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Abstract

In this paper we introduce a novel holographic
memory model for the distributed storage of
complex association patterns and apply it to
knowledge graphs. In a knowledge graph, a la-
belled link connects a subject node with an ob-
ject node, jointly forming a subject-predicate-
objects triple. In the presented work, nodes
and links have initial random representations,
plus holistic representations derived from the
initial representations of nodes and links in
their local neighbourhoods. A memory trace
is represented in the same vector space as the
holistic representations themselves. To reduce
the interference between stored information,
it is required that the initial random vectors
should be pairwise quasi-orthogonal. We show
that pairwise quasi-orthogonality can be im-
proved by drawing vectors from heavy-tailed
distributions, e.g., a Cauchy distribution, and,
thus, memory capacity of holistic representa-
tions can significantly be improved. Further-
more, we show that, in combination with a
simple neural network, the presented holistic
representation approach is superior to other
methods for link predictions on knowledge
graphs.

1 INTRODUCTION

An associative memory is a key concept in artificial in-
telligence and cognitive neuroscience for learning and
memorizing relationships between entities and concepts.
Various computational models of associative memory
have been proposed, see, e.g., [Hopfield 1982; Gentner
1983]. One important family of associative memory

∗yunpu.ma@siemens.com

models is the holographic associative memory (HAM),
which was first proposed in [Gabor 1969]. HAMs can
store a large number of stimulus-response pairs as ad-
ditive superpositions of memory traces. It has been
suggested that this holographic storage is related to the
working principle of the human brain [Westlake 1970].

An important extension to the HAM is based on holo-
graphic reduced representations (HRR) [Plate 1995]. In
HRR, each entity or symbol is represented as a vector
defined in a continuous space. Associations between two
entities are compressed in the same vector space via a
vector binding operation; the resulting vector is a mem-
ory trace. Two associated entities are referred to as a
cue-filler pair, since a noisy version of the filler can be
recovered from the memory trace and the cue vector via
a decoding operation. Multiple cue-filler pairs can be
compressed in a single memory trace through superposi-
tion. Associations can be read out from this single trace,
however with large distortions. Thus, a clean-up mech-
anism was introduced into HRR, such that associations
can be retrieved with high probability.

The number of associations which can be compressed in
a single trace is referred to as memory capacity. It has
been shown in [Plate 1995] that the memory capacity of
the HRR depends on the degree of the pairwise orthogo-
nality of initial random vectors associated with the enti-
ties.

Quasi-orthogonality was put forward in [Diaconis et al.
1984; Hall et al. 2005]. They informally stated that
“most independent high-dimensional random vectors are
nearly orthogonal to each other”. A rigorous mathemat-
ical justification to this statement has only recently been
given in [Cai et al. 2012; Cai et al. 2013], where the den-
sity function of pairwise angles among a large number of
Gaussian random vectors was derived. To the best of our
knowledge, density functions for other distributions have
not been derived, so far. As a first contribution, we will
derive a significantly improved quasi-orthogonality, and



we show that memory capacity of holographic represen-
tations can significantly be improved. Our result could
potentially have numerous applications, e.g., in sparse
random projections or random geometric graphs [Pen-
rose 2003].

After the HRR had been proposed, it had mainly been
tested on small toy datasets. Quasi-orthogonality be-
comes exceedingly important when a large amount of
entities needs to be initialized with random vectors, as
in applications involving large-scale knowledge graphs.

Modern knowledge graphs (KGs), such as FREE-
BASE [Bollacker et al. 2008], YAGO [Suchanek et al.
2007], and GDELT [Leetaru et al. 2013], are relational
knowledge bases, where nodes represent entities and di-
rected labelled links represent predicates. An existing
labelled link between a head node (or subject) and a tail
node (or object) is a triple and represents a fact, e.g. (Cal-
ifornia, locatedIn, USA).

As a second contribution, we demonstrate how the holo-
graphic representations can be applied to KGs. First, one
needs to define association pairs (or cue-filler pairs). We
propose that the representation of a subject should en-
code all predicate-object pairs, such that given the pred-
icate representation as a cue, the object should be recov-
ered or at least recognized. Similarly, the representation
of an object should encode all predicate-subject pairs,
such that the subject can be retrieved after decoding with
the predicate representation. We call those representa-
tions holistic, since they are inspired by the semantic
holism in the philosophy of language, in the sense that
an abstract entity can only be comprehended through its
relationships to other abstract entities.

So far we have discussed memory formation and mem-
ory retrieval. Another important function is the general-
ization of stored memory to novel facts. This has tech-
nical applications and there are interesting links to hu-
man memory. From a cognitive neuroscientist point of
view, the brain requires a dual learning system: one is
the hippocampus for rapid memorization, and the other
is the neocortex for gradual consolidation and compre-
hension. This hypothesis is the basis for the Complemen-
tary Learning System (CLS) which was first proposed in
[McClelland et al. 1995]. Connections between KGs and
long-term declarative memories has recently been stated
in [Tresp et al. 2017a; Ma et al. 2018; Tresp et al. 2017b].

As a third contribution of this paper, we propose a
model which not only memorizes patterns in the train-
ing datasets through holistic representations, but also is
able to infer missing links in the KG, by a simple neu-
ral network that uses the holistic representations as in-
put representations. Thus, our model realizes a form of

a complementary learning system. We compare our re-
sults on multiple datasets with other state-of-the-art link
prediction models, such as RESCAL [Nickel et al. 2011;
Nickel et al. 2012], DISTMULT [Yang et al. 2014], COM-
PLEX [Trouillon et al. 2016], and R-GCN [Schlichtkrull
et al. 2018].

The above mentioned learning-based methods model the
KGs by optimizing the latent representaions of entities
and predicates through minimizing the loss function. It
had been observed that latent embeddings are suitable for
capturing global connectivity patterns and generalization
[Nickel et al. 2016a; Toutanova et al. 2015], but are not
as good in memorizing unusual patterns, such as patterns
associated with locally and sparsely connected entities.
This motivates us to separate the memorization and in-
ference tasks. As we will show in our experiments, our
approach can, on the one hand, memorize local graph
structures, but, on the other hand, also generalizes well
to global connectivity patterns, as required by comple-
mentary learning systems.

Note, that in our approach holistic representations are
derived from random vectors and are not learned from
data via backpropagation, as in most learning-based
approaches to representation learning on knowledge
graphs. One might consider representations derived from
random vectors to be biologically more plausible, if com-
pared to representations which are learned via complex
gradient based update rules [Nickel et al. 2016a]. Thus,
in addition to its very competitive technical performance,
one of the interesting aspects of our approach is its bio-
logical plausibility.

