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Motivation

• Infinite models have recently gained a lot of attention in Bayesian machine learning

• They offer great flexibility and, in many applications, allow a more truthful represen-

tation, if compared to a parametric approach

• The most prominent representatives are Gaussian processes and Dirichlet processes
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Gaussian Processes: Modeling Functions

• Gaussian processes define a prior over functions

• A sample of a Gaussian process is a function

f(·) ∼ GP(·|µ(·), k(·, ·))

where µ(·) is the mean function and k(·, ·) is the covariance kernel function

• Gaussian processes are infinite-dimensional generalizations of finite-dimensional Gaus-

sian distributions

• In a typical problem we have samples of the underlying true function and we want

to calculate the posterior distribution of the function and make predictions at a new

input (Gaussian process smoothing)

• In a related setting, we can only obtain noisy measurements of the true function

(Gaussian process regression)
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Dirichlet Processes: Modeling Probability Measures

• Dirichlet processes define a prior over probability measures

• A sample of a Dirichlet process is a probability measure

G ∼ DP(·|G0, α0)

G0 is the base distribution and α0 is the concentration parameter

• Infinite-dimensional Dirichlet processes are generalizations to finite Dirichlet distribu-

tions

• In a typical problem we have samples of the underlying true probability measure and

we want to calculate the posterior probability measure or the predictive distribution

for a new sample; (note, that we do not have a measurement of the function, as in

the GP case but a sample of the true probability measure; this is the main difference

between GP and DP)

• In a related setting, we can only obtain noisy measurements of a sample; this is then

a Dirichlet process mixture model
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I: Introduction to Bayesian Modeling
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Statistical Approaches to Learning and Statistics

• Probability theory is a branch of mathematics

• Statistics and (statistical) machine learning are attempts to applying probability theory

to solving problems in the real world: effectiveness of a medication, text classification,

medical expert systems, ...

• There are different approaches to applying probability theory to problems in the real

world in a useful way: frequentist statistics, Bayesian statistics, statistical learning

theory, ...

• All of them are useful in their own right

• In this tutorial, we take a Bayesian point of view
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Review of Some Laws of Probability
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Multivariate Distribution

• We start with two (random) variables X and Y . A multivariate (probability) distribu-

tion is defined as

P (x, y) := P (X = x, Y = y) = P (X = x ∧ Y = y)
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Conditional Distribution

• Definition of a conditional distribution

P (Y = y|X = x) :=
P (X = x, Y = y)

P (X = x)
where P (X = x) > 0
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Product Decomposition and Chain Rule

From the definition of a conditional distribution we obtain:

• Product Decomposition

P (x, y) = P (x|y)P (y) = P (y|x)P (x)

• and the chain rule

P (x1, . . . , xM) = P (x1)P (x2|x1)P (x3|x1, x2) . . . P (xM |x1, . . . , xM−1)
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Bayes’ Rule

• Bayes’ Rule follows immediately

P (x|y) =
P (x, y)

P (y)
=

P (y|x)P (x)

P (y)
P (y) > 0
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Marginal Distribution

• To calculate a marginal distribution from a joint distribution, one uses:

P (X = x) =
∑
y

P (X = x, Y = y)
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Bayesian Reasoning and Bayesian Statistics
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Bayesian Reasoning

• Bayesian reasoning is the straight-forward application of the rules of probability to real

world problems involving uncertain reasoning

• P (H = 1): assumption about the truth of hypothesis H (a priori probability)

• P (D|H = 1): Probability of observing (Data) D, if hypothesis H is true (like-

lihood); P (D|H = 0): Probability of observing (Data) D, if hypothesis H is not

true (likelihood)

• Bayes’ rule:

P (H = 1|D) =
P (D|H = 1)P (H = 1)

P (D)

• Evidence: P (D) = P (D|H = 1)P (H = 1) + P (D|H = 0)P (H = 0)
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Bayesian Reasoning: Example

• A friend has a new car

• A priori assumption:

P (Car = SportsCar) = 0.5

• I learn that the car has exactly two doors; likelihood:

P (2Doors|Car = SportsCar) = 1 P (2Doors|Car = ¬SportsCar) = 0.5

• Using Bayes’ theorem:

P (Car = SportsCar|2Doors) =
1× 0.5

(1× 0.5 + 0.5× 0.5)
= 0.66
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Bayesian Reasoning: Debate

• There is no disagreement that one can define an appropriate likelihood term P (D|H)

• There is disagreement, if one should be allowed to define and exploit the prior pro-

bability of a hypothesis P (H), since in most cases, this can only present someone’s

prior belief

• Non-Bayesians often criticize the necessity to model someone’s prior belief: this appears

to be subjective and non-scientific

• To people sympathetic to Bayesian reasoning: the prior distribution can be used to

incorporate valuable prior knowledge and constraints (e.g., medical expert system); it

is a necessity for obtaining a complete statistical model

• Comment: Since in parametric modeling the assumption about the likelihood function

is much more critical than assumptions concerning the prior distribution, the discussion

might not be quite to the point
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Bayesian Reasoning: Subjective Probabilities

• If one is willing to assign numbers to beliefs then under few assumptions of consistency

and if 1 means that one is certain that an event will occur and if 0 means that one is

certain that an event will not occur, then these numbers exactly behave as probabilities.

