residual Modeling

• We have

ŷt = yt−1 + fw,V(yt−1, . . . , yt−T , xt−1, . . . , xt−T )

• Realize the similarity to ResNet

12



Considering the Complete History?

• Consider a prediction model that uses the complete history,

ŷt = fw,V(yt−1, . . . , y1, xt−1, . . . , x1)

This means that the time window grows with t: T := t− 1

• Technical solutions:

• 1: Models with an internal memory: RNNs, LSTMs

• 2: Models with the ability to grow: Transformers

13



GPT-type Architecture

• GPT always considers the complete history

ŷt = fw,V(yt−1, . . . , y1)

• A generated sequence (text) is a simulation of the future

• The first K steps y1, . . . , yK are the input (prompt) from the user

• y is a discrete variable with as many states as there are tokens (words)

14



II. Sequence Modelling

15



Encoding Inputs and Outputs

• So far we considered that xt is either binary xt ∈ {0,1} or continuous, xt ∈ R

• How do we encode that xt ∈ {0,1, . . . , Nwords}, where Nwords is the number of

words in the vocabulary?

• We could consider that xt ∈ R and encode it as a scalar (amplitude encoding): this

is not commonly done

• Alternatively, we introduce Nwords binary variables with xt,j = I(word(t) ≡ j)

(one-hot encoding) (I() is the indicator function which is equal to 1, when the

argument is true, otherwise zero)

16



(A): One-hot Encoding

• This type of encoding is called one-hot encoding

• We train the input to hidden matrix V, which is an H ×Nwords dimensional matrix

17



(B): Embedding Encoding

• Maybe we should represent a word by its attributes? But what attributes?

• An embedding vector ai for word i is a vector of abstract attributes that represent

the word and which might have been derived from a large vocabulary and is shared

between applications

• This embedding vector might have been generated by some other research group and

is simply a vector of real numbers of length r (rank)

• Now the input to hidden connection matrix is Ṽ which is anH×r dimensional matrix

18



(C): Embedding Encoding in Combination with One-hot
Encoding

• Sometimes it is more intuitive to consider a matrix A connecting the one-hot encoded

input with the first hidden layer

• The i-th column in matrix A contains ai

19



Relationship Between Encodings

• (C) is identical to (B)

• (A) is identical to (C) and (B), if we set V = ṼA

20





IIa. Representation Models and
Language Models

21



Language Model

• The ideas is to predict the next word (out off a vocabulary of Nwords words) in a

text, based on the last T words

• Consider we want to predict yt: yt has as N
words components, one for each word

(one-hot encoding)

• The inputs to the models are past words; the model assumption is that a word i is

associated with an embedding vector ai of dimension r (embedding representation)

• Thus in a first step, a one-hot encoding word i is mapped to the embedding vector of

word ai which is then the input to a neural network (embedding with one-hot)

22



Language Model (cont’d)

• We get

P (yt = k|yt−1, . . . , yt−T ) = softmaxk

(
fw(ai(t−1), . . . , ai(t−T ))

)
where i(t − m) is the index of the word at position t − m and where fw(·) is a

neural network with one hidden layer and Nwords output neurons

23



Embeddings

• Training of the word embeddings and the neural network parameters can be done

self-supervised on a huge corpus (without human labelling)

• After training, one obtains latent word representations (word embeddings) which are

published and can be used in other applications

• State of the art are embeddings derived from language models like: ELMo, BERT,

Word2vec, and GloVe

• The embedding idea is extremely powerful and one of the corner stones of modern

machine learning

• In the next figure, the word embedding matrix A is denoted as C

24





IIb. Recurrent Neural Networks

25



Recurrent Neural Network

• Recurrent neural networks (RNNs) are powerful methods for sequence modelling

• In their simplest form they are used to improve an output prediction by providing a

memory for previous inputs

• We do not have to specify a time window T : an RNN can consider the whole history