In Section 2 we introduce notations for KGs and embed-
ding learning. In Section 3 we discuss improved quasi-
orthogonality by using heavy-tailed distributions. In Sec-
tion 4 we propose our own algorithm for holistic repre-
sentations, and test it on various datasets. We also dis-
cuss how the memory capacity can be improved. In Sec-
tion 5 we propose a model which can infer implicit links
on KGs through holistic representations. Section 6 con-
tains our conclusions.

2 REPRESENTATION LEARNING

In this section we provide a brief introduction to repre-
sentation learning in KGs, where we adapt the notation
of [Nickel et al. 2016b]. Let E denotes the set of entities,
and P the set of predicates. Let Ne be the number of
entities in E , and Np the number of predicates in P .

Given a predicate p ∈ P , the characteristic function φp :
E × E → {1, 0} indicates whether a triple (·, p, ·) is true
or false. Moreover, Rp denotes the set of all subject-
object pairs, such that φp = 1. The entire KG can be



written as χ = {(i, j, k)}, with i = 1, · · · , Ne, j =
1, · · · , Np, and k = 1, · · · , Ne.
We assume that each entity and predicate has a unique
latent representation. Let aei , i = 1, · · · , Ne, be the
representations of entities, and api , i = 1, · · · , Np, be
the representations of predicates. Note that aei and api
could be real- or complex-valued vectors/matrices.

A probabilistic model for the KG χ is defined as
Pr(φp(s, o) = 1|A) = σ(ηspo) for all (s, p, o)-triples
in χ, where A = {aei}Nei ∪ {api}

Np
i denotes the collec-

tion of all embeddings; σ(·) denotes the sigmoid func-
tion; and ηspo is the a function of latent representations,
as, ap and ao. Given a labeled dataset containing both
true and false triples D = {(xi, yi)}mi=1, with xi ∈ χ,
and yi ∈ {1, 0}, latent representations can be learned.
Commonly, one minimizes a binary cross-entropy loss

− 1

m

m∑

i=1

(yi log(pi) + (1− yi) log(1− pi)) + λ||A||22,

(1)
where m is the number of training samples, and λ is the
regularization parameter; pi := σ(ηxi) with σ(·) being
the sigmoid function. ηspo is defined differently in vari-
ous models.

For instance, for RESCAL entities are represented as
r-dimensional vectors, aei ∈ Rr, i = 1, · · · , Ne, and
predicates are represented as matrices, api ∈ Rr×r, i =
1, · · · , Np. Moreover, one uses ηspo = aᵀsapao.

For DISTMULT, aei ,apj ∈ Rr, with i = 1, · · · , Ne, j =
1, · · · , Np; ηspo = 〈as,ap,ao〉, where 〈·, ·, ·〉 denotes
the tri-linear dot product.

For COMPLEX, aei ,apj ∈ Cr, with i = 1, · · · , Ne,
j = 1, · · · , Np; ηspo = <(〈as,ap, āo〉), where the bar
denotes complex conjugate, and < denotes the real part.

3 DERIVATION OF
ε-ORTHOGONALITY

As we have discussed in the introduction, quasi-
orthogonality of the random vectors representing the en-
tities and the predicates is required for low interference
memory retrieval. In this section we investigates the
asymptotic distribution of pairwise angles in a set of in-
dependently and identically drawn random vectors. In
particular, we study random vectors drawn from either a
Gaussian or a heavy-tailed Cauchy distribution distribu-
tion. A brief summary of notations is referred to the A.7.
First we define the term “ε-orthogonality”.
Definition 1. A set of n vectors x1, · · · ,xn is said to
be pairwise ε-orthogonal, if |〈xi,xj〉| < ε for i, j =
1, · · · , n, i 6= j.

Here, ε > 0 is a small positive number, and 〈·, ·〉 denotes
the inner product in the vector space.

3.1 ε-ORTHOGONALITY FOR A GAUSSIAN
DISTRIBUTION

In this section we revisit the empirical distribution
of pairwise angles among a set of random vec-
tors. More specifically, let X1, · · · ,Xn be indepen-
dent q-dimensional Gaussian variables with distribution
N (0, Iq). Denote with Θij the angle between Xi and
Xj , and ρij := cos Θij ∈ [−1, 1]. [Cai et al. 2012;
Muirhead 2009] derived the density function of ρij in
the following Lemma.

Lemma 1. Consider ρij as defined above. Then
{ρij |1 < i < j ≤ n} are pairwise i.i.d. random vari-
ables with the following asymptotic probability density
function

g(ρG) =
1√
π

Γ( q2 )

Γ( q−1
2 )

(1− ρ2
G)

q−3
2 , |ρG| < 1, (2)

with fixed dimensionality q.

[Cai et al. 2013] also derived the following Theorem 1.

Theorem 1. Let the empirical distribution µn of pair-
wise angles Θij , 1 ≤ i < j ≤ n be defined as µn :=

1

(n2)

∑
1≤i<j≤n

δΘij . With fixed dimension q, as n → ∞,

µn converges weakly to the distribution with density

h(θ) =
1√
π

Γ( q2 )

Γ( q−1
2 )

(sin θ)q−2, θ ∈ [0, π]. (3)

From the above distribution function we can derive the
upper bound of quasi-orthogonal random vectors with
pairwise ε-orthogonality in the Euclidean space Rq .
Corollary 1. Consider a set of independent q-
dimensional Gaussian random vectors which are pair-
wise ε-orthogonal with probability 1−ν, then the number
of such Gaussian random vectors is bounded by

N ≤ 4

√
π

2q
e
ε2q
4

[
log

(
1

1− ν

)] 1
2

. (4)

The derivation is given in A.1. Due to the symmetry of
density function g(ρG), we immediately have E[ρG] =
0, moreover, E[θ] = π

2 . However, for the later use, it is
important to consider the expected absolute value of ρG:

Corollary 2. Consider a set of n q-dimensional random
Gaussian vectors, we have

λG := E[|ρG|] =

√
2

πq
. (5)



Figure 1: Empirical pairwise angle distribution in a set
of Gaussian random vectors (green) is compared with
theoretical prediction Eq. 2 (magenta); Empirical pair-
wise angle distribution in a set of Cauchy random vectors
(blue) is compared with prediction Eq. 6 (red)

Figure 2: Compare λG and λC from simulation and the-
ory, see Eq. 5 and Eq. 9.