Theorem: Any measure of belief is isomorphic to a probability measure (Cox, 1946)

• “One common criticism of the Bayesian definition of probability is that probabilities

seem arbitrary. Why should degrees of belief satisfy the rules of probability? On what

scale should probabilities be measured? In particular, it makes sense to assign a pro-

bability of one (zero) to an event that will (not) occur, but what probabilities do we

assign to beliefs that are not at the extremes? Not surprisingly, these questions have

been studied intensely. With regards to the first question, many researchers have sug-

gested different sets of properties that should be satisfied by degrees of belief (e.g.,

Ramsey 1931, Cox 1946, Good 1950, Savage 1954, DeFinetti 1970). It turns out that

each set of properties leads to the same rules: the rules of probability. Although each

set of properties is in itself compelling, the fact that different sets all lead to the rules

of probability provides a particularly strong argument for using probability to measure

beliefs.”Heckerman: A Tutorial on Learning With Bayesian Networks

18



Technicalities in Bayesian Statistics
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Basic Approach in Statistical Bayesian Modeling

• Despite the fact that in Bayesian modeling any uncertain quantity of interest is treated

as a random variable, one typically distinguishes between parameters and variables;

variables might assume different states in each data point (e.g., object, measurement)

whereas parameters are used to describe regularities in the domain. A typical assump-

tion is that data points are exchangeable given the parameters. For Bayesian modeling,

exchangeability is a more useful property than the independent identical distribution

(i.i.d.) assumption often used in frequentist statistics (see for example: Jordan, 2005)

• In a typical setting might have observed data D, unknown parameters θ and a quantity

to be predicted X. Furthermore, we might have latent variables HD and H in the

training data and in the test point, respectively

• One first builds a joint model, using the product rule (example)

P (θ, HD, D, H, X) = P (θ)P (D, HD|θ)P (X, H|θ)

P (θ) is the prior distribution, P (D, HD|θ) is the complete data likelihood; we might

be interested in P (X|D)
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• First we marginalize the latent variables P (D|θ) =
∫

P (D, HD|θ) dHD and

obtain the likelihood w.r.t the observed data P (D|θ)



Basic Approach in Statistical Bayesian Modeling (2)

• Then we obtain the posterior parameters distribution using Bayes rule

P (θ|D) =
P (D|θ)P (θ)

P (D)

• Then we marginalize the parameters and obtain

P (X, H|D) =

∫
P (X, H|θ)P (θ|D) dθ

• Finally, one marginalizes the latent variable in the test point

P (X|D) =
∑
H

P (X, H|D)

• The demanding operations are the integrals, resp. sums; thus one might say with some

justification: the frequentist optimizes (e.g., in the maximum likleihood approach), and

the Bayesian integrates

21



Approximating the Integrals in Bayesian Modeling

• The integrals are often over high-dimensional quantities; typical approaches to solving

or approximating the integrals

– Closed-from solutions (exist for some special cases)

– Laplace approximation (leads to an optimization problem)

– Markov Chain Monte Carlo Sampling (e.g., Gibbs sampling, ...) (integration via

Monte Carlo)

– Variational approximations (e.g., mean field) (leads to an optimization problem)

– Expectation Propagation
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Conclusion on Bayesian Modeling

• Bayesian modeling is the straightforward application of the laws of probability to

problems in the real world

• The Bayesian program is quite simple: build a model, get data, perform inference
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II: Multinomial Sampling with a
Dirichlet Prior
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Likelihood, Prior, Posterior, and Predictive
Distribution
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Multinomial Sampling with a Dirichlet Prior

• Before we introduce the Dirichlet process, we need to get a good understanding of

the finite-dimensional case: Multinomial sampling with a Dirichlet prior

• Learning and inference in the finite case find their equivalences in the infinite-dimensional

case of Dirichlet processes

• Highly recommended: David Heckerman’s tutorial: A Tutorial on Learning With Bayesi-

an Networks (http://research.microsoft.com/research/pubs/view.aspx?msr tr id=MSR-

TR-95-06)
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Example: Tossing a Loaded Dice

• Running example: the repeated tossing of a loaded dice

• Let’s assume that we toss a loaded dice; by Θ = θk we indicate the fact that the

toss resulted in showing θk

• Let’s assume that we observe in N tosses Nk times θk

• A reasonable estimate is then that

P̂ (Θ = θk) =
Nk

N
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Multinomial Likelihood

• In a formal model we would assume multinomial sampling; the observed variable Θ

is discrete, having r possible states θ1, . . . , θr. The likelihood function is given by

P (Θ = θk|g) = gk, k = 1, . . . , r

where g = {g2, . . . , gr, } are the parameters and g1 = 1−
∑r

k=2 gk, gk ≥ 0, ∀k

• Here, the parameters correspond to the physical probabilities

• The sufficient statistics for a data set D = {Θ1 = θ1, . . . ,ΘN = θN} are

{N1, . . . , Nr}, where Nk is the number of times that Θ = θk in D. (In the

following, D will in general stand for the observed data)
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Multinomial Likelihood for a Data Set

• The likelihood for the complete data set (here and in the following, C denotes nor-

malization constants irrelevant for the discussion)

P (D|g) = Multinomial(·|g) =
1

C

r∏
k=1

g
Nk
k

• The maximum likelihood estimate is (exercise)

gML
k =

Nk

N

Thus we obtain the very intuitive result that the parameter estimates are the empirical

counts. If some or many counts are very small (e.g., when N < r) many probabilities

might be (incorrectly) estimated to be zero; thus, a Bayesian treatment might be more

appropriate
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Dirichlet Prior

• In a Bayesian framework, one defines an a priori distribution for g. A convenient choice
is a conjugate prior, in this case a Dirichlet distribution