26



A Feedforward Neural Network with a Time Index

• We start with a normal feedforward neural network where the pattern is a sequential

index t

27





A Recurrent Neural Network Architecture Unfolded in Time

• The hidden layer now also receives input from the hidden layer of the previous time

step

• The hidden layer now has a memory function reflecting hidden inputs

• Thus a Recurrent Neural Network (RNN) is a nonlinear state-space model

28





A Recurrent Neural Network Architecture Unfolded in Time
(cont’d)

• In a compact notation, we write,

zt = sig(Bzt−1 +Vxt)

yt = sig(w⊤zt)

where we permit several outputs; also, in the last layer we might replace the sig with

the softmax

yt = softmax(Wzt)

29



Temporal Representation

• zt is the representation of the hidden state of the system (e.g., patient, plant, ...) at

time t

• xt can be the embedding of a thing which is present or active at time t (e.g., word,

medication, ...)

• Word embedding: xt = ai(t), where i(t) is the word at t and with M = r

• This is a link to representation learning

30



Recurrent Representation

• The next slide shows an RNN as a recurrent structure

• If V is sparse (contains many zero-entries), the inputs directly only influence a small

number or hidden neurons

• If B is sparse (contains many zero-entries), most hidden neurons are not directly

coupled

31





Backpropagation through time (BPTT)

• Training can be performed using backpropagation through time (BPTT), which is an

application of backpropagation (SGD) to the unfolded network structure

• As an additional complexity, the error which occurs to the outputs at time t is not

only backpropagated to the previous layers at time t, but also backward in time to all

previous neural networks

• In principle, one would propagate back to t = 1; in practice, one typically truncates

the gradient calculation

32







Echo-State Network

• Recurrent Neural Networks are sometimes difficult to train

• A simple alternative is to initialize B and V randomly (according to some recipe) and

only train W

• W can be trained with the simple learning rules for linear regression or classification

• This works surprisingly well and is done in the Echo-State Network (ESN) (Herbert

Jaeger, 2007)

• ESN (and also liquid-state machines) are examples of so called reservoir computing

33





Issues in Prediction

• An RNN is typically used as predictive model in an iterative setting

• Due to the deterministic nature of the model: if the output yt is predicted and then

becomes available, it will not affect future predictions, since there is no information

flowing back from yt to zt

• This is in contrast to some probabilistic models such as hidden Markov models (HMMs),

Kalman filters, stochastic state space models

• One reason that we can simply apply backpropagation is that RNNs are deterministic!

To train HMMs and Kalman filters one can apply a form of EM learning (expectation

maximization)

34



Bidirectional RNNs

• The predictions in bidirectional RNNs depend on past and future inputs

• Useful for sequence labelling problems: handwriting recognition, speech recognition,

bioinformatics, ...

• Bidirectional recurrent

zt = [zft ; z
b
t] =

[
sig

(
Vfxt +Bfzft−1

)
; sig

(
Vbxt +Bbzbt+1

)]

35





IIc. LSTMS

36



Issues in Prediction

• Although the RNN has a memory, it has difficulties remembering important informa-

tion far in the past

• Bottleneck problem: the latent vector (hidden state) needs to encode information

maybe far in the past

• This can be attributed to the vanishing gradient problem

• Solutions are the long short-term memory (LSTM), and the gated recurrent units

(GRUs)

• We now discuss the LSTM

37



We Start with a Feedforward Neural Network

• Consider a feedforward neural network

ut = tanh(Vxt) st = ut zt = tanh(st)

ŷt = sig(w⊤zt)

• The transfer function of the hidden neuron is a bit strange, tanh(tanh(Vxt))

• st is called the cell state vector (pre-activations), zt is the output vector (of

the units, not the neural network) (post-activation); zt feeds to the next upper layer

(could be the output y((t)) and to the next hidden layer in the sequence

• In the following steps, each latent unit will become an LSTM unit; thus we will have

H LSTM units in the network

38



We Enter Input and Output Gates

• We now use input and output gates which can turn on and off individual LSTM units

• With input gate vector gt and output gate vector qt

ut = tanh(Vxt) st = gt ◦ ut zt = qt ◦ tanh(st)