Note, that the quantity π
2 − arccosE[|ρG|] has a clear

geometrical meaning: It indicates the expected deviation
from π

2 of pairwise angles. In fact, in the extreme case
when q → ∞, the deviation converges to 0 with the rate√
q.

3.2 ε-ORTHOGONALITY FOR A CAUCHY
DISTRIBUTION

In this subsection, we show that the set of random vectors
whose elements are initialized with a heavy-tailed distri-
bution, e.g., a Cauchy distribution C (0, 1), has improved
ε-orthogonality. The intuition is as follows: Consider a
set of q-dimensional random vectors initialized with a
heavy-tailed distribution. After normalization, each ran-
dom vector can be approximated by only the elements
which significantly deviate from zero and were drawn
from the heavy tails. If the number of those elements
is k with k � q, then there are at most

(
q
k

)
orthogonal

random vectors.

Moreover,
(
q
k

)
≈ qk

kΓ(k) could be much larger than

4

√
π
2q e

ε2q
4 from Eq. 4, when q is sufficiently large, k �

q, and ε → 0. In other words, under stricter quasi-
orthogonality condition with smaller ε, random vectors
drawn from a heavy-tailed distribution could have more
pairs satisfying the quasi-orthogonality condition.

Consider a set of q-dimensional Cauchy random vectors.
As q →∞ the approximate density function of ρij , with
1 ≤ i < j ≤ n is described in the following conjecture.

Conjecture 1. Let X1, · · · ,Xn be independent q-
dimensional random vectors whose elements are inde-
pendently and identically drawn from Cauchy a distribu-
tion C(0, 1). Moreover, consider the angle Θij between
Xi, and Xj . Then, as q →∞, ρij := cos Θij ∈ [−1, 1],
1 ≤ i < j ≤ n are pairwise i.i.d. with a density function
approximated by

g(ρC) = − 2

π2q2ρ3
C

· 1

z
3
2

[
e

1
πz Ei

(
− 1

πz

)]
, (6)

where z := 1
q2

(
1
ρ2C
− 1
)

, and the exponential integral

Ei(x) is defined as Ei(x) = −
∞∫
−x

e−t

t dt.

The intuition behind the conjecture is as follows. Sup-
pose X = (X1, · · · , Xq) and Y = (Y1, · · · , Yq) are
random vector variables, and assume that elements of X
and Y are independently Gaussian distributed. In order
to derive g(ρX,Y) in Lemma 1, [Cai et al. 2012; Muir-
head 2009] compute the distribution function for αᵀ·X

||X||
instead, where αᵀα = 1. In particular, they assume
that α = (1, 0, · · · , 0). The underlying reason for this
assumption is that the random vector X

||X|| is uniformly
distributed on the (q − 1)-dimensional sphere.

Here, elements of X and Y are independently Cauchy
distributed. We derive the approximation in Eq. 6 under
the same assumption by taking g(ρX,Y) ≈ X1√

X2
1+···+X2

q

.

Furthermore, we introduce a new variable zX,Y :=
1
q2

(
1

ρ2X,Y
− 1
)

= 1
q2
X2

2+···+X2
q

X2
1

, and derive the den-

sity function ĝ(zX,Y) by using the generalized central
limit theorem [Gnedenko et al. 1954] and properties of
quotient distributions of two independent random vari-
ables. g(ρX,Y) can be directly obtained from ĝ(zX,Y)
by a variable transform. More details and derivation are
referred to the A.2.

We turn to study the limiting behaviour of the density
function when ρ approaches zero. In this case, the vari-
able z defined in in Conjecture 1 can be approximated by
z ≈ 1

q2ρ2C
. Using properties of the exponential integral,

as q →∞, the density function in Eq. 6 can be approxi-
mated by its Laurent series,

g(ρC) ≈ 2

πqρ2
C

− 2

q3ρ4
C

+
4π

q5ρ6
C

+O
(

1

q7ρ8
C

)
(7)

In the following corollary we give the upper bound of the
number of pairwise ε-orthogonal Cauchy random vectors
using Eq. 6.



Corollary 3. Consider a set of independent q-
dimensional Cauchy random vectors which are pairwise
ε-orthogonal with probability 1 − ν, then the number of
such Cauchy random vectors is bounded by

N ≤
√
πεq

4

[
log

(
1

1− ν

)] 1
2

. (8)

Let us compare the prefactor of this upper bound for two

distributions: That is 4

√
π
2q e

ε2q
4 for the Gaussian distri-

bution, and
√

πεq
4 for the Cauchy distribution. Under

strict quasi-orthogonal conditions with arbitrarily small

but fixed ε > 0, for the dimension q � 2 3

√
1
πε2 we have

that
√

πεq
4 � 4

√
π
2q e

ε2q
4 ≈ 4

√
π
2q . It implies that in suffi-

ciently high-dimensional spaces, random vectors which
are independently drawn from a Cauchy distribution are
more likely to satisfy the pairwise ε-orthogonality condi-
tion - particularly when ε� 1.

Remark 1. For the later use, we define λC as λC :=
E[|ρC|] for the case of Cauchy distribution. However, no
simple analytic form is known for this integral. Thus we
use the following numerically stable and non-divergent
equation to approximate λC,

λC ≈ −
4q

π2

∫ 1

0

ρ

[
e
q2ρ2

π Ei

(
−q

2ρ2

π

)]
dρ. (9)

This simpler form is derived from Eq. 6 using the approx-
imation z ≈ 1

q2ρ2 .

Fig. 1 shows the empirical distribution of ρG in a set of
Gaussian random vectors (green) compared with theo-
retical prediction in Eq.2 (magenta); and the empirical
distribution of ρC in a set of Cauchy random vectors
(blue) compared with theoretical prediction (red). In the
case of Cauchy random vectors, the leading orders of the
Laurent expansion of Eq. 6 are used, see Eq. 7. For the
empirical simulation, 10000 random vectors with dimen-
sionality q = 2000 were drawn independently from ei-
ther a Gaussian or a Cauchy distribution.

In addition, in Fig. 2 we plot λG and λC as a function of q
in comparison with the theoretical predictions from Eq. 5
and Eq. 9, respectively, under the same simulation condi-
tion. It is necessary to emphasize that λC(q) < λG(q) for
all the dimensions q; this fact will be used to explain the
relatively high memory capacity encoded from Cauchy
random vectors.