P (g|α∗) = Dir(·|α∗1, . . . , α∗r) ≡
1

C

r∏
k=1

g
α∗k−1
k

• α∗ = {α∗1, . . . , α∗r}, α∗k > 0

• It is also convenient to re-parameterize

α0 =
r∑

k=1

α∗k αk =
α∗k
α0

k = 1, . . . , r

and α = {α1, . . . , αr} such that Dir(·|α∗1, . . . , α∗r) ≡ 1
C

∏r
k=1 g

α0αk−1
k

• The meaning of α becomes apparent when we note that

P (Θ = θk|α∗) =

∫
P (Θ = θk|g)P (g|α∗) dg =

∫
gkDir(g|α∗)dg = αk
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Posterior Distribution

• The posterior distribution is again a Dirichlet with

P (g|D, α∗) = Dir(·|α∗1 + N1, . . . , α∗r + Nr)

(Incidentally, this is an inherent property of a conjugate prior: the posterior comes

from the same family of distributions as the prior)

• The probability for the next data point (after observing D)

P (ΘN+1 = θk|D, α∗) =

∫
gkDir(g|α∗1+N1, . . . , α∗r+Nr)dg =

α0αk + Nk

α0 + N

• We see that with increasing Nk we obtain the same result as with the maximum

likelihood approach and the prior becomes negligible
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Dirichlet Distributions for Dir(·|α∗1, α∗2, α∗3)

Dir(·|α∗1, . . . , α∗r)

≡
1

C

r∏
k=1

g
α∗k−1
k

(From Ghahramani, 2005)
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Generating Samples from g and θ
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Generative Model

• Our goal is now to use the multinomial likelihood model with a Dirichlet prior as a

generative model

• This means that want to“generate” loaded dices according to our Dirichlet prior and

“generate”virtual tosses from those virtual dices

• The next slide shows a graphical representation
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First Approach: Sampling from g

• We first generate a sample g from the Dirichlet prior

• This is not straightforward but algorithms for doing that exist; (one version involves

sampling from independent gamma distributions using shape parameters α∗1, . . . , α∗r
and normalizing those samples) (later in the DP case, this sample can be generate

using the stick breaking presentation)

• Given a sample g it is trivial to generate independent samples for the tosses with

P (Θ = θk|g) = gk
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Second Approach: Sampling from Θ directly

• We can also take the other route and sample from Θ directly

• Recall the probability for the next data point (after observing D)

P (ΘN+1 = θk|D) =
α0αk + Nk

α0 + N

We can use the same formula, only that now D are previously generated samples; this

simple equation is of central importance and will reappear in several guises repeatedly

in the tutorial

• Thus there is no need to generate an explicit sample from g first

• Note, that with probability proportional to N , we will sample from the empirical

distribution with P (Θ = θk) = Nk/N and with probability proportional to α0 we

will generate a sample according to P (Θ = θk) = αk
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Second Approach: Sampling from Θ directly (2)

• Thus a previously generated sample increases the probability that the same sample is

generated at a later stage; in the DP model this behavior will reappear in the Pólya

urn representation and the Chinese restaurant process
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P (ΘN+1 = θk|D) = α0αk+Nk
α0+N with α0→ 0: A Paradox?

• If we let α0 → 0, the first generated sample will dominate all samples generated

thereafter: they will all be identical to the first sample; but note that independent of

α0 we have P (Θ = θk) = αk

• Note also that

lim
α0→0

P (g|α∗) ∝
r∏

k=1

1

gk

such that distributions with many zero-entries are heavily favored

• Here is the paradox: the generative model will almost never produce a fair dice but if

actual data would indicate a fair dice, the prior is immediately and completely ignored

• Resolution: The Dirichlet prior with a small α0 favors extreme solutions, but this prior

belief is very weak and is easily overwritten by data

• This effect will reoccur with the DP: if α0 is chosen to be small, sampling heavily

favors clustered solutions
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Beta-Distribution

• The Beta-distribution is a two-dimensional Dirichlet with two parameters α and β;

for small parameter values, we see that extreme solutions are favored
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Including an Observation Model
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Observation Model

• Now we want to make the model slightly more complex; we assume that we cannot

observe the results of the tosses Θ directly but only (several) derived quantities (e.g.,

noisy measurements) X with some P (X|Θ). Let Dk = {xk,j}
Mk
j=1 be the observed

measurements of the i−th toss and let P (xk,j|θk) be the probability distribution

(several unreliable persons inform you about the results of the tosses)

• Again we might be interested in inferring the property of the dice by calculating

P (g|D) (the probabilities of the properties of the dice) or in the probability of the

actual tosses P (Θ1, . . . ,ΘN |D)

• This is now a problem with missing data (the Θ are missing); since it is relevant

also for DP, we will we will only discuss approaches based on Gibbs sampling but we

want to mention that the popular EM algorithm might also be used to obtain a point

estimate of g

• The next slide shows a graphical representation
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Inference based on Markov Chain Monte Carlo Sampling

• What we have learned about the model based on the data is incorporated in the

predictive distribution

P (ΘN+1|D) =
∑

θ1,...,θN

P (Θ1, . . . ,ΘN |D)P (ΘN+1|Θ1, . . . ,ΘN)

≈
1

S

S∑
s=1

P (ΘN+1|θs
1, . . . , θs

N)

where (Monte Carlo approximation) θs
1, . . . , θs

N ∼ P (Θ1, . . . ,ΘN |D)

• In contrast to before, we now need to generate samples from the posterior distribution;

ideally, one would generate samples independently, which is often infeasible

• In Markov chain Monte Carlo (MCMC), the next generated sample is only dependent

on the previously generated sample (in the following we drop the s label in θs)
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Gibbs Sampling