Here, ◦ is the elementwise (Hadamard) product. As before,

ŷt = sig(w⊤zt)

• Input gates and output gates are also functions of the inputs

gt = sig(Vgxt) qt = sig(Vqxt)

• Gates are commonly used in mixture of expert neural networks, if the function switches

between modes of operations

39



With Feedback

• We add recurrent connections to the cell state vector and the gates

ut = tanh(Vxt +Bzt−1) st = gt ◦ ut zt = qt ◦ tanh(st)

• Input Gate

gt = sig(Vgxt +Bgzt−1)

• Output Gate

qt = sig(Vqxt +Bqzt−1)

40



Cell State Vector with Self-recurrency and Forget Gate

• We add self-recurrency to the cell state vector, including a forget gate

st = ft ◦ st−1 + gt ◦ ut

• Forget gate

ft = sig(Vfxt +Bfzt−1)

41



Long Short Term Memory (LSTM)

• As a recurrent structure the Long Short Term Memory (LSTM) approach has been

very successful

• Basic idea: at time t a newspaper announces that the Siemens stock is labelled as

“buy”. This information will influence the development of the stock in the next days.

A standard RNN will not remember this information for very long. One solution is to

define an extra input to represent that fact and that is on as along as“buy” is valid.

But this is handcrafted and does not exploit the flexibility of the RNN. A flexible

construct which can hold the information is a long short term memory (LSTM) block.

• The LSTM was used very successful for reading handwritten text and is the basis for

many applications involving sequential data (NLP, machine translation, ...)

• Consider an LSTM without the gates; then st is the vector of pre-activations and zt
the vector of post-activations

• It is similar to a ResNet architecture where the link from st−1 to st is the skip

connection
42





LSTM Applications

• Wiki: LSTM achieved the best known results in unsegmented connected handwriting

recognition, and in 2009 won the ICDAR handwriting competition. LSTM networks

have also been used for automatic speech recognition, and were a major component

of a network that in 2013 achieved a record 17.7% phoneme error rate on the classic

TIMIT natural speech dataset

• Applications: Robot control, Time series prediction, Speech recognition, Rhythm

learning, Music composition, Grammar learning, Handwriting recognition, Human ac-

tion recognition, Protein Homology Detection

43



Comments on LSTM

• You cannot easily do transfer learning with LSTMs (does not work very well): thus

you need a large data set for any new problem

44



IId. Encoder-Decoder Networks for
Machine Translation

45



Encoder Decoder Architecture

• Most machine translation systems rely on the encoder-decoder approach

• Neural Machine Translation (NMT)

• Typical numbers: embedding rank: r = 1000, and 1000 hidden units per layer

46





Encoder

• An encoder is an RNN (often an LSTM) with no output layer (no yt), but maybe

several layers of recurrent units; as in the language model, the inputs are latent em-

beddings of the words

• The encoder vectors are the (two) embedding vectors (hidden states) of (−), i.e.,

the end-of-sentence symbol

47



Decoder

• The initial latent states of the decoder are the encoder vectors (the first two red

rectangles in the figure)

• In its simplest form, the latent state of the decoder evolves as

zt = sig(Bzt−1 +Vat−1)

ŷt = softmax(Wzt)

• In training, the input to the decoder is the embedding of the previous word at−1; the

output is the one-hot encoding of the current word: yt is a one-hot vector

• Training is based on bilingual, parallel corpora; each hidden layer might consist of

1000 hidden units

48



Decoder: Prediction

• In prediction, one finds the most likely decoded sequence of words (e.g., using beam

search); teacher forcing: the detected word appears at the input of the next instance

• In the simplest case: at−1 is the embedding vector of the previous output token with

index i = argmaxi′ ŷt−1,i′

• Often one uses two or more hidden layers of LSTM units

49



Encoder-Decoder Approach in NMT

• Neural Machine Translation (NMT) achieved state-of-the-art performances in large-

scale translation tasks such as from English to French

• NMT has the ability to generalize well to very long word sequences.

