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Abstract—Knowledge graphs have evolved as flexible and pow-
erful means for representing general world knowledge. Typical
examples are DBpedia, Yago, or the Google Knowledge Graph,
which all started off by representing information derived from
Wikipedia and were then greatly expanded. In this paper we
use the concept of a knowledge graph to present information
about specific classes of entities, such as patients or users. The
knowledge graph represents all that is known about the entities
and their relationships and the goal is to integrate and exploit that
information for prediction and decision support. In previous pa-
pers it was shown that embedding learning, a.k.a. representation
learning, is capable of modelling large-scale semantic knowledge
graphs, by exploiting information that describes the context of
an entity in the knowledge graph. In Machine Learning we
often map the knowledge graph to a tensor representation. Then
we learn the latent representations of the entities that compose
the tensor and use them to predict unobserved facts. However
knowledge graphs represent the current status of the world and
therefore they lack of a temporal dimension, which means we
can only use them to predict facts about the present moment. In
this paper we introduce an additional set of tensors that contain
temporal information. Each of this event tensors contains all
the events that occurred on a particular time step. Our goal
will be to predict the events that will happen in future time
steps, using for that task both dynamic information from the
previous event tensors and static information that is stored in
the knowledge graph. Therefore, this architecture allows us to
fuse static and dynamic information to predict future events. We
present experiments showing how this model performs well in
multiple scenarios: medical data, a recommendation engine and
sensor data.

I. INTRODUCTION

Knowledge graphs have evolved as flexible and powerful
means for representing general world knowledge. Typical ex-
amples are DBpedia, Yago, or the Google Knowledge Graph,
which all started by representing information derived from
Wikipedia and were then greatly expanded. In this paper we
use the concept of a knowledge graph to present information
about specific classes of entities, such as patients or users.
The knowledge graph represents all that is known about the
entities and their relationships and the goal is to integrate and
exploit that information for prediction and decision support.

In previous publications it was shown how a triple knowl-
edge graph (KG) can be represented as a multiway array
(tensor) and how a statistical model can be formed by deriv-
ing latent representations of generalized entities. Successful
models are, e.g., RESCAL [22], Translational Embeddings

Models [9], Neural Tensor Models [31] and the multiway
neural networks as used in [10].

In these publications KGs were treated as static: A KG
grew more links when more facts became available but the
ground truth value associated with a link was considered time
invariant. In this paper we address the issue of KGs where
triple states depend on time. In the simplest case this might
consider simple facts like “Obama is president of the United
States”, but only from 2008-2016. Another example is a patient
whose status changes from sick to healthy or vice versa. Most
popular KGs like Yago [32], DBpedia [1] Freebase [8] and the
Google Knowledge Graph [30] have means to store temporal
information.

Without loss of generality, we assume that changes in the
KG always arrive in form of events, in the sense that the events
are the gateway to the KG. For a given time step, events are
described by a typically very sparse event triple graph, which
contains facts that change some of the triples in the KG, e.g.,
from True to False and vice versa. KG triples which do not
appear in the event graph are assumed unchanged.

An example might be the statement that a patient has
a new diagnosis of diabetes, which is an information that
first appears as an event in the event graph but is then also
transmitted to the KG. Other events might be a prescription
of a medication to lower the cholesterol level, the decision to
measure the cholesterol level and the measurement result of
the cholesterol level; so events can be, e.g., actions, decisions
and measurements. In a similar way as the KG is represented
as a KG tensor, the event graphs for all time steps can be
represented as an event tensor. Statistical models for both the
KG tensor and the event tensor can be derived based on latent
representations derived from the tensor contents.

Although the event tensor has a representation for time, it
is by itself not a prediction model. Thus, we train a separate
prediction model which estimates future events based on the
latent representations of previous events in the event tensor and
the latent representations of the involved generalized entities
in the KG tensor. In this way, a prediction can, e.g., use both
background information describing the status of a patient and
can consider recent events. Since some future events will be
absorbed into the KG, by predicting future events, we also
predict likely changes in the KG and thus obtain a model for
the evolution of the KG as well.