• Gibbs sampling is a specific form of an MCMC process

• In Gibbs sampling we initialize all variables in some appropriate way, and replace a

value Θk = θk by a sample of P (Θk|{Θi = θi}i6=k, D). One continuous to do

this repeatedly for all k. Note, that Θk is dependent on its data Dk = {xk,j}j but

is independent of the remaining data given the samples of the other Θ

• The generated samples are from the correct distribution (after a burn in phase); a

problem is that subsequent samples are not independent, which would be a desired

property; if subsequent samples are highly correlated it is said that the chain does not

mix well

• Note that we can integrate out g so we never have to sample from g; this form of

sampling is called collapsed Gibbs sampling
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Gibbs Sampling (2)

• We obtain (note, that Nl are the counts without considering Θk )

P (Θk = θl|{Θi = θi}i6=k, D) = P (Θk = θl|{Θi = θi}i6=k, Dk)

=
1

C
P (Θk = θl|{Θi = θi}i6=k)P (Dk|Θk = θl)

=
1

C
(α0αl + Nl)P (Dk|Θk = θl)

(C =
∑

l(α0αl + Nl)P (Dk|Θk = θl))
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Auxiliary Variables, Blocked Sampling and the
Standard Mixture Model
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Introducing an Auxiliary Variable Z

• The figure shows a slightly modified model; here the auxiliary variables Z have been

introduced with states z1, . . . , zr

• We have

P (Z = zk|g) = gk, k = 1, . . . , r

P (Θ = θj|Z = zk) = δj,k, k = 1, . . . , r

• If the θ are fixed, this leads to the same probabilities as in the previous model and we

can again use Gibbs sampling
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Collapsing and Blocking

• So far we had used a collapsed Gibbs sampler, which means that we never explicitly

sampled from g

• This is very elegant but has the problem that the Gibbs sampler does not mix very

well

• One often obtains better sampling by using a non-collapsed Gibbs sample, i.e., by

sampling explicitly from g

• The advantage is that given g, one can independently sample from the auxiliary

variables in a block (thus the term blocked Gibbs sampler)
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The Blocked Gibbs Sampler

One iterates

• We generate samples from Zk|g, Dk for k = 1 . . . , N

• We generate a sample from

g|Z1, . . . , ZN ∼ Dir(α∗1 + N1, . . . , α∗1 + Nr)

where Nk is the number of times that Zk = zk in the current sample
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Relationship to a Standard Mixture Model: Learning θ

• We can now relate our model to a standard mixture model; note, that the standard

mixture model is related but not identical to the model considered so far (in the case

of infinite models, although, we can indeed define an infinite mixture model which

exactly corresponds to the infinite version of the previously defined model!)

• The main difference is that now we treat the the θk as random variables; this cor-

responds to the situation where Z would tell us which side of the dice is up and θk
would correspond to a value associated with the k−th face

• We now need to put a prior on θk with hyperparameters h and learn θk from data

(see figure)!

• A reasonable prior for the probabilities might be P (π|α0) = Dir(·|α0/r, . . . , α0/r)

• As a special case: when Mk = 1, and typically r << N , this corresponds to a

typical mixture model; a mixture model is a probabilistic version of (soft) clustering

• Example: if the P (X|Θ) is a Gaussians distribution with parameters Θ, we obtain

a Gaussian mixture model
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Relationship to a Standard Mixture Model: Learning θ (2)

• Gibbs sampling as before can be used but needs to be extended to also generate sample

for Θ
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Conclusions for the Multinomial Model with a Dirichlet Prior

• We applied the Bayesian program to a model with a multinomial likelihood and Di-

richlet prior

• We discussed a number of variations on inference, in particular variations on Gibbs

sampling

• But one might argue that we are still quite restrictive in the sense that if one is not

interested in loaded dices or gambling in general this might all be not so relevant

• In the next section we show that by a process called Dirichlet enhancement, the

Dirichlet model is the basis for nonparametric modeling in a very general class of

hierarchical Bayesian models
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III: Hierarchical Bayesian Modeling
and Dirichlet Enhancement
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Hierarchical Bayesian Modeling
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Hierarchical Bayesian Modelling

• In hierarchical Bayesian modeling both parameters and variables are treated equally

as random variables (as we have done in the multinomial model)

• In the simplest case we would assume that there are random variables that might take

on specific values in each instance. Example: diagnosis and length of stay of a person

in a given hospital typically differs in different patients

• Then we would assume that there are variables, which we would model as being

constant (but unknown) in a domain. These would typically be called parameters.

Example: average length of stay given the diagnosis in a given hospital
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The Standard Hierarchy

• The figure shows the standard Bayesian model for supervised learning; as a concrete

example let’s assume the goal is to predict the preference for an object y given object

features x and given parameters θ. The parameters have a prior distribution with

parameters g, which itself originates from a distribution with parameters α

• The hierarchical probability model is (assuming that Y1, Y2 . . . are exchangeable given

the inputs and given θ)

P (α)P (g|α)P (θ|g)
M∏

j=1

P (yj|xj, θ)
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The Standard Hierarchy (2)

• The hyperparameters can be integrated out and one obtains

P (θ, D) = P (θ)P (D|θ) = P (θ)
M∏

j=1

P (yj|xj, θ)

with

P (θ) =

∫
P (α)P (g|α)P (θ|g)dαdg

• The effect of the prior vanishes when sufficient data are available: The posterior pro-

bability gets increasingly dominated by the likelihood function; thus the critical term

to specify by the user is the functional form of the likelihood ! One then needs to do an

a posterior analysis and check if the assumptions about the likelihood were reasonable

