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Abstract. With the rising number of interconnected devices and sensors,
modeling distributed sensor networks is of increasing interest. Recurrent
neural networks (RNN) are considered particularly well suited for modeling
sensory and streaming data. When predicting future behavior, incorpo-
rating information from neighboring sensor stations is often beneficial. We
propose a new RNN based architecture for context specific information fu-
sion across multiple spatially distributed sensor stations. Therefore, latent
representations of multiple local models, each modeling one sensor station,
are jointed and weighted according to their importance for the prediction.
The particular importance is assessed depending on the current context
using a separate attention function. We demonstrate the effectiveness of
our model on three different real-world sensor network datasets.

1 Introduction

In this paper we propose a recurrent neural network (RNN) architecture for
combining information from multiple data streams in a distributed sensor net-
work. With the rising number of connected devices and sensors, often referred to
as the Internet of Things (IoT), modeling sensor networks and multi-agent sys-
tems is of increasing interest. We consider sensor networks consisting of multiple
stations, where each station can measure multiple features at a single location.
We address the task of sequence-to-sequence prediction, although our proposed
architecture can easily be generalized to other tasks such as classification, rec-
ommendation or anomaly detection. We build dedicated RNN models for all
sensor stations, which are allowed to exchange information among each other to
enable exploitation of cross-device correlations. The model, which we refer to
as the “multi-encoder-decoder model”, is an extension of the general encoder-
decoder framework, which has become popular in various tasks such as machine
translation, image caption generation and automatic speech recognition [1][2].
We build encoder and decoder models for each sensor station. In an interconnec-
tion layer, latent representations of all encoders are jointed using an attention
mechanism. Thereby, the attention mechanism, which originates from neural
machine translation (see [3][2]), is applied in a novel context which could also
be useful for further sensor fusion tasks. We demonstrate the effectiveness of
the proposed multi-sequence-to-sequence network on three datasets. Two of the
datasets consist of numerous sensor stations spread across Quebec and Alberta



measuring climatological data. The third dataset contains energy load profiles of
multiple regions in a smart energy grid. The experimental results show that the
proposed attention-based multi-encoder-decoder model outperforms competitive
linear models and standard RNN architectures.

2 Multi-Encoder-Decoder Model

We extend the sequence-to-sequence model [1] to multiple data streams by creat-
ing multiple encoder and decoder functions. The multiple sequence- to-sequence
models communicate through an interconnection layer, which acts like a soft-
switching circuit between the single models. Thus, cross-correlations between
the sensor stations can be exploited. All sequence encoders and sequence de-
coders are modeled by dedicated RNNs. The whole system is completely differ-
entiable and can thus be trained directly end-to-end. Figure 1 shows the model
schematically.

2.1 General Model

We consider the task of predicting multiple multivariate output sequences given
multiple multivariate input sequences. For now we consider a general sequence-
to-sequence prediction. The input sequences are represented by a three-way
tensor X € REXTencXFene wwhere F denotes the number of encoder devices, Tenc
denotes the encoder sequence length and Fi,. is the number of encoder fea-
tures. Similarly, the output sequences are represented by a three-way tensor
Y € RP*TaeexFace  wwhere D denotes the number of decoder devices, Tyec de-
notes the decoder sequence length and Fye. is the number of decoder features.
In the case of multivariate streaming data from a sensor network, the value &; ; ;
corresponds to the j-th feature measured at the i-th sensor station at time t.
Similarly, the value ) ; ; corresponds to the prediction of the j-th feature at the
i-th output node at time ¢. If we consider, for example, the task of predicting
the features of the next Tye. values for all stations in a sensor network, then D
is the number of stations, Fyec is the number of features and Tye is the time
period for which forecasts are performed. The input and output feature spaces
may or may not be identical, i.e. a prediction of all the sensor values per sensor
node, or not, e.g. there may be a central control station making predictions for
larger parts of the system.
Each input-sensing device is modeled by an encoder function

fenc,i(Xi,:,:) = e;, with 7 € {1, 2, ...,E}, (1)

which takes the data measured at the i-th sensing device as input and outputs
a latent representation e; € R1™(¢), For each output device an interconnection
function feon,; combines the representations {e;}Z ; as

feoni({ei}Ey) = ¢j,  with j € {1,2,..., D}. 2)
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Fig. 1: Unfolded multi-encoder-decoder recurrent neural network for multiple
sequence-to-sequence prediction.

Finally, for each output device a decoder function fyec,; models the prediction
given the respective combined representation c; as

facej(¢;) = Vi.., with j e {1,2,..., D}. (3)

This way information between the different input and output sequences can be
exchanged through the interconnection layer.

2.2 Multi-Encoder-Decoder RNNs

Figure 1 shows the architecture of a multi-encoder-decoder recurrent neural net-
work model. For the sequence-to-sequence prediction, we model each encoder
and each decoder function with an RNN. Each encoder RNN iterates over the
sequence produced by the respective sensing node. Thus, the input of the i-th
encoder RNN is z; = &; ;.. We define the last hidden state of the i-th encoder
RNN to be the encoder output e;. For each decoder RNN a combined represen-
tation is computed by the respective interconnection function, which is used as
initial hidden representation. The decoder output V; ;1 . is copied to the input
of the i-th decoder RNN at time t.