In the Appendix, see Remark A 2, the distribution of ele-
ments from the normalized random variable X

||X|| is also
considered. In particular, for normalized Cauchy random
vector most of its elements are nearly zero, and it realizes
a sparse representation.

4 HOLISTIC REPRESENTATIONS FOR
KGS

4.1 HRR MODEL

First, we briefly review HRR. Three operations are de-
fined in HRR to model associative memories: encoding,
decoding, and composition.

Let a, b, c, and d be random vectors representing dif-
ferent entities. The encoding phase stores the associa-
tion between a and b in a memory trace a ∗ b, where
∗ : Rq × Rq → Rq denotes circular convolution, which

is defined as [a ∗ b]k =
q−1∑
i=0

aib(k−i) mod q .

A noisy version of b can be retrieved from the memory
trace, using the item a as a cue, with: b ≈ a ? (a ∗ b),
where ? : Rq × Rq → Rq denotes the circular correla-

tion 1. It is defined as [a ? b]k =
q−1∑
i=0

aib(k+i) mod q . In

addition, several associations can be superimposed in a
single trace via the addition operation: (a ∗ b) + (c ∗
d) + · · · .

4.2 HOLISTIC MODEL

Initially, each entity and predicate in a KG is associ-
ated with a q-dimensional normalized random vector,
which is then normalized. We denote them as r

G/C
ei ,

i = 1, · · · , Ne, and r
G/C
pi , i = 1, · · · , Np, respectively.

The superscript indicates from which distribution vector
elements are independently drawn, either the Gaussian
or Cauchy distribution. If there is no confusion, we may
omit the superscript.

Consider an entity ei. Let Ss(ei) = {(p, o)|φp(ei, o) =
1} be the set of all predicate-object pairs for which triples
(ei, p, o) is true and where ei is the subject. We store
these multiple associations in a single memory trace via
circular correlation and superposition:

hsei =
∑

(p,o)∈Ss(ei)
[Norm(rp ? ro) + ξrei ] , (10)

where Norm : Rq → Rq represents the normalization
operation 2, which is defined as Norm(r) := r

||r|| . More-
over, the hyper-parameter ξ > 0 determines the contri-
bution of the individual initial representation r.

1It uses the fact that a ? a ≈ δ, where δ is the identity
operation of convolution.

2In other sections, we may obviate Norm operator in the
equation for the sake of simplicity, since it can be shown that
the circular correlation of two normalized high-dimensional
random vectors are almost normalized.



Note, that the same entity ei could also play the
role of an object. For instance, the entity Califor-
nia could be the subject in the triple (California, lo-
catedIn, USA), or the object in another triple (Paul,
livesIn, California). Thus, it is necessary to have an-
other representation to specify its role in the triples.
Consider the set of subject-predicate pairs So(ei) =
{(s, p)|φp(s, ei) = 1} for which triples (s, p, ei) are
true. These pairs are stored in a single trace via
hoei =

∑
(s,p)∈So(ei)

[Norm(rp ? rs) + ξrei ], where hoei is

the representation of the entity ei when it acts as an ob-
ject.

For the later generalization task, the overall holistic rep-
resentation for the entity ei is defined as the summation
of both representations, namely

hei = hsei + hoei . (11)

In this way, the complete neighbourhood information of
an entity can be used for generalization.

Furthermore, given a predicate pi, the holistic represen-
tation hpi encodes all the subject-object pairs in the set
S(pi) = {(s, o)|φpi(s, o) = 1} via

hpi =
∑

(s,o)∈S(pi)

[Norm(rs ? ro) + ξrpi ] . (12)

After storing all the association pairs into holistic fea-
tures of entities and predicates, the initial randomly as-
signed representations are not required anymore and can
be deleted. These representations are then fixed and not
trainable unlike other embedding models.

After encoding, entity retrieval is performed via a circu-
lar convolution. Consider a concrete triple (e1, p1, e2)
with unknown e2. The identity of e2 could be revealed
with the holistic representation of p1 and the holistic rep-
resentation of e1 as a subject, namely hp1 and hse1 . Then
retrieval is performed as hp1 ∗ hse1 . The associations can
be retrieved from the holography memory with low fi-
delity due to interference. Therefore, after decoding, a
clean-up operation is employed, as in the HRR model.
Specifically, a nearest neighbour is determined using co-
sine similarity. The pseudo-code for encoding holistic
representations is provided in A.6.

4.3 EXPERIMENTS ON MEMORIZATION

We test the memorization of complex structure on dif-
ferent datasets and compare the performance of different
models. Recall that Rp is the set of all true triples with
respect to a given predicate p. Consider a possible triple
(s,p, o) ∈ Rp. The task is now to retrieve the object en-
tity from holistic vectors hs and hp, and to retrieve the
subject entity from holistic vectors hp and ho.

As discussed, in retrieval, the noisy vector r′o = hp ∗ hs

is compared to the holistic representations of all entities
using cosine similarity, according to which the entities
are then ranked. In general, multiple objects could be
connected to a single subject-predicate pair. Thus, we
employ the filtered mean rank introduced in [Bordes et
al. 2013] to evaluate the memorization task.

We have discussed that the number of pairwise quasi-
orthogonal vectors crucially depends on the random ini-
tialization. Now we analyse, if the memory capacity de-
pends on the quasi-orthogonality of the initial represen-
tation vectors, as well. We perform memorization task on
three different KGs, which are FB15k-237 [Toutanova et
al. 2015], YAGO3 [Mahdisoltani et al. 2013], and a sub-
set of GDELT [Leetaru et al. 2013]. The exact statistics
of the datasets are given in Table. 1.

Table 1: Statistics of KGs

#D Na Ne Np

GDELT 497, 605 ≈ 73 6786 231
FB15k-237 301, 080 ≈ 20 14505 237
YAGO3 1, 089, 000 ≈ 9 123143 37

Recall that Ne and Np denote the number of entities and
predicates, respectively. Moreover, #D denotes the total
number of triples in a KG, and Na is the average num-
ber of association pairs compressed into holistic feature
vectors of entities, which can be estimated as #D

Ne
. Af-

ter encoding triples in a dataset into holistic features, fil-
tered mean rank is evaluated by ranking retrieved sub-
jects and objects of all triples. Filtered mean ranks on
three datasets with holistic representations encoded from
Gaussian and Cauchy distributions are displayed in Fig. 3
(a)-(c).