56



Extended (Object Oriented) Hierarchical Bayesian

• Consider the situation of learning a model for predicting the outcome for patients with

a particular disease based on patient information. Due to differences in patient mix and

hospital characteristics such as staff experiences the models are different for different

hospitals but also will share some common effects. This can be modeled by assuming

that the model parameters originate from a particular distribution of parameters that

can be learned from data from a sufficiently large number of hospitals. If applied to a

new hospital, this learned distribution assumes the role of a learned prior

• A preference model for items (movies, books); the preference model is individual for

each person

• The probability of a word is document specific; the word probabilities come out off a

cluster of similar word documents

• The figure shows a graphical representation

57





Discussion of the Extended Hierarchical Model

• Inference and learning is more difficult but in principle nothing new (Gibbs sampling

might be applied)

• Note, that θ1, θ2, . . . are exchangeable given g and that Yi,1, Yi,2 . . . are exchan-

geable given the inputs and given θi

• As before, P (θk|Dk) will converge to a point mass with Mk →∞

• With increasing numbers of situations and data for the situations, also g will converge

to a point mass at some ĝ

• This means that for a new object N +1, we can inherit the learned prior distribution

P (θN+1|D1, . . . , DN) ≈ P (θN+1|ĝ)
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Towards a Nonparametric Approach: Dirichlet
Enhancement
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Model Check in Hierarchical Bayesian Modelling

• In the standard model, the likelihood was critical and should be checked to be correct

• In a hierarchical Bayesian model, in addition, the learned prior

P (θN+1|D1, . . . , DN) ≈ P (θN+1|ĝ)

should be checked; this distribution is critical for the sharing strength effect and the

assumed functional form of the prior becomes much more important! Also note that

θ is often high dimensional (whereas the likelihood often reduces to evaluating scalar

probabilities, e.g., in the case of additive independent noise)

• A simple parametric prior is typically too inflexible to represent the true distribution

• Thus one needs nonparametric distributions as priors such as derived from the the

Dirichlet Process; the figure illustrates the point
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Dirichlet Enhancement: The Key Idea

• Let’s assume that we consider only discrete θ ∈ {θ1, . . . , θr} with a very large r

• Now we can re-parameterize the prior distribution in terms of a multinomial model

with a Dirichlet prior

P (Θ = θk|g) = gk, k = 1, . . . , r

P (g|α∗) = Dir(·|α∗1, . . . , α∗r) ≡
1

C

r∏
k=1

g
α∗k−1
k

• We might implement our noninformative prior belief in various forms; for example, one

might sample θi from P (θi) and set α∗i = α0/r, ∀i

61





Dirichlet Enhancement (2)

• Thus we have obtained a model that technically is equivalent the the multinomial

likelihood model with a Dirichlet prior and noisy measurements as discussed in the

last section

• The process of replacing the original prior by a prior using the Dirichlet Process is

sometimes referred to a Dirichlet enhancement

• For inference in the model we can immediately apply Gibbs sampling
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Towards Dirichlet Processes

• Naturally there are computational problems if we let r →∞

• Technically, we have two options:

– We introduce an auxiliary variables Z as before and use a standard mixture model

where a reasonable small r might be used; this might not be appropriate if the

distribution is not really clustered

– We let r → ∞, which leads us to nonparametric Bayesian modeling and the

Dirichlet process

• In the latter vase we obtain a Dirichlet process prior and the corresponding model is

called a Dirichlet process mixture (DPM)

63



IV: Dirichlet Processes
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Basic Properties

65



Dirichlet Process

• We have studied the multinomial model with a Dirichlet prior and extended the model

to the case of noisy measurements

• We have studied the hierarchical Bayesian model and found that in the case of repeated

trials it makes sense to employ Dirichlet enhancement

• We have concluded that one can pursue two paths

– Either one assumes a finite mixture model and one permits the adaptation of the

parameters

– Or uses an infinite model and makes the transition from a Dirichlet distribution

to a Dirichlet process (DP)

• In this section we study the transition to the DP

• The Dirichlet Process is a generalization of the Dirichlet distribution; whereas a Di-

richlet distribution is a distribution over probabilities, a DP is a measure on measures
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Basic Properties

• Let’s compare the finite case and the infinite case

• In the finite case we wrote g ∼ Dir(.|α∗), in the infinite case we write

G ∼ DP(.|G0, α0)

where G is a measure (Ferguson, 1973)

• Furthermore, in the finite case we wrote P (Θ = θk|g) = gk; in the infinite case

we write

θ ∼ G(·)

• G0 is the base distribution (corresponds to the α) and might be describes as a

probability density, e.g., as a Gaussian G0 ∼ N(.|0, I)

• α0 again is a concentration parameter; the graphical structure is shown in the figure
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Basic Properties: Posteriors

• In analogy to the finite case, the posterior is again a DP with

G|θ1 . . . θN ∼ DP

 1

α0 + N

α0G0 +
N∑

k=1

δθk

 , α0 + N


• δθk

is a discrete measure concentrated at θk

compare to the finite case

g|θ1 . . . θN = Dir(·|α∗1 + N1, . . . , α
∗
r + Nr)
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Generating Samples from G and θ
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Sampling from θ: Urn Representation

• Consider that N samples θ1, . . . , θN have been generated

• In the Dirichlet distribution, we used P (ΘN+1 = θk|D) = α0αk+Nk
α0+N

• This generalizes in an obvious way in the Dirichlet process to (Blackwell and Mac-