The paper is structured as follows. The next section dis-
cusses related work. In Section III we review statistical KG
models based on latent representations of the involved gen-
eralized entities. In Section IV we discuss the event tensor
and its latent representations. In Section V we demonstrate
how future events can be estimated using a prediction model
that uses latent representations of the KG model and the event
model as inputs. In the applications of this paper in Section VI,
we consider patients and their changing states, users and
their changing movie preferences and weather stations and
their changing signal statistics. In the latter we show how
—in addition to event data— sensory data can be modeled.
Section VII contains our conclusions and discusses extensions.

II. RELATED WORK

There is a wide range of papers on the application of data
mining and machine learning to KGs. Data mining attempts
to find interesting KG patterns [5], [27], [24]. Some machine
learning approaches attempt to extract close-to deterministic
dependencies and ontological constructs [19], [13], [16]. The
paper here focuses on statistical machine learning in KG
where representation learning has been proven to be very
successful.

There is considerable prior work on the application of tensor
models to temporal data, e.g., EEG data, and overviews can
be found in [14] and [20]. In that work, prediction is typically
not in focus, but instead one attempts to understand essential
underlying temporal processes by analysing the derived latent
representations.

Some models consider a temporal parameter drift. Examples
are the BPTF [36], and [11]. Our model has a more expressive
dynamic by explicitly considering recent histories. Markov
properties in tensor models were considered in [26], [25]. In
that work quadratic interactions between latent representations
were considered. The approach described here is more general
and also considers multiway neural networks as flexible func-
tion approximators.

Our approach can also be related to the neural probabilistic
language model [4], which coined the term representation
learning. It can be considered an event model where the
occurrence of a word is predicted based on most recent
observed words using a neural network model with word
representations as inputs. In our approach we consider that
several events might be observed at a time instance and we
consider a richer family of latent factor representations.

There is considerable recent work on dynamic graphs [17],
[23], [33], [28] with a strong focus on the Web graph and
social graphs. That work is not immediately applicable to KGs
but we plan to explore potential links as part of our future
work.

III. THE KNOWLEDGE GRAPH MODEL

With the advent of the Semantic Web [7], Linked Open
Data [6], Knowledge Graphs (KGs) [32], [1], [8], [30], triple-
oriented knowledge representations have gained in popularity.

Here we consider a slight extension to the subject-predicate-
object triple form by adding the value (es, ep, eo; Value) where
Value is a function of s, p, o and can be the truth value of the
triple or it can be a measurement. Thus (Jack, likes, Mary;
True) states that Jack likes Mary, and (Jack, hasBloodTest,
Cholesterol; 160) would indicate a particular blood cholesterol
level for Jack. Note that es and eo represent the entities for
subject index s and object index o. To simplify notation we
also consider ep to be a generalized entity associated with
predicate type with index p.

A machine learning approach to inductive inference in KGs
is based on the factor analysis of its adjacency tensor X
where the tensor element xs,p,o is the associated Value of
the triple (es, ep, eo). Here s = 1, . . . , S, p = 1, . . . , P , and
o = 1, . . . , O. One can also define a second tensor ΘKG with
the same dimensions as X . It contains the natural parameters
of the model and the connection to X . In the binary case
one can use a Bernoulli likelihood with P (xs,p,o|θKGs,p,o) ∼
sig(θKGs,p,o), where sig(arg) = 1/(1 + exp(−arg)) is the
logistic function. If xs,p,o is a real number than we can use a
Gaussian distribution with P (xs,p,o|θKGs,p,o) ∼ N (θKGs,p,o, σ

2).
In representation learning, one assigns an r-

dimensional latent vector to the entity e denoted by
ae = (ae,0, ae,1, . . . , ae,r)

T . We then model using one
function

θKGs,p,o = fKG(aes ,aep ,aeo)

or, using one function for each predicate,

θKGs,p,o = fKGp (aes ,aeo).

For example, the RESCAL model [22] is

θKGs,p,o =

r∑
k=1

r∑
l=1

Rp,k,laes,kaeo,l,

where R ∈ RP×r×r is the core tensor. In the multiway neural
network model [10] one uses

θKGs,p,o = NN(aes ,aep ,aeo)

where NN stands for a neural network and where the inputs
are concatenated. These approaches have been used very
successfully to model large KGs, such as the Yago KG, the
DBpedia KG and parts of the Google KG. It has been shown
experimentally that models using latent factors perform well
in these high-dimensional and highly sparse domains. For a
recent review, please consult [21].