• The model does not have to explicitly store gigantic phrase tables and language models

as in the case of standard MT; hence, NMT has a small memory footprint

• Implementing NMT decoders is easy unlike the highly intricate decoders in standard

MT

50



IIe. Attention

51



Introduction

• The concept of“attention”has gained popularity recently in training neural networks,

allowing models to learn alignments between different modalities, e.g., between image

objects and agent actions in the dynamic control problem, between speech frames and

text in the speech recognition task, or between visual features of a picture and its text

description in the image caption generation task

• Attention has successfully been applied to jointly translate and align words

• Attention-based NMT models are superior to non attentional ones in many cases, for

example in translating names and handling long sentences

• We follow: Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2016.

“Effective Approaches to Attention-based Neural Machine Translation”

• First work: D. Bahdanau, K. Cho, and Y. Bengio. 2015. “Neural machine translation

by jointly learning to align and translate.” In ICLR

52



Bottleneck in the Encoder-Decoder Architecture

• In the encoder-decoder architecture, all information about the input sequence needs

to be transported through the two encoding embedding vectors

• Information earlier in the sequence tends to get forgotten

• One needs short cuts: maybe earlier embedding vectors are important as well!

• In attention one provides information about the top embeddings (upper layers) to the

decoder; attention does it in a way that avoids overfitting

53



Overall Architecture

• The next figure shows the overall architecture

• The attention layer sits on top of the normal encoder-decoder network

• Based on the neural activations in the encoder-decoder, it calculates new activations

(grey boxes) in the fourth layer

54





Attention

• Let zt (red) be a hidden state vector of interest in the decoder (so called target at

t; also called the query)

• Let ct be the source-side context vector (derived further down)

• The attentional hidden state (grey) is

z̃t = sig (Vzt +Dct)

(Note that V is the connection matrix to the previous layer and not to the inputs)

• The sig is typically the tanh; note that this is a normal layer in a neural network

where the layer zt is the lower layer and z̃t is the upper layer and where the lower

layer is appended with ct

• z̃t is then the top hidden layer: the decoded word probability at the target is calculated

as softmax(Wsz̃t)

55



Global Attention: What is the Context ct?

• Let z̄s be any activation vector in the encoder (source hidden state) (the key)

• The alignment of s for t is a scalar,

align(zt, z̄s) =
exp(score(zt, z̄s))∑
s′ exp(score(zt, z̄s′))

• The alignment score function calculates a similarity measure: A typical score is the

dot product, score(zt, z̄s) = zTt z̄s; here, zt is the query, and z̄s is the key

• The already introduced context vector is then calculated as (here, z̄s on the right

assumes the role of the value)

ct =
∑
s

align(zt, z̄s) z̄s

• Note that each component of ct is like a post-activation of a neuron

• One defines Attentiont = Dct

56



From Attention to Self-Attention

• So far we calculated the attention of an element in the output sequence w.r.t all

elements in the input sequence

• Let’s consider another task, e.g., entity labelling

• We have a sequence of words/entities (t = 1,2, ...) as inputs; the goal is to provide

a label for each word/entity, or to provide a label for the whole sequence

• We now change notation: zt,l is the activation vector at layer l

• Self-attention can be applied to any deep neural network

• Self-attention can replace convolutional and recurrent approaches (“attention is all you

need”)

• Whereas RNNs work left to right, self-attention (as convolutional NNs) work bottom

up, in parallel

57



Self-Attention (cont’d)

• In self-attention, the activation of a hidden layer zt,l is calculated based on other

layer’s zt,l−1 of all entities/data points as

zt,l = sig
(
Vlzt,l−1 +Dlct,l−1

)
• Here, the context vector is

ct,l−1 =
∑
t′

align
(
zt,l−1, zt′,l−1

)
zt′,l−1

The sum is over all elements in the sequence

• (Often the tanh is used instead of the sig)

• Self-attention can be applied to any layer (not just the top layer)

• Key advantage: memoryless modelling of far-range dependencies (beyond nearest-

neighbour interactions)