Queen, 1973)

θN+1|θ1, . . . , θN ∼
1

α0 + N

α0G0(·) +
N∑

k=1

δθk


• This is associated with the Pólya urn representation: one draws balls with different

colors out of a urn (with G0); If a ball is drawn, one puts the ball back plus an

additional ball with the same color (δθk
); thus in subsequent draws balls with a color

already encountered become more likely to we drawn again

• Note, that there is no need to sample from G
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Sampling from θ (2)

• Note that the last equation can be interpreted as a mixture of distributions:

– With prob. α0/(α0 + N) a sample is generated from distribution G0

– With prob. N/(α0 + N) a sample is generated uniformly from {θ1, . . . , θN}
(which are not necessarily distinct)

• Note, that in the urn process it is likely that identical parameters are repeatedly

sampled
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Chinese Restaurant Process (CRP)

• This is formalized as the Chinese restaurant process (Aldous, 1985); in the Chinese

restaurant process it is assumed that customers sit down in a Chinese restaurant

with an infinite number of tables; Zk = j means that customer k sits at table j.

Associated with each table j is a parameter θj

• The first customer sits at the first table 1, Z1 = 1; we generate a sample θ1 ∼ G0

• With probability 1/(1 + α0), the second customer also sits at the first table 1,

Z2 = 1, and inherits θ1; with probability α0/(1 + α0) the customer sits at table

2, Z2 = 2, and a new sample is generated θ2 ∼ G0

• The figure shows the situation after N customers have entered the restaurant
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Chinese Restaurant Process (CRP)(2)

• Customer N + 1 enters the restaurant

• Customer N + 1 sits with probability

Nj

N + α0

at a previously occupied table j and inherits θj. Thus: ZN+1 = j, Nj ← Nj + 1

• With probability
α0

N + α0

the customer sits at a new table M + 1. Thus: ZN+1 = M + 1, NM+1 = 1

• For the new table a new parameter θM+1 ∼ G0(·) is generated. M ←M + 1
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Chinese Restaurant Process (CRP)(3)

• Obviously, the generated samples exactly correspond to the ones generated in the urn

representation

74



Discussion

• So really not much new if compared to the finite case

• In particular we observe the same clustering if α0 is chosen to be small

• The CRP makes the tendency to generate clusters even more apparent (see figure);

again the tendency towards forming clusters can be controlled by α0
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Sampling from G: Stick Breaking Representation

• After an infinite number of samples are generated the underlying G(·) can be reco-

vered

• Not surprisingly, the underlying measure can be written as (Sethuraman, 1994)

G(·) ∼
∞∑

k=1

πkδθk
(.)

πk ≥ 0,
∑∞

k=1 πk = 1 θk ∼ G0(·)

• Furthermore, the πk can be generated recursively with πk = β1 and

πk = βk

k−1∏
j=1

(1− βj) k ≥ 2

• β1, β2, . . . are independent Be(1, α0) random variables

• One writes π ∼ Stick(α0)
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Introducing an Auxiliary Variable

• Considering the particular form of the stick breaking prior, we can implement the DP

model using an auxiliary variable Z with an infinite number of states z1, z2, . . .

• With the stick breaking probability,

π ∼ Stick(α0)

is generated

• Then, one generates independently for k = 1,2, . . .

Zk ∼ π θk ∼ G0

• The CRP produces samples of Z and θ in this model (integrating out π); compare

the graphical model in the figure
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Including an Observation Model - The Dirichlet
Process Mixture
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The Dirichlet Process Mixture (DPM)

• Now we consider that the realizations of θ are unknown; furthermore we assume that

derived quantities (e.g., noisy measurements) X with some P (X|θ) are available. Let

Dk = {xk,j}j be the data available for θk and let P (xk,j|θk) be the probability

distribution

• Note, that this also includes the case that the observer model is conditioned on some

input ink,j : P (xk,j|ink,j, θk)

• Recall, that this is exactly the situation encountered in the Dirichlet enhanced hierar-

chical Bayesian model

• The Dirichlet process mixture is also called: Bayesian nonparametric hierarchical model

(Ishwaran), and, not quite accurately, mixture of Dirichlet proceses
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Gibbs Sampling from the DPM using the Urn Representation

• In analogy to the finite case, the crucial distribution is now

θk|{θi}i6=k, D ∼
1

C

α0G0(·) +
∑

l:l 6=k

δθl

 P (Dk|θk)

• This can be re-written as

θk|{θi}i6=k, D ∼
1

C

α0P (Dk)P (θk|Dk) +
∑

l:l 6=k

P (Dk|θl)δθl


C = α0P (Dk) +

∑
l:l 6=k P (Dk|θl)δθl
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Sampling from the DPM using the Urn Representation (2)

• Here,

P (Dk) =

∫
P (Dk|θ)dG0(θ)

P (θk|Dk) =
P (Dk|θk)G0(θk)

P (Dk)

• Both terms can be calculated in closed form, if G0(·) and the likelihood are conjugate.