We also consider an alternative representation. The idea is
that the latent vector stands for the tensor entries associated
with the corresponding entity. As an example, aes is the latent
representation for all values associated with entity es, i.e.,
xs,:,:. 1 It is then convenient to assume that one can calculate
a so-called M -map of the form

aes = M subjectxs,:,:. (1)

1If an entity can also appear as an object (o : eo = es), we need to include
x:,:,o.



Here M subject ∈ Rr×(PO) is a mapping matrix to be learned
and xs,:,: is a column vector of size PO.2 For multilinear
models it can be shown that such a representation is always
possible; for other models this is a constraint on the latent
factor representation. The advantage now is that the latent
representations of an entity can be calculated in one simple
vector matrix product, even for new entities not considered
in training. We can define similar maps for all latent factors.
For a given latent representation we can either learn the latent
factors directly, or we learn an M -matrix.

The latent factors, the M -matrices, and the parameters in
the functions can be trained with penalized log-likelihood cost
functions described in the Appendix.

IV. THE EVENT MODEL

Without loss of generality, we assume that changes in the
KG always arrive in form of events, in the sense that the events
are the gateway to the KG. For a given time step, events are
described by a typically very sparse event triple graph, which
contains facts that change some of the triples in the KG, e.g.,
from True to False and vice versa. KG triples which do not
appear in the event graph are assumed unchanged.

Events might be, e.g., do a cholesterol measurement, the
event cholesterol measurement, which specifies the value or
the order take cholesterol lowering medicine, which deter-
mines that a particular medication is prescribed followed by
dosage information.

At each time step events form triples which form a
sparse triple graph and which specifies which facts become
available. The event tensor is a four-way tensor Z with
(es, ep, eo, et; Value) and tensor elements zs,p,o,t. We have
introduced the generalized entity et to represent time. Note
that the characteristics of the KG tensor and the event tensor
are quite different. X is sparse and entries rarely change with
time. Z is even sparser and nonzero entries typically “appear”
more random. We model

θevents,p,o = fevent(aes ,aep ,aeo ,aet).

Here, aet is the latent representation of the generalized entity
et.

Alternatively, we consider a personalized representation of
the form

θpers-event,s=i
p,o = f pers-event(aep ,aeo ,aes=i,t).

Here, we have introduced the generalized entity es,t for a
subject s = i at time t which stands for all events of entity
s = i at time t.

Since representations involving time need to be calculated
online, we use M-maps of the form

aes,t = M subject, timezs,:,:,t

The cost functions are again described in the Appendix.

2The M matrices are dense but one dimension is small (r), so in our settings
we did not run into storage problems. Initial experiments indicate that random
projections can be used in case that computer memory becomes a limitation.

V. THE PREDICTION MODEL

A. Predicting Events

Note that both the KG-tensor and the event tensor can
only model information that was observed until time t but
it would not be easy to derive predictions for future events,
which would be of interest, e.g., for decision support. The key
idea of the paper is that events are predicted using both latent
representations of the KG and latent representations describing
recently observed events.

In the prediction model we estimate future entries in the
event tensor Z. The general form is

θpredict
s,p,o,t = f predict(args) or θpredict

s,p,o,t = f predict
p,o (args)

where the first version uses a single function and the latter
uses a different function for each (p, o)-pair.3 Here, args is
from the sets of latent representations from the KG tensor and
the event tensor.

An example of a prediction model is

θpredict
s,p,o,t = f predict

p,o (aes ,aes,t ,aes,t−1 , . . . ,aes,t−T
).

where the prediction is based on the latent representations of
subject, object and predicate from the KG-tensor and of the
time-specific representations from the event tensor.

Let’s consider an example. Let (es, ep, eo, et; Value) stand
for (Patient, prescription, CholesterolMedication, Time; True).
Here, aes is the profile of the patient, calculated from the KG
model. Being constant, aes assumes the role of parameters
in the prediction model. aes,t describes all that so far has
happened to the patient at the same instance in time t (e.g.,
on the same day). aes,t−1 describes all that happened to the
patient at the last instance in time and so on.