Cauchy holistic representations outperform Gaussian
holistic representations significantly when the total num-
ber of entities is large (see, Fig. 3(c) for YAGO3), or
the average number of encoded associations is large
(see, Fig. 3(a) for GDELT). This implies that quasi-
orthogonality plays an important role in holographic
memory. Improved quasi-orthogonality allows for more
entities to be initialized with quasi-orthogonal represen-
tations, which is very important for memorizing huge
KGs. In addition, it reduces the interference between as-
sociations. Moreover, Cauchy holistic features are intrin-
sically very sparse, making them an attractive candidate
for modeling biologically plausible memory systems.

4.4 CORRELATION VERSUS CONVOLUTION

On of the main differences between holistic representa-
tion and the holographic reduced representation is the
binding operation. In HRR, two vectors are composed



(a) (b) (c)

Figure 3: Filtered MR vs. the dimensionality of holistic representations evaluated on dataset: (a) GDELT, (b) FB15k-
237, and (c) YAGO3. Blues lines denote holistic representations encoded from Gaussian random vectors, and green
lines denote holistic representations encoded from Cauchy random vectors. Lower values are preferred.

Figure 4: Filtered MR vs. the dimensionality of holis-
tic representations evaluated on the GDELT dataset with
Gaussian initialization.

via circular convolution, while in holistic representation,
they are composed via circular correlation.

Binding with convolution and correlation is compared in
Fig. 4. We report the filtered MR scores on the GDELT
dataset versus the dimensionality of holistic representa-
tions. It can be seen that binding with circular correlation
is significantly superior to convolution. Therefore, a non-
commutative compositional operator is essential for stor-
ing the directed structures of KG into holographic mem-
ory. A theoretical explanation is given in the A.4, along
with experimental results on other datasets.

4.5 HYPER-PARAMETER ξ

In the experiments so far, the optimal hyper-parameter
ξ is found via grid search. However, it is possible
to roughly estimate the range of the optimal hyper-
parameter ξ. Indeed, ξ strongly depends on λG or λC

and the average number of encoded association pairsNa.

So far, the deep relation between holographic memory
capacity and quasi-orthogonality has not been discussed
in the literature. In the original work on HRR, mem-
ory capacity and information retrieval quality are esti-
mated from the distribution of elements in random vec-
tors. In this section we give a plausible explanation from
the point of view of the pairwise angle distribution.

Consider a subject s. The predicate-object pair (p, o)

is stored in the holistic representation hs along with the
other Na − 1 pairs, such that

hs = ξNars + rp ? ro +

Na∑

i=2

rpi ? roi .

Suppose we try to identify the object in the triple (s,p, ·)
via hs and hp. After decoding, the noisy vector r′o =
hp ∗ hs should be recalled with ho, which is the holistic
representation of o. Let θr′o,ho denote the angle between
r′o and ho. The cosine function of this angle is again
defined as ρr′o,ho

:= cos θr′o,ho
.

In order to recall the object successfully, the angle be-
tween r′o and ho should be smaller than the expected ab-
solute angle between two arbitrary vectors, namely

θr′o,ho
< E[|θG/C|], (13)

This inequality first implies that the optimal ξ should be
a positive number. Given the definition of λG/C in Eq. 5
and 9, equivalently, Eq. 13 requires

ρr′o,ho
> λG/C. (14)

After some manipulations, a sufficient condition to rec-
ognize the object correctly is given by (see A.5)

ρr′o,ho >

ξ2N2
a − (ξ3N3

a + 2ξ2N3
a − ξ2N2

a + ξN2
a + ξN3

a )λG/C

ξ2N2
a +Na + 2ξN2

aλG/C +Na(Na − 1)λG/C

> λG/C. (15)

In the following, we verify this condition on the FB15k-
237 dataset. We consider one of the experimental set-
tings employed in the memorization task. The dimen-
sion of holistic features is q = 5200, with λG = 0.0111
computed from Eq. 5, and λC = 0.00204 from Eq. 9. For
Gaussian initialization, the optimum is found at ξ = 0.14
via grid search, while for Cauchy initialization, the opti-
mum is found at ξ = 0.05.



(a) (b)

Figure 5: Analysis of the hyper-parameter ξ on the FB15k-237 dataset. (a): Approximation of ρr′o,ho
for Gaussian

initialization. Curves with Na = 10 (blue), Na = 20 (magenta) and their intersections with the retrieval threshold λG

are displayed. The red vertical line denotes the experimentally determined optimal ξ. Insert shows the curves with
ξ ∈ [−3, 3]. (b): Approximation of ρr′o,ho

for Cauchy initialization with Na = 10 (blue), and Na = 20 (magenta).
Rest remains the same.

To verify these optima, Fig. 5 (a) and (b) display the ap-
proximation of ρr′o,ho

(ξ,Na) as a function of ξ. 3 Its
intersection with λG/C is marked with a black dot. In
FB15k-237,Na is estimated to be 20, while, in general, a
KG could be quite imbalanced. Thus, ρr′o,ho(ξ,Na) with
Na = 10, and 20 are shown together for comparison.

In Fig. 5 (a) for Gaussian initialization, experimentally
determined optimal ξ (red vertical line) is found close to
the intersection of ρr′o,ho

(ξ,Na = 10) and threshold λG,
meaning that Gaussian holistic features tend to memo-
rize fewer association pairs. They can only map sparsely
connected graph structures into meaningful representa-
tions.

In Fig. 5 (b) for Cauchy initialization, however, the opti-
mal ξ is close to the intersection of ρr′o,ho(ξ,Na = 20)
and λC. Thus, Cauchy holistic features are more suit-
able to memorize a larger chunk of associations, mean-
ing that they are capable of mapping densely connected
graph structures into meaningful representations. All op-
tima are found near the intersection points instead of the
local maximum with ξ > 0. It indicates that, to maxi-
mize the memory capacity, the holistic features can only
store information with very low fidelity.

Table 2: Filtered recall scores on FB15k-237

Hits

Methods MR MRR @10 @3 @1

RESCAL 996 0.221 0.363 0.237 0.156
DISTMULT 254 0.241 0.419 0.263 0.155
COMPLEX 339 0.247 0.428 0.275 0.158

R-GCN 4 - 0.248 0.414 0.258 0.153

HOLNNG
5 235 0.285 0.455 0.315 0.207

HOLNNC 228 0.295 0.465 0.320 0.212

3The approximation of ρr′o,ho is the second term of Eq. 15

5 INFERENCE ON KG

5.1 INFERENCE VIA HOLISTIC
REPRESENTATION

In this section, we describe the model for inferring the
missing links in the KG. Recall the scoring function ηspo
defined in Sec. 2. Our model uses holistic representations
as input and generalizes them to implicit facts, by a two-
layer neural network 6. Formally, the scoring function is
given as follow:

ηspo =〈ReLU(hsW
e
1)We

2, ReLU(hpW
p
1)Wp

2,

ReLU(hoW
e
1)We

2〉, (16)

where 〈·, ·, ·〉 denotes tri-linear dot product; hs, ho are
the holistic representations for entities defined in Eq. 11,
hp is defined in Eq. 12.