In this case, sampling from P (θk|Dk) might also be simple
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Sampling from the DPM using the CRP Representation

• We can again use the CRP model for sampling from the DPM

• Folding in the likelihood, we obtain

– We randomly select customer k; the customer sat at table Zk = i; we remove

her/him from her/his table; thus Ni ← Ni − 1; N ← N − 1; if the table i is

now unoccupied it is removed; assume, M tables are occupied

– Customer i now sits with probability proportional to

NjP (Dk|θj)

at an already occupied table j and inherits θj. Zk = j, Nj ← Nj + 1

– With probability proportional to

α0P (Dk)

the customer sits at a new table M +1. Zk = M + 1, NM+1 = 1. For the

new table a new parameter θM+1 ∼ P (θ|Dk) is generated
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Sampling from the DPM using the CRP Representation (2)

• In the CRP representation, θk, k = 1, . . . are re-sampled occasionally from the

posterior parameter distribution given all data assigned to table k

• Due to this re-estimation of all parameters assigned to the same table in one step, the

Gibbs sampler mixes better than the sampler based on the urn represenation

83





Integrating out the Parameters

• This is a CRP sampler, where one never needs to generate samples from the θk

•

NjP (Dk|θj)

is replaced by

NjP (Dk|Dj) = Nj

∫
P (Dk|θ)P (θ|G0, Dj)dθ

where Dj are all data previously associated with Z = j.

• If G0 is conjugate to the likelihood, a closed-form for the integral is available
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Comments on the Base Distribution

• Note, that independent of α0, parameters are generated from the posterior distribution

using the base distribution as a prior

• So independent of α0, the base distribution keeps playing an important role!
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Example (what is all this good for (2))

• Let’s assume that P (xk|θk) is a Gaussian distribution, i.e., θk corresponds to the

center and the covariance of a Gaussian distribution

• During CRP-sampling, all data points assigned to the same table k inherit identical

parameters, thus can be though of to be generated from the same Gaussian

• Thus, the number of occupied tables gives us an estimate of the true number of

clusters in the data

• Thus in contrast to a finite mixture model, we do not have to specify the number of

clusters we are looking for in advance!

• α0 is a tuning parameter, tuning the tendency to generate a large number (α0: large)

or a small number (α0: small) of clusters
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Relationship to the Standard Mixture Model and
Blocked Sampling
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Sampling from the DPM using the CRP Representation (2)

• The DPM model with an auxiliary variable can be derived from the standard mixture

model (see last section) if the Dirichlet prior for the mixing proportion is

π ∼ Dir(·|α0/r, . . . , α0/r)

and with

θ ∼ G0(·)

when we let r →∞

• Here, it is even mode clear that the DPM can be interpreted as a mixture model with

an infinite number of components, where the prior distribution for the parameters is

given by the base distribution
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Blocked Sampling Derived from a Finite Stick Representation

• As discussed in the part on the finite models, the sampler mixes better if one could

generate samples from G, since then, the parameters can be sampled independently;

thus it allows blocked updates

• The stick breaking process allows us to sample from G but the representation is infinite;

a finite representation with K terms derived from the stick breaking representation

would be the obvious solution

G(·) ∼
K∑

k=1

πkδθk
(.)
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Truncated Stick Breaking and Dirichlet-multinomial Allocation

• In the truncated approach one simply terminates the stick breaking procedure at K

terms; one sets βK = 1 so that the probabilities sum to one

• In the Dirichlet-multinomial allocation one sets

π ∼ Dir(·|α0/r, . . . , α0/r)

• The latter case is identical to a finite mixture model with a large number of components

r
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Formal Definition of a DP

Let Θ be a measurable space, G0 be a probability measure on Θ, and α0 a positive real

number

For every partition B1, B2, ...., Bk of Θ

G ∼ DP(·|G0, α0)

means that

(G(B1), G(B2), . . . , G(Bk)) ∼ Dir(α0G0(B1), α0G0(B2), . . . , α0G0(Bk))

(Ferguson, 1973, Ghahramani, 2005)
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Even More Formal Definition of a DP

The theorem asserts the existence of a Dirichlet process and also serves as a definition. Let

(R,B) be the real line with the Borel σ-algebra B and let M(R) bet the set of probability

measures on R, equipped with the σ-algebra BM

Theorem 1 Let α be a finite measure on (R,B). Then there exists a unique probability

measure Dα on M(R) called the Dirichlet process with parameters α satisfying:

For every partition B1, B2, ...., Bk of R by Borel sets

(P (B1), P (B2), . . . , P (Bk)) ∼ Dir(α(B1), α((B2), . . . , α((Bk))
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V: Applications and Extensions
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Sharing Statistical Strength: A Recommendation
System
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Recommendation Systems

• Let’s assume that the task is to build recommendation systems for different users

based on the features of the items

• For a particular user there might not be sufficient data for obtaining a reasonable

model

• Thus it is sensible to build a nonparametric hierarchical model to share statistical

strength
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Different Modeling Assumptions

Different assumptions lead to different models:

• All users are the same: use one model trained on all data

• Each user is a complete individual: train a separate model for each user

• Learn from one another: each user has her/his own model generated from a common

prior distribution, which is learned from data and shared between user models
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News

• We used 36 categories covering totally 10,034 news articles from the Reuters text data

set (1,152 articles belong to more than one category)

• For the experiments, we assume that each user is interested in exactly one of these

categories

• We generate example data for 360 (artificial) users by choosing at random a set of 30

(positive and negative) example items

• The goal is to predict the probability that a user likes an article

• Rank all unseen articles and select top N ranked articles;

• Plot: how many of the top N articles are truly positive
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Paintings

• Task: Predict image rating (642 images)

• 190 users with 89 rated images on average

• Image features: 256 correlogram features (colour/texture) 10 features based on wavelet

texture 9 features on color moments giving a 275-dimensional feature vector for each

image; these are weak indicators of high-level information about an image

• The model predicts N highest ranked pictures; among those, how many were rated

positively (in comparison to unrated or negatively rated)