We model the functions by a multiway neural network with
weight parameters W exploiting the great modeling flexibility
of neural networks. The cost function for the prediction model
is

costpredict = −
∑

zs,p,o,t∈Z
logP (zs,p,o,t|θpredict

s,p,o,t(A,M,W )) (2)

+λA‖A‖2F + λW ‖W‖2F + λM‖M‖2F .

A stands for the parameters in latent representation and M
stands for the parameters in the M -matrices. For a generalized
entity for which we use an M -matrix, we penalize the entries
in the M -matrix; for a generalized entity for which we directly
estimate the latent representation we penalize the entries in the
corresponding latent terms in A. Here, ‖ · ‖F is the Frobenius
norm and λA ≥ 0, λM ≥ 0 and λW ≥ 0 are regularization
parameters.

3The different functions can be realized by the multiple outputs of a neural
network.



B. Predicting Changes in the KG

In our model, each change in the status of the KG is commu-
nicated via events. Thus each change in the KG first appears
in the event tensor and predictions of events also implies
predictions in the KG. The events that change the KG status
are transferred into the KG and the latent representations of the
KG, i.e., aes ,aep ,aeo , are re-estimated regularly (Figure 1).

Fig. 1. The figure shows an example where the event tensor is predicted from
the representations of the events in the last two time steps and from the KG
representation. The dotted line indicate the transfer of observed events into
the KG.

C. More Cost Functions

Associated with each tensor model and prediction model,
there is a cost function (see Appendix). In our experiments
we obtained best results, when we used the cost function of
the task we are trying to solve. In the most relevant prediction
task we thus use the cost function in Equation 2. On the other
hand, we obtained faster convergence for the prediction model
if we initialize latent representations based on the KG model.

VI. EXPERIMENTS

Fig. 2. The prediction model for the clinical data.

A. Modeling Clinical Data

The study is based on a large data set collected from patients
that suffered from kidney failure. The data was collected
in the Charité hospital in Berlin and it is the largest data
collection of its kind in Europe. Once the kidney has failed,
patients face a lifelong treatment and periodic visits to the

Fig. 3. The prediction model for the recommendation data.

Fig. 4. The prediction model for the sensor data. aes is directly estimated
without using an M -mapping.

clinic for the rest of their lives. After the transplant has been
performed, the patient receives immunosuppressive therapy to
avoid the rejection of the transplanted kidney. The patient must
be controlled periodically to check the status of the kidney,
adjust the treatment and take care of associated diseases, such
as those that arise due to the immunosuppressive therapy. The
dataset contains every event that happened to each patient
concerning the kidney failure and all its associated events:
prescribed medications, hospitalizations, diagnoses, laboratory
tests, etc. [18], [29]. The database started being recorded more
than 30 years ago and it is composed of dozens of tables with
more than 4000 patients that underwent a renal transplant or
are waiting for it. For example, the database contains more
than 1200 medications that have been prescribed more than
250000 times, and the results of more than 450000 laboratory
analyses.

This is particularly important for the estimation of drug-
drug interactions (DDI) and adverse drug reactions (ADR) in
patients after renal transplant.

We work with a subset of the variables available in the
dataset. Specifically, we model medication prescriptions, or-
dered lab tests and lab test results. We transformed the tables
into an event oriented representation where the subject is the



TABLE I
SCORES FOR NEXT VISIT PREDICTIONS. AUPRC STANDS FOR AREA UNDER PRECISION-RECALL CURVE. AUROC STANDS FOR AREA UNDER ROC

CURVE. ET STANDS FOR OUR PROPOSED MODEL THAT USES ONLY PAST EVENT INFORMATION BUT NO INFORMATION FROM THE KG.