Suppose that the holistic representations are defined in
Rq . Then We

1 ∈ Rq×h1 and We
2 ∈ Rh1×h2 are shared

weights for entities; Wp
1 ∈ Rq×h1 and Wp

2 ∈ Rh1×h2

are shared weights for predicates. We refer Eq. 16 as
HOLNN, a combination of holistic representations and a
simple neural network.

As an example, for training on FB15k-237, we take
q = 3600, h1 = 64, and h2 = 256. Note that only
weight matrices in the neural network are trainable pa-
rameters, holistic representations are fixed after encod-
ing. Thus, the total number of trainable parameters in
HOLNN is 0.48M , which is much smaller than COM-

4see [Schlichtkrull et al. 2018]
5G stands for Gaussian holistic features, and C for Cauchy

holistic features.
6Further experimental details are referred to A.8



PLEX with 5.9M parameters, by assuming that the di-
mension of embeddings in the COMPLEX is 200.

To evaluate the performance of HOLNN for missing
links prediction, we compare it to the state-of-the-art
models on two datasets: FB15k-237, and GDELT. They
were split randomly in training, validation, and test sets.
We implement all models with the identical loss function
Eq. 1, and minimize the loss on the training set using
Adam as the optimization method. Hyper-parameters,
e.g., the learning rate, and l2 regularization, are opti-
mized based on the validation set.

We use filtered MR, filtered mean reciprocal rank
(MRR), and filtered Hits at n (Hits@n) as evaluation
metrics [Bordes et al. 2013]. Table 2 and Table 3 report
different metrics on the FB15k-237, and GDELT dataset,
respectively. It can be seen that HOLNN is superior to all
the baseline methods on both datasets with considerably
less trainable parameters. Moreover, HOLNNC consis-
tently outperforms HOLNNG, indicating that the mem-
ory capacity of holistic representations is important for
generalization.

Table 3: Filtered recall scores on GDELT

Hits

Methods MR MRR @10 @3 @1

RESCAL 212 0.202 0.396 0.225 0.107
DISTMULT 181 0.232 0.451 0.268 0.124
COMPLEX 158 0.256 0.460 0.295 0.146

HOLNNG 105 0.284 0.457 0.301 0.198
HOLNNC 102 0.296 0.471 0.315 0.210

5.2 INFERENCE ON NEW ENTITIES

In additional experiments, we show that HOLNN is capa-
ble of inferring implicit facts on new entities without re-
training the neural network. Experiments are performed
on FB15k-237 as follows. We split the entire FB15k-
237 dataset D into Dold and Dnew. In Dnew, the subjects
of triples are new entities which do not show up in Dold,
while objects and predicates are already seen in theDold.
Suppose our task is to predict implicit links between new
entities (subjects in Dnew) and old entities (entities in
Dold). Thus, we further split Dnew into Dtrain

new , Dvalid
new ,

and Dtest
new sets.

For embedding models, e.g., COMPLEX, after training
on Dold, the most efficient way to solve this task is to
adapt the embeddings of new entities on Dtrain

new , with
fixed embeddings of old entities. On the other hand,
for the HOLNN model, new entities obtain their holistic
representations via triples in the Dtrain

new set. These holis-
tic features are then fed into the trained two-layer neural
network. Table 4 shows filtered recall scores for predict-

ing links between new entities and old entities on Dtest
new,

with the number of new entities in Dnew being 300, 600,
or 900. COMPLEX and HOLNN with Cauchy holistic
features are compared.

There are two settings for the HOLNNC model. New en-
tities could be encoded either from holistic features of
old entities, or from random initializations of old en-
tities 7. We denote these two cases as HOLNNC(h)
and HOLNNC(r), respectively. It can be seen that
HOLNNC(r) outperforms HOLNNC(h) only to some
degree. It indicates that HOLNNC is robust to the noise,
making it generalizes well.

Table 4: Inference of new entities on FB15k-237

Number of New Entities

300 600 900
Methods MR MRR MR MRR MR MRR

COMPLEX 262 0.291 265 0.266 286 0.243
HOLNNC(h) 345 0.274 415 0.242 510 0.222
HOLNNC(r) 252 0.315 302 0.281 395 0.265

6 CONCLUSION

We have introduces the holistic representation for the
distributed storage of complex association patterns and
have applied it to knowledge graphs. We have shown
that interference between stored information is reduced
with initial random vectors which are pairwise quasi-
orthogonal and that pairwise quasi-orthogonality can
be improved by drawing vectors from heavy-tailed dis-
tributions, e.g., a Cauchy distribution. The experi-
ments demonstrated excellent performance on memory
retrieval and competitive results on link prediction.

In our approach, latent representations are derived from
random vectors and are not learned from data, as in most
modern approaches to representation learning on knowl-
edge graphs. One might consider representations derived
from random vectors to be biologically more plausible, if
compared to representations which are learned via com-
plex gradient based update rules. Thus in addition to its
very competitive technical performance, one of the inter-
esting aspects of our approach is its biological plausibil-
ity.

Outlook: Potential applications could be applying the
holistic encoding algorithm to Lexical Functional for
modeling distributional semantics [Coecke et al. 2010],
or graph convolutional network [Kipf et al. 2017] for
semi-supervised learning using holistic representations
as feature vectors of nodes on a graph.

7Recall that random initializations are actually deleted after
encoding. Here we use them just for comparison.
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A APPENDIX

A.1 DERIVATION OF COROLLARY 1 & 2

Corollary 1. Consider a set of independent q-
dimensional Gaussian random vectors which are pair-
wise ε-orthogonal with probability 1−ν, then the number
of such Gaussian random vectors is bounded by

N ≤ 4

√
π

2q
e
ε2q
4

[
log

(
1

1− ν

)] 1
2

. (A.1)

Proof. Recall that, in the case of Gaussian distributed
random vectors, the pdf of ρ is

g(ρ) =
1√
π

Γ( q2 )

Γ( q−1
2 )

(1− ρ2)
q−3
2 .