58



Comparison

• Feed forward neural network

zt,l = sig
(
Vlzt,l−1

)
so here each word label at position t is predicted separately; embeddings are all inde-

pendent; this is the i.i.d situation

• Fully connected (not used in practice)

zt,l = sig

Vlzt,l−1 +
∑
t′

Ct,t′,lzt′,l−1


The embeddings of all words are considered; here one would need to use a standard

length sentence (short sentences are dealt with by zero-passing); a problem with this

approach is the huge number of parameters in the neural network

59



Comparison (cont’d)

• Convolutional layer

zt,l = sig

Vlzt,l−1 +
∑
k

∑
t′

Ck
t−t′,lzt′,l−1


Very powerful approach and very successful in NLP; needs zero padding at sentence

boundaries; k is the index over different filter kernels

• In some approaches (e.g., graph convolution) simply the averages of the neighbor

embeddings are calculated

60



Comparison (cont’d)

• Recurrent neural networks

zt,l = sig
(
Vlzt,l−1 +Blzt−1,l

)
Very powerful approach and very successful in NLP; often LSTM units are used

• Bidirectional recurrent neural networks

zt,l = [zft,l; z
b
t,l]

=
[
sig

(
Vf

l zt,l−1 +Bf
l z

f
t−1,l

)
; sig

(
Vb

lzt,l−1 +Bb
lz

b
t+1,l

)]

61



Comparison (cont’d)

• Self-Attention

zt,l = sig
(
Vlzt,l−1 +Dlct,l−1

)
ct,l−1 =

∑
t′

align
(
zt,l−1, zt′,l−1

)
zt′,l−1

(the sig is often the tanh) self-attention can replace convolutional or recurrent layers

• align
(
zt,l−1, zt′,l−1

)
is like a (LSTM-like) gate for Dlzt′,l−1

62





Conclusions

• The global attention has a drawback that it has to attend to all words on the source

side for each target word, which is expensive and can potentially render it impractical

to translate longer sequences, e.g., paragraphs or documents

• To address this deficiency, a local attentional mechanism has been proposed that

chooses to focus only on a small subset of the source positions per target word

• We will discuss positional encoding in the context of the transformer

• Sequential models find many applications in natural language processing (NLP) ap-

plications, including machine translation

• Attention capture powerful inductive biases

• Attention mechanisms are the basis for state of the art machine translation (Trans-

former) and context sensitive embedding models

63



Transformer, BERT, GPT

64



Transformer Layer

65



Transformer Layer: Single-Head Attention

• We do not have a layer index: xt is the layer and x̃t the embedding at the next layer

• zt = LayerNorm(xt +WOWV ∑
t′ alignt,t′ xt′)

• x̃t = LayerNorm(zt + FFN(zt))

• alignt,t′ =
exp

(
(WQxt)⊤(WKxt′)/

√
rhead

)
∑

t′ exp((WQxt)⊤(WKxt′)/
√
rhead)

• FFN(z) = W2max(0,W1z+ b1) + b2

• Note the two ResNets which reduce a vanishing-gradient issue; FFN(z) is a neural

network with one hidden layer and linear output neurons

66





Transformer Layer: Single-Head Attention: Dimensions

• All vectors are“embedding vectors” (pre-activation vectors): zt,xt, x̃t ∈ Rr

• Layer normalization normalizes an embedding vector such that all entries in an em-

bedding vector have zero mean and unit variance

• The WQ,WK ∈ Rrhead×r, WV ∈ Rrv×r are projection matrices; WO ∈
Rr×rv; with rv < r and rhead < r, we get dimensionality reduction

• Having bothWO andWV seems redundant: but with rv < r we get a dimensional-

ity reduction! Having both WQ and WK seems redundant, as well (for dot-product

attention): (WQxt)⊤(WKxt′) = x⊤t ((W
Q)⊤WK)xt′

• The projection matrices are shared in the same layer but are different in different layers

• Note: in the literature, all vectors are row vectors and all matrices are transposed!