AUPRC AUROC Time (hours)
ET 0.574 ± 0.0014 0.977 ± 0.0001 6.11
Logistic Regression 0.554 ± 0.0020 0.970 ± 0.0005 4.31
KNN 0.482 ± 0.0012 0.951 ± 0.0002 17.74
Naive Bayes 0.432 ± 0.0019 0.843 ± 0.0015 39.1
Constant predictions 0.350 ± 0.0011 0.964 ± 0.0001 0.001
Random 0.011 ± 0.0001 0.5 -

patient and where time is a patient visit. We encoded the lab
results in a binary format representing normal, high, and low
values of a lab measurement, thus Value is always binary.

The prediction model is

θpredicts,p,o,t = fpredictp,o (aes ,aet ,aes,t ,aes,t−1
, . . . ,aes,t−T

).

Note that we have a separate function for each (p, o)-pair. aes
are patient properties as described in the KG. aes,t represents
all events known that happened at visit t for the patient (e.g.,
the same visit for which we want to make a prediction). aes,t−1

represents all events for the patient at the last visit, etc. aet
stands for the latent representation of all events at visit t for
all patients and can model if events are explicitly dependent
on the time since the transplant. Regarding the input window,
we empirically found that T = 6 is optimal. The architecture
is shown in Figure 2.

The first experiment consisted of predicting the events that
will happen to patients in their next visit to the clinic given the
events that were observed in the patients’ previous visits to the
clinic (i.e. by using the events that occurred to the patient from
aes,t until aes,t−6

). The experiment was performed 10 times
with different random splits of the patients. Thus we truly
predict performance on patients which were not considered in
training! Table I shows how our proposed model outperforms
the baseline models. The “constant predictor” always predicts
for each event the occurrence rate of such event (thus the most
common event is given the highest probability of happening,
followed by the second most common event, and so on). Note
that we are particularly interested in the Area Under Precision-
Recall Curve score due to the high sparsity of the data and
our interest in predicting events that will actually happen, as
opposed to the task of predicting which events will not be
observed. In the last column of Table I we also report the
time that it took to train for each model with the best set of
hyperparameters in the first random split.

Next we repeat the experiment including the KG-
representation of the patient, which contains static variables
of the patient such as blood type and gender, i.e., aes , and
also used aet . Table II shows the improvement brought by
the inclusion of the KG representation. The last row in Table
II shows the result of making the predictions just with the
KG representation of the patient (i.e. without the past event
information), demonstrating clearly that information on past
events is necessary to achieve best performance.

TABLE II
SCORES FOR FULL VISIT PREDICTIONS WITH AND WITHOUT THE
INFORMATION IN THE KG. AUPRC STANDS FOR AREA UNDER

PRECISION-RECALL CURVE. AUROC STANDS FOR AREA UNDER ROC
CURVE. ET+KG STANDS FOR OUR PROPOSED MODEL THAT USES PAST

EVENT INFORMATION AND INFORMATION FROM THE KG. ET ONLY USES
PAST EVENT DATA AND KG ONLY USES KG DATA.

AUPRC AUROC
ET+KG 0.586 ± 0.0010 0.979 ± 0.0001
ET 0.574 ± 0.0014 0.977 ± 0.0001
KG 0.487 ± 0.0016 0.974 ± 0.0002

B. Recommendation Engines

We used data from the MovieLens project with 943 users
and 1682 movies.4 In the KG tensor we considered the triples
(User, rates, Movie; Rating). For the event tensor, we consid-
ered the quadruples (User, watches, Movie, Time; Watched)
and (User, rates, Movie, Time; Rating). Here, Rating ∈
{1, . . . , 5} is the score the user assigned to the movie and
Watched ∈ {0, 1} indicates if the movie was watched and
rated at time t. Time is the calendar week of the rating event.
We define our training data to be 78176 events in the first 24
calender weeks and the test data to be 2664 events in the last
7 weeks. Note that in both datasets there are only 738 users
since the remaining 205 users watched and rated their movies
only in the test set.

It turned out that movie ratings depended on past ratings
but not on when the rating was done or what movies were
watched recently, and thus they could be predicted from the
KG model alone with

θpredicts,rates,o,t = fpredictrates,o (aes).