This directly yields that ω :=
√
qρ has the density func-

tion

f(ω) =
1√
q

1√
π

Γ( q2 )

Γ( q−1
2 )

(
1− ω2

q

) q−3
2

→ 1√
2π

e−
ω2

2

(A.2)
as q → ∞, using the fact that Γ( q2 )

Γ( q−1
2 )
∼
√

q
2 . Therefore

the probability that two random Gaussian vectors are not
ε-orthogonal is upper bounded by

Pr(|ρ| ≥ ε) = Pr(|ω| ≥ √qε) = 2

∫ √q
√
qε

1√
2π

e−
ω2

2 dω

<

√
2

π
e−

qε2

2 (
√
q −√qε) <

√
2q

π
e−

qε2

2 .

(A.3)

To estimate the probability that ε-orthogonality is satis-
fied for a set ofN independent Gaussian random vectors,
let us consider the following quantity

P(ε,N) :=
N−1∏

k=1

[1− kPr(|ρ| ≥ ε)] . (A.4)

The above estimation has clear meaning. Given one
Gaussian random vector X1, the probability that an in-
dependently sampled random vector X2 which is not ε-
orthogonal to X1 is Pr(|ρ| > ε). Similarly, given k
i.i.d. Gaussian random vectors X1, · · · ,Xk, the proba-
bility that an independently drawn Gaussian random vec-
tor Xk+1 which is not ε-orthogonal to X1, · · · ,Xk is
upper bounded by kPr(|ρ| > ε). Therefore, we have the
estimate in Eq. A.4 for N independent random vectors.

Using Eq. A.3, P(ε,N) can be computed as follows

P(ε,N) >
N−1∏

k=1

(1− k
√

2q

π
e−

ε2q
2 )

> (1−N
√

2q

π
e−

ε2q
2 )N ∼ e−N

2
√

2q
π e−

ε2q
2 ,

for sufficiently large N and q satisfying N
√

2q
π e−

ε2q
2 <

1. If we require P(ε,N) ≥ 1 − ν, then the number of
pairwise ε-orthogonal i.i.d. Gaussian random vectors is
bounded from above by

e−N
2
√

2q
π e−

ε2q
2 ≥ 1− ν ⇒

N ≤ 4

√
π

2q
e
ε2q
4

[
log

(
1

1− ν

)] 1
2

Corollary 2. Consider a set of n q-dimensional random
Gaussian vectors, we have

λG := E[|ρG|] =

√
2

πq
. (A.5)

Proof. Given the g(ρG) in Theorem 1, we have

E[|ρG|] =

∫ 1

−1

|ρ|g(ρ) dρ =

√
2q

π

∫ 1

0

ρ(1− ρ2)
q−3
2 dρ

= −
√

2q

π

(1− ρ2)
q−1
2

q − 1

∣∣∣∣∣

1

0

=

√
2

πq
,

for large q.

A.2 DISCUSSION ON CONJECTURE 1

In this section, we derive the approximations stated in
Conjecture 1 and verify them with empirical simulations.

According to the central limit theorem, the sum of in-
dependently and identically distributed random variables
with finite variance converges weakly to a normal dis-
tribution as the number of random variables approaches
infinity. Our derivation relies on the generalized central
limit theorem proven by Gnedenko and Kolmogorov in
1954 [Gnedenko et al. 1954].
Theorem A 1. (Generalized Central Limit Theorem
[Gnedenko et al. 1954]) Suppose X1, X2, . . . is a se-
quence of i.i.d random variables drawn from the distribu-
tion with probability density function f(x) with the fol-
lowing asymptotic behaviour

f(x) '
{
c+x

−(α+1) for x→∞
c−|x|−(α+1) for x→ −∞, (A.6)



where 0 < α < 2, and c+, c− are real positive num-
bers. Define random variable Sn as a superposition of
X1, · · · , Xn

Sn =

n∑
i=1

Xi − Cn

n
1
α

, with

Cn =





0 if 0 < α < 1

n2= ln(φX(1/n)) if α = 1

nE[X] if 1 < α < 2,

where φX is the characteristic function of a random
variable X with probability density function f(x), E[X]
is the expectation value of X , = denotes the imagi-
nary part of a variable. Then as the number of sum-
mands n approaches infinity, the random variables Sn
converge in distribution to a unique stable distribution
S(x;α, β, γ, 0), that is

Sn
d−→ S(α, β, γ, 0), for n→∞,

where, α characterizes the power-law tail of f(x) as de-
fined above, and parameters β and γ are given as:

β =
c+ − c−
c+ + c−

,

γ =

[
π(c+ + c−)

2α sin(πα2 )Γ(α)

] 1
α

. (A.7)

To be self-contained, we give the definition of stable dis-
tributions after [Nolan 2003; Mandelbrot 1960].

Definition A 1. A random variable X follows a stable
distribution if its characteristic function can be expressed
as

φ(t;α, β, γ, µ) = eiµt−|γt|
α(1−iβ sgn(t)Φ(α,t)), (A.8)

with Φ(α, t) defined as

Φ(α, t) =

{
tan(πα2 ) if α 6= 1

− 2
π log |t| if α = 1.

Then the probability density function S(x;α, β, γ, µ) of
the random variable X is given by the Fourier transform
of its characteristic function

S(x;α, β, γ, µ) =
1

2π

∞∫

−∞

φ(t;α, β, γ, µ) e−ixt dx.

The parameter α satisfying 0 < α ≤ 2 characterizes
the power-law asymptotic limit of the stable distribution,
β ∈ [−1, 1] measures the skewness, γ > 0 is the scale
parameter, and µ ∈ R is the shift parameter. Note that the

normal distribution is a typical stable distribution. Other
examples with analytical expression include the Cauchy
distribution and the Lévy distribution. For the later use,
we give the analytical form of the Lévy distribution.

Remark A 1. The probability density function of the
Lévy distribution is given by

f(x; γ, µ) =

√
γ

2π

e−
γ

2(x−µ)

(x− µ)
3
2

, x ≥ µ, (A.9)

where µ is the shift parameter and γ is the scale param-
eter. The Lévy distribution is a special case of the stable
distribution S(x;α, β, γ, µ) with α = 1

2 and β = 1. This
can be seen from its characteristic function, which can
be written as

φ(t; γ, µ) = eiµt−|γt|
1/2(1−i sgn(t))

To derive g(ρC) for Cauchy random vectors, we first
need the distribution function of X2 given that the ran-
dom variable X has a Cauchy distribution.