67



Transformer Layer: Multi-Head Attention

• We do not have a layer index: xt is the layer and x̃t′ the embedding at the next layer

• zt = LayerNorm(xt +
∑K

k=1W
O,kWV,k∑

t′ alignt,t′,k xt′)

• x̃t′ = LayerNorm(zt + FFN(zt))

• alignt,t′,k =
exp

(
(WQ,kxt)⊤(WK,kxt′)/

√
rhead

)
∑

t′ exp((WQ,kxt)⊤(WK,kxt′)/
√
rhead)

• In the original publication, r = 512, rhead , rv = 64;nNumber of heads: K = 8;

number of transformer layers: L = 6

• Computational cost in use per layer: O(T2r) (attention layer) and O(Tr2) for the

FNN; T is the sequence length (number of columns)

68



GPT: Decoder Only

69



GPT

• Generative Pre-trained Transformer (GPT)

• It is decoder-only

• It is initialized with the prompt; a prompt can be a question, a task, ...; it is the

initialization (prompt engineering)

• GPT-1 to GPT-3: main difference are: different forms of training schedules!

• GPT-4 can handle sequences of 32k tokens (under development: sequences of 100k

or more tokens)

• Tokenization (byte pair encoding): Typically, most words will be encoded as a single

token, while rare words will be encoded as a sequence of a few tokens, where these

tokens represent meaningful word parts. This translation of text into tokens can be

found by variants of byte pair encoding, such as subword units

70





ChatGPT Training

• Training phases:

• 1: Pretraining (99% of effort); LLM training; leads to base model

• Data: internet crawls (CommonCrawl, C4), Github, Wikipedia, Books, ArXiv, Stack-

Exchange

• 2: Supervised fine-tuning; with ideal prompt-response pairs (the responses can be

quite long); LLM model; leads to SFT model

• 3: Reward modeling; human annotators who rank different responses (completions);

predicts (subjective) quality; leads to RM model

• 4: Reinforcement Learning; used RM; leads to RL model (RLHF: Reinforcement Learn-

ing with Human Feedback); improves the LLM further but difficult to get to work

71



GPT Research

• Research issues: fine-tuning, prompt engineering, providing access to external data

like databases (vector databases, database queries)

• At this stage: increasing the number of parameters is not the most important factor;

training set size/quality is currently more in focus

• Hallucination: An inherent feature of generative models?

72





GPT 175B

• r = 12288, rhead = rv = 128; L = 96 layers; number of heads K = 96;

number of tokens (“words”) N tokens = 50257; size of the hidden layer in the FFN:

12288× 4 = 49152 (large!)

• WO,k, WQ,k,WK,k,WV,k: Each of them has 128× 12288 parameters, and we

have 96× 96 (number of heads times number of layers) of them: 58B

• W1 and W2 in the FFN: 2× 12288× 49152 and we have 96 of them (one per

layer): 116B

• Token embedding: 50257× 12299 = 0.6B (number of token types times rank)

• This is together: 173.6B; we need to add the biases, other parameters to get to

175B

73





Position Encoding

• Consider that t is the position in the sequence; PosEnc(t, :) is the position encoding

vector, and PosEnc(t, l) with l = 1, . . . , r is its l-th component

• We have, for i = 0, . . . , r/2

PosEnc(t,2i) = sin((t− 1)/n2i/r)

PosEnc(t,2i+1) = cos((t− 1)/n2i/r)

• Increasing t (left to right), we sample a sine/cosine wave pattern

• Increasing i (or i), the frequency decreases, from 1 to 1/n

• n is a user specified parameter (often n = 10000)

74







Making it Work in Practice

• Fine-tuning / model editing: Instruction fine-tuning is a process in the training or

fine-tuning of large language models (LLMs) where the model is specifically trained

to better understand and follow natural language instructions; Instruction tuning uses

datasets consisting of instruction-response pairs

• LoRA (Low-Rank Adaptation): Take any weight matrix W and add in parallel an

Autoencoder layer: adapt only that one for a new data set (replaces the adaptation

of the last layers) LORA is a form of adaptation or fine-tuning used in transfer

learning

• Mixture of Experts (MoE): specialized sub-LLMs, each one focusing on a top category.