We obtained best results by modeling the function with a
neural network with 1682 outputs (one for each movie). The
user specific data was centered w.r.t. to their average and a
numerical 0 would stand for a neutral rating. We obtain an
RMSE score of 0.90 ± 0.002 which is competitive with the
best reported score of 0.89 on this data set [25]. But note
that we predicted future ratings which is more difficult than
predicting randomly chosen test ratings, as done in the other

4http://grouplens.org/datasets/movielens/



studies. Since we predict ordinal ratings, we used a Gaussian
likelihood model.

Of more interest in this paper is to predict if a user will
decide to watch a movie at the next time step. We used a
prediction model with

θpredicts,watches,o,t =

fpredictwatches,o(aes ,aet ,aes, t ,aes,t−1 , . . . ,aes,t−T
).

Here, aes stands for the profile of the user as represented in
the KG. aet stands for the latent representation of all events
at time t and can model seasonal preferences for movies. aes,t
stands for the latent representation of all movies that the user
watched at time t. The architecture is shown in Figure 3. When
training with only the prediction cost function we observe an
AUROC an score of 0.728 ± 0.001. We then explored sharing
of statistical strength by optimizing jointly the M -matrices
using all three cost functions costKG, costevent and costpredict and
obtained a significant improvement with an AUROC score of
0.776 ± 0.002.

For comparison, we considered a pure KG-model and
achieved an AUROC score of 0.756 ± 0.007. Thus the
information on past events leads to a small (but significant)
improvement.

C. Sensor Networks

TABLE III
MEAN SQUARED ERROR SCORES FOR PREDICTING MULTIVARIATE

SENSOR DATA 20 TIME STEPS AHEAD.

Model MSE
Pred1 0.135 ± 0.0002
Pred2 0.139 ± 0.0002
Pred3 0.137 ± 0.0002
Feedforward Neural Network 0.140 ± 0.0002
Linear Regression 0.141 ± 0.0001
Last Observed Value 0.170

In our third experiment we wanted to explore if our ap-
proach is also applicable to data from sensor networks. The
main difference is now that the event tensor becomes a sensor
tensor with subsymbolic measurements at all sensors at all
times.

Important research issues for wind energy systems concern
the accurate wind profile prediction, as it plays an impor-
tant role in planning and designing of wind farms. Due
to the complex intersections among large-scale geometrical
parameters such as surface conditions, pressure, temperature,
wind speed and wind direction, wind forecasting has been
considered a very challenging task. In our analysis we used
data from the Automated Surface Observing System (ASOS)
units that are operated and controlled cooperatively in the
United States by the NWS, FAA and DOD5. We downloaded
the data from the Iowa Environmental Mesonet (IEM)6. The

5http://www.nws.noaa.gov/asos/
6https://mesonet.agron.iastate.edu/request/asos/1min.phtml

data consists of 18 weather stations (the Entities) distributed
in the central US, which provide measurements every minute.
The measurements we considered are wind strength, wind
direction, temperature, air pressure, dew point and visibility
coefficient (the Attributes).

In the analysis we used data from 5 months from April
2008 to August 2008. The original database consists of 18
tables one for each station.

The event tensor is now a sensor tensor with quadruples
(Station, measurement, SensorType, Time; Value), where Value
is the sensor measurement for sensor SensorType at station
Station at time Time. The KG-tensor is a long-term memory
and maintains a track record of sensor measurement history.

As the dataset contains missing values we only considered
the periods in which the data is complete. This results in a
total of 130442 time steps for our dataset. In order to capture
important patterns in the data and to reduce noise, we applied
moving average smoothing using a Hanning window of 21
time steps. We split the data into train-, validation- and test set.
The first four months of the dataset where used for training,
and the last month as test set. 5 % of the training data where
used for validation.

We considered three different prediction models with Gaus-
sian likelihood functions, each with different latent represen-
tations at the input. The first model (Pred1) is

θpredicts,p,o,t = fpredictp,o (aes ,aes,t−1
,aes,t−2

, . . . ,aes,t−T
)

where aes,t stands for all measurements of station es at time
t and aes,t−1

,aes,t−2
, . . . ,aes,t−T

can be considered a short
term memory. aes,t−1

represents all measurements for station
s between t − T − 1 and t − 1, i.e., and can represent
complex sensor patterns over a longer period in time. Since
measurements take on real values, a Gaussian likelihood model
was used.