Lemma A 1. Let X be a Cauchy random variable hav-
ing the probability density function fX(x) = 1

π
ζ

x2+ζ2 ,
where ζ > 0 is the scale parameter. Then the squared
variable Y := X2 has the pdf:

fY (y) =

{
1
π

ζ√
y(ζ2+y) for y ≥ 0,

0 otherwise.
(A.10)

Proof. fY (y) can be derived from fX(x) by a simple
variable transformation y = g(x) = x2. In particular,
utilizing the symmetry of fX(x), we have

fY (y) = 2

∣∣∣∣
d

dy
g−1(y)

∣∣∣∣ fX(g−1(y))

=
1

π

ζ√
y(ζ2 + y)

.

In the following Lemma we derive the probability den-
sity function for zX,Y, which is defined as zX,Y :=
1
q2
X2

2+···X2
q

X2
1

.

Lemma A 2. Let X1, · · · , Xq be a sequence of i.i.d.
random variables drawn from C(0, 1). Then the random

variable Zq := 1
q2
X2

2+···+X2
q

X2
1

converges in distribution
to

f(z) = − 1

π2

1

z
3
2

[
e

1
πz Ei

(
− 1

πz

)]
, (A.11)

as q →∞, where Ei(x) denotes the exponential integral.



Proof. The numerator in Zq can be regarded as a sum
of independent random variables with density function
fY :=X2(y) = 1

π
1√

y(1+y) , see Eq. A.10 with ζ = 1.
Thus, we can use the generalized central limit theorem
to obtain the density function g( 1

q2

∑q
i=2X

2
i ) for the nu-

merator, as q →∞.

Note that fY (y) ∼ 1
πy
− 3

2 as y → +∞. From this
asymptotic behaviour we can extract that c+ = 1

π , c− =
0, and α = 1

2 . Moreover, Eq. A.7 with β = 1 yields

γ =
[

1
sin(π4 ) Γ( 1

2 )

]2
= 2

π . In summary, g( 1
q2

∑q
i=2X

2
i )

converges to a unique stable distribution S(α = 1
2 , β =

1, γ = 2
π , µ = 0), which is exactly the Lévy distribution

shown in Remark A 1. Hence, we have

g(
1

q2

q∑

i=2

X2
i )

d−→ S(x;
1

2
, 1,

2

π
, 0) =

1

π

e−
1
πx

x
3
2

,

as q →∞. (A.12)

Next, we consider the quotient distribution of two ran-
dom variables in order to derive the pdf of Zq . To be
more specific, let X and Y be independent non-negative
random variables with corresponding probability density
function fX(x) and fY (y) over the domains x ≥ 0 and
y ≥ 0, respectively. Then the cumulative distribution
function FZ(z) of Z := Y

X can be computed by

FZ(z) = Pr(
Y

X
≤ z) = Pr(Y ≤ zX)

=

∫ ∞

0

[∫ y=zx

0

fY (y)dy

]
fX(x)dx.

Differentiating the cumulative distribution function
yields

fZ(z) =
d

dz
FZ(z) =

∫ ∞

0

x fY (zx) fX(x) dx.

Following the above procedure, we can obtain the pdf
for Zq as q → ∞ in case the density functions of the
numerator and the denominator are given by Eq. A.12
and Eq. A.10, respectively. That yields

f(z) =
1

π2

∫ ∞

0

x
e−

1
πzx

(zx)
3
2

1√
x(1 + x)

dx

=
1

π2

1

z
3
2

[
−e

1
πz Ei

(
−x+ 1

πzx

)]∣∣∣∣∣

∞

x=0

= − 1

π2

1

z
3
2

[
e

1
πz Ei

(
− 1

πz

)]
.

In the following we discuss why the density function
g(ρC) can only be approximated by taking the limit as
q →∞.

Suppose X = (X1, · · · , Xq) and Y = (Y1, · · · , Yq)
are Gaussian random variables. To derive g(ρX,Y) in
Lemma 1, [Cai et al. 2012; Muirhead 2009] compute the
density function of αᵀ·X

||X|| instead, where αᵀ · α = 1,
and α := Y

||Y|| . In particular, without loss of generality,
they assume α = (1, 0, · · · , 0). The justification for this
assumption is that the random variable X

′
:= X

||X|| is
uniformly distributed on the (q − 1)-dimensional sphere
(see Theorem 1.5.6 in [Muirhead 2009]).

In our case, the distributional uniformity of X
||X|| is not

superficial, since the density function of X
′

doesn’t de-
pend on X

′
only through the value of X

′ᵀX
′
. To see

this, in the following Lemma, we discuss the distribution
function of the normalization X

||X|| .

Lemma A 3. Consider a q-dimensional random vector
X = (X1, · · · , Xq), where X1, · · · , Xq are indepen-
dently and identically drawn from a Cauchy distribution
C(0, 1). Then, as q → ∞, the normalized random vec-
tor X

||X|| = (X
′
1, · · · , X

′
q) has a joint density function,

in which the random variables X
′
1, · · · , X

′
q are all inde-

pendent from each other.

Proof. Without loss of generality, we study the pdf of
X
′
1 = X1√

X2
1+···+X2

q

. Similar to the proof of Lemma

A 2, the random variable Zq := 1
q2
X2

2+···+X2
q

X2
1

converges
weakly to the distribution with pdf given by Eq. A.11
as q → ∞, which is independent of the other random
variables due to the generalized central limit theorem.
Hence,X

′
1 can be treated as an independent random vari-

able as q → ∞. In addition, we obtain the pdf of X
′
1

given by

fX′1
(x′1) = − 2

π2q2x
′3
1

1

z
3
2
1

[
e

1
πz1 Ei

(
− 1

πz1

)]
,

(A.13)
where z1 is defined as z1 := 1

q2

(
1
x
′2
1

− 1
)

. The argu-

ments can be easily generalized to X
′
2, · · · , X

′
q .

The pdf of the joint distribution fX′ (x
′
1, · · · , x′q) can be

written as a product of marginals, that is

fX′ (x
′
1, · · · , x′q) =

q∏

i=1

fX′i
(x′i),

as q → ∞. The density function of X
′

is not invari-
ant under an arbitrary rotation. Thus, it is not uniformly
distributed on Sq−1.

The above density function of normalized Cauchy ran-
dom vectors leads to the following Remark.



Remark A 2. The normalized Cauchy random vector
X
′

= X
||X|| is sparse in the sense that the density function

of its elements can