2.3 Spatial Attention Mechanism

The interconnection layer is implemented using an attention mechanism, where
the combination of latent representations is not fixed for every prediction but
depends on the current context, which is encoded in the input representations.
The attention mechanism assesses the importance of the representations of the



encoding devices e; and computes a weighted sum

1 E
“=F ijieia (4)
i=1

where the weights are learned through an additional attention function fas,
which is implemented as a feed-forward neural network. The output of the
attention function is normalized through a softmax function:

Zji = fatt,j(€s) (5a)
exp(zji) '
e exp(z;k)

Whether attention is put on a representation e; or not can vary for each pre-
diction, depending on the encoded information in e;. The approach draws in-
spiration from the attention-based machine translation model [3], however the
attention is not used across time but spatially across sensing devices.

Note that this mechanism can deal with a variable amount of input devices,
which is especially useful in settings where the number of input-devices is not
constant over time, e.g. moving devices where devices appear and disappear over
time, or where some input devices do not send any data, e.g. broken sensors. The
only parameters which have to be learned are those of the attention function.
The amount of parameters is independent of the number of encoders which yields
a constant number of parameters.

(5b)

wji =

2.4 Model Training

The model is trained end-to-end in a supervised fashion by minimizing the neg-
ative log-likelihood of a historical training set D = {(X™), Y("))}N_ w.r.t. the
model parameters such that

N
L=—Y log pQY"™|x";®), (6)
n=1

where ® includes the parameters of all encoders and decoders, as well as the
parameters of the feedforward neural network for the attention function. The
cost function is minimized using stochastic gradient descent with mini batches.

3 Experiments

We evaluate the performance of the multi-encoder-decoder network using sequence-
to-sequence prediction in sensor networks on two climatological datasets and a
smart grid dataset. We choose the task to be the prediction of future network
behavior given a sequence of past measurements. Predictions are made for every
sensor station and all features, thus, £ = D and Fene = Fec.



3.1 Datasets

We consider a sensor network of environmental sensing stations measuring clima-
tological data on an hourly basis. The dataset consists of 18 stations distributed
across Quebec, each measuring air temperature, dew point, relative humidity
and wind speed. The second dataset is a sensor network of 15 environmental
sensors spread across Alberta measuring the same features. We downloaded 5
years of data between 2010 and 2014 from ASOS' and selected stations and
features with the least missing values. We extracted sequences of 72 hours as
input to the encoders and made predictions for the next 24 hours. The data was
split into a training, validation and test set. The data gathered between 2010
and 2013 was used for training and validation while the data gathered in 2014
was used for testing the models. In the second experiment we predict the load
profiles of the next 3 days given the last 21 (3 weeks) load profiles from certain
areas. We selected 18 zones with historical load profiles gathered between 2007
and 2014 from the smart grid dataset [4]. As there is only one measurement
we chose the input and target features to be the hourly load and performed the
forecasts on a daily basis.

3.2 Methods

We compare our model to multiple linear regression, which has shown state-
of-the-art performance in the task of energy load forecasting [4]. Further, we
compare against regular RNN models. Both, the linear and the RNN models
are trained in two different settings: (i) a separate model for each station, i.e.
no cross-correlations can be exploited and (ii) a joint model for all stations,
i.e. cross-correlations between stations can be exploited. We evaluate on the
normalized data to get a baseline mean squared error of 1.0 for predicting the
historical mean. Further, we report as a baseline the constant prediction of the
last observed value for each measured feature. For the RNNs we also tried the
extensions gated recurrent units (GRU) and long short-term memory (LSTM),
however the prediction results did not significantly improve. In [5] it has also
been found that LSTMs are not particularly well suited for time series forecast-
ing. All experiments are implemented using Theano [6].

3.3 Results

Table 1 shows the results for both datasets. On the climatological dataset we
can see that both the RNN and linear model perform significantly better when
all stations are integrated into one model compared to one dedicated model for
each station. This observation indicates strong cross-correlations between the
stations. Using individual RNNs per station performs better than the linear
regression model per station, and the joint RNN for all stations outperforms
the linear model for all stations. Our proposed multi-encoder-decoder model
with spatial attention achieves the best result. This indicates that the attention

Thttps://mesonet.agron.iastate.edu/request /download.phtml



Dataset Quebec | Alberta | Smart Grid
Last observed values 65.15 72.95 51.69
Linear regression per station 42.89 41.89 33.82
Linear regression all stations 35.62 34.87 31.64
Regular RNN per station 38.17 34.92 31.50
Regular RNN all stations 34.77 34.68 29.56
Multi-enc-dec RNN attention 32.28 32.89 28.84

Table 1: Mean squared error results for the climatological test sets in percent.

function helps exploiting the non-linear cross correlations in the overall system.
For the smart grid dataset the prediction of the load profile of the last day (last
observed values) is already a good baseline as the profiles do not change dras-
tically within three days. Also here the linear model with all stations included
slightly improves the prediction over the single models and also the RNN model
including all stations outperforms the single per-station RNN models. Also on
this dataset, the attention-based multi-encoder-decoder model yields better per-
formance than the baseline models.

4 Conclusion

We proposed a neural network architecture for modeling distributed sensor net-
works, which extends the successful encoder-decoder framework. The fusion of
hidden representations of multiple encoder networks using an attention mecha-
nism, allows for exploiting cross-correlations across sensor stations. Using end-
to-end training, the complete model consisting of the encoders, the interconnec-
tion layer with an attention mechanism, and the decoders is trained to predict a
sequence of future behavior. In future work our architecture could also easily be
extended to different prediction tasks such as classification or anomaly detection.
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