The second model (Pred2) is

θpredicts,p,o,t = fpredictp,o (aes,t−1
, . . . ,aes,t−T

,aet−1
, . . . ,aet−T

).

Here, aet stands the latent representation of all measurements
in the complete network at time t.

And finally the third model (Pred3) combines the first two
models and uses the combined sets of inputs. The architecture
of Pred3 is shown in Figure 4.

In our experiments we considered the task of predicting 20
time steps into the future. All three models performed best
with T = 10 and the rank of the latent representations being
20. Table III summarizes the results of the three prediction
models together with three baseline models. The most basic
baseline is to use the last observed value of each time series
as a prediction. More enhanced baseline models are linear
regression and feedforward neural networks using the previous
history zs,:,:,t−1, zs,:,:,t−2, . . . , zs,:,:,t−T of all time series of
a station s as input. The experiments show that all three
prediction models outperform the baselines. Pred1, which adds
the personalization term for each sensor shows the best results.
Pred2 performs only slightly better than the feedforward neural
network. However, we assume that in sensor networks with



a stronger cross correlation between the sensors, this model
might prove its strength. Finally, the result of Pred3 shows
that the combination of the multiple latent representations is
too complex and does not outperform Pred1.

VII. CONCLUSIONS AND EXTENSIONS

We have introduced an approach for modeling the temporal
evolution of knowledge graphs and for the evolution of asso-
ciated events and signals.The goal is to integrate temporal and
static context information for prediction and decision support.
We have demonstrated experimentally that models using latent
representations perform well in these high-dimensional and
highly sparse dynamic domains in a clinical application, a
recommendation engine and a sensor network application. The
clinical application is explored further in a funded project [35],
[12]. As part of future work we plan to test our approach in
general streaming frameworks which often contain a context
model, an event model and a sensor model, nicely fitting into
our framework. In [34] we are exploring links between the
presented approach and cognitive memory functions.

In general, we assumed a unique representation for an entity,
for example we assume that aes is the same in the prediction
model and the semantic model. Sometimes it makes sense
to relax that assumption and only assume some form of a
coupling. [15], [3], [2] contain extensive discussions on the
transfer of latent representations.
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[34] Volker Tresp, Cristóbal Esteban, Yinchong Yang, Stephan Baier, and
Denis Krompaß. Learning with memory embeddings. arXiv preprint
arXiv:1511.07972, 2015.

[35] Volker Tresp, Sonja Zillner, Maria J. Costa, Yi Huang, Alexander Cav-
allaro, and et al. Towards a new science of a clinical data intelligence.
In NIPS Workshop on Machine Learning for Clinical Data Analysis and
Healthcare, 2013.

[36] Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff G. Schneider, and Jaime G.
Carbonell. Temporal collaborative filtering with bayesian probabilistic
tensor factorization. In SIAM, 2010.



APPENDIX: COST FUNCTIONS

We consider cost functions for the KG tensor, the event
tensor and the prediction model. The tilde notation X̃ indicates
subsets which correspond to the facts known in training. If
only positive facts with Value = True are known, as often the
case in KGs, negative facts can be generated using, e.g., local
closed world assumptions [21]. We use negative log-likelihood
cost terms. For a Bernoulli likelihood, − logP (x|θ) = log[1+
exp{(1−2x)θ}] (cross-entropy) and for a Gaussian likelihood
− logP (x|θ) = const + 1

2σ2 (x − θ)2. We use regularization
as described in Equation 2.

We describe the cost function in terms of the latent represen-
tations A and the M -mappings. W stands for the parameters
in the functional mapping.

KG: The cost term for the semantic KG model is

costKG = −
∑

xs,p,o∈X̃

logP (xs,p,o|θKG
s,p,o(A,M,W ))

Events:

costevent = −
∑

zs,p,o,t∈Z̃

logP (zs,p,o,t|θevent
s,p,o,t(A,M,W ))

Prediction Model: The cost function for the prediction
model is

costpredict = −
∑

zs,p,o,t∈Z̃

logP (zs,p,o,t|θpredict
s,p,o,t(A,M,W ))