If you bundle 2000 of them together, you cover the entire human knowledge. The

whole system, sometimes called mixture of experts, is managed with an LLM router

• MAMBA, xLSTM: replace attention with RNNs to reduce computational cost per

layer to (O)(Tr2) and memory footprint to O(r2) per layer

75



Prompt Engineering

• Prefix prompting: before entering the task/question provide additional instructions:
“no offensive language”

• In context learning (ICL):

• Few-shot learning: Provide some QA examples in the prompt (ICLR)

• One-shot learning: Provide one QA example in the prompt (ICLR)

• Zero-shot learning: no examples are given

• Chain of Thought (CoT) prompting is a technique used with large language models
(LLMs) to improve their reasoning capabilities by encouraging them to break down
complex problems into intermediate steps, instead of directly generating an answer.
This approach leverages the model’s ability to process and reason through multi-step
problems more effectively by following a structured, step-by-step reasoning path

• Long-context methods in large language models (LLMs) refer to techniques and
approaches designed to extend the model’s ability to handle and reason over signifi-
cantly larger input texts or contexts than its default capacity.

76



Retrieval-Augmented Generation (RAG)

• Retrieval-Augmented Generation (RAG) is a hybrid approach used in large language

models (LLMs) to improve their ability to generate accurate and relevant responses

by integrating an external retrieval mechanism with the model’s generative capabili-

ties. It combines the strengths of retrieval systems and generative models to address

challenges like knowledge cutoff, hallucinations, and domain-specific queries

• Sparse retrieval methods (e.g., TF-IDF, BM25).

• Dense retrieval methods: in a preprocessing step, embeddings are generated for the

documents; the prompt also generates an embedding vector and similarity between

prompt embedding and document embeddings are used in retrieval

• The retrieved documents are combined with the original query (appended) to create

a context for the generative model

• New: MemoryLLM: combines static parameters with dynamic parameters representing

new knwoledge

77



GPU

• Computations can be executed in parallel and map well to GPUs (in contrast to RNN,

LSTM)

78



BERT: Encoder Only

79



BERT

• BERT (Bidirectional Encoder Representations from Transformers) from Google lever-

ages attention mechanism and transformer to learn word contextual relations using a

masked language model (MLM)

• It is an encoder-only model (it is not a generative model)

80





BERT

• BERT is almost an auto encoder: Inputs and outputs are identical

• But some tokens of the input sentence are removed (masked) and the network is

trained to predict the correpsonding tokens at the output layer

• Masked language modelling (MLM)

• The context-sensitive word embeddings can be used for all sorts of tasks, like world

labelling, NER, ...

• BERT is a pre-trained model which can be used for different purposes (fine-tuning):

for example an additional column might be generated where the output reflects the

class of the sentence. The input to that column is the token < CLS >

81





Transformer: Sequence-to-Sequence

82



Transformer

• This is the first transformer model and was developed for neural machine translation

(NMT)

• Bottleneck of previous approaches in NMT using LSTMs: sequential processing at the

encoding step

• The Transformer dispensed the recurrence and convolutions involved in the

encoding step entirely and based models only on attention mechanisms to capture the

global relations between input and output

83



Encoder (BERT)

• The encoder uses self-attention

• No masking is required

84





Decoder (GPT)

• The decoder uses both self-attention and cross-attention (encode-decoder at-

tention)

85









Beyond NLP

• Vision Transformer (ViT): a token is a 16x16x3 image patch (3 colors); by transforming

this tensor into a vector one can obtain the embedding vector of the patch;

• Alternative: (1) its embedding vector of dimension r is generated by a simple linear

map (2): dimensionality reduction by a convolutional layer

• Multimodal Transformers: Language and Images

• Embodied AI (Robotics) and Multiagent Frameworks / World models: Palm-E (PaLM

(Pathways Language Model)-embodied, Google), Generalist AI Model (RT-X), Genie

• AlphaFold (Nobel Price)

86