• Classifier: probabilistic SVM with Gaussian kernel http://honolulu.dbs.informatik.uni-

muenchen.de:8080/paintings/index.jsp
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Implementation Details

• We used a deterministic variational EM approximation which leads to an approximation

(Yu, Schwaighofer, Tresp, Ma, and Zhang, 2003)

G|D ∝ α0G0(·) +
N∑

k=1

ξkδ
θML
k

• Here, θML
k is the ML (or MAP) -estimate of each user model trained on its own data

• ξk is optimized in the variational EM approximation

• After convergence, the prediction of an active model a ∈ 1, . . . , N becomes

P (Ya = y|x, {Dk}Nk=1) ≈

1

C

α0P (Da)P (Ya = y|x, Da) +
N∑

k=1

ξkP (Da|θML
k )P (Ya = y|x, θML

k )


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Implementation Details (2)

• Let’s take a look at the second term

• Essentially it says that any user should make a prediction and that this prediction is

weighted by the likelihood that a user can explain the past data of the active user

• Thus, initially, we obtain a simple average of all user’s predictions

• If the active user has seen some data, those users get higher weight, who agree well

with the past ratings of the active user

• Eventually, with many data for the active user, only the active user’s own model will

contribute to the prediction
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Cluster Analysis Using Textual Data: Dirichlet
Enhanced Latent Semantic Analysis
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The Goal

• In latent semantic analysis (LSA), we aim at modeling a large corpus of high-dimensional

discrete data from a probabilistic perspective

• The assumption: one data point can be modeled by latent factors, which account

for the co-occurrence of items within the data

• We are also interested in the clustering structure of the data, which may benefit from

the latent factors of the items

• For example:

– In document modeling, the data are document-word pairs

Latent factors: topics for words

Data clustering: categories of documents

– In collaborative filtering, the data are user ratings (for, e.g., movies)

Latent factors: categories or structures of movies

Data clustering: user interest groups
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Latent Dirichlet Allocation (LDA)

• Latent Dirichlet Allocation (LDA) Assign a discrete latent model to words and let

each document maintain a random variable θ, indicating its probabilities of belonging

to each topic

103





A Potential Problem with LDA

• Assumption: The prior for θ is a Dirichlet distribution (which is learned from data)

• Limitation: A single Dirichlet distribution is not flexible enough to represent interesting

dependencies such as a clustering structure in documents

The true distribution of The learned Dirichlet
θ in a toy problem distribution in LDA
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Dirichlet Enhanced Latent Semantic Analysis

• The key point of the DELSA model (Yu, K., Yu, S., Tresp, V., 2005) is to replace the

single Dirichlet distribution in LDA with a nonparametric Dirichlet process prior

• We employ the Dirichlet-multinomial allocation (DMA) denoted as DPN as a finite

approximation to DP

• Inference is based on a mean field approximation
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Evaluation on Toy Data

A dictionary of 200 words are associated with 5 latent topics. 100 documents are generated
with 6 document clusters. N = 100 before learning

Random initialization After 1 EM step After 5 EM step (final)
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Evaluation on Toy Data: Clustering

We then vary the number of clusters from 5 to 12 and randomize the data for 20 trials.

We record the detected number of clusters

• We can correctly detect number of clusters

• The calculation is fast without overfitting

• The recovered parameter β is very good
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Document Modeling

We compare DELSA with PLSI and LDA on Reuters-21578 and 20-Newsgroup in terms of

perplexity : Perp(Dt) = exp
(
− ln p(Dt)/

∑
d |wd|

)
• DELSA is consistently better than PLSI and LDA without overfitting

• Better for data set with strong clustering structure (like 20-Newsgroup)

Perplexity for Reuters Perplexity for Newsgroup
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Document Clustering

• We test DELSA on 20-Newsgroup data with 4 categories autos, motorcycles, baseball

and hockey, each taking 446 documents. 6 clusters are found

• Documents in one category show similar behavior

• Note: A very similar model to DELSEA was developed based on a mean field appro-

ximation using the truncated stick breaking approach (Blei and Jordan, 2005)
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More Models
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Automatically Determining the Right Number of Clusters

The following papers employ DPs to form infinite mixture models

The true number of mixture components is determined by the clustering effect in the Gibbs

sampler

• Infinite Mixtures of Gaussians (Rasmussen, 2000)

• Infinite Mixtures of Gaussian Processes (Rasmussen and Ghahramani, 2002)

• Infinite Hidden Markov Networks (Beal, Ghahramani, and Rasmussen, 2002, Teh et

al. 2004)
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Relational Modeling Using DPs

• Probabilistic relational models form truthful statistical representations of relational

data, e.g., data stored in a relational data base

• Effective learning can be realized using hierarchical Bayesian modeling

• DPs have been applied to relational modeling to obtain a sharing strengths effect and

for clustering, exploiting the relational information (Kemp et al., 2004, Xu et al., 2005,

Xu et al., 2006)
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Conclusions

• Nonparametric Bayesian models allow for much flexibility in hierarchical modeling and

other applications such as clustering

• The most important setting is the Dirichlet mixture model

• There is a large literature on nonparametric Bayesian modeling in the statistics fields

and more needs to be explored

• As it is obvious by the peaky structure of G, this is not a very nice probability density;

to achieve a probability density, one might introduce another hierarchical smoothing

level (Tomlinson and Escobar, 2005)

• More processes to be explored, Hierarchical DP, Dirichlet Diffusion trees, Indian buffet

processes, ...

• For more on DP, look at the related tutorials by Ghahramani (2005) and Jordan (2005)

and the introductory paper by Tresp and Yu (2004)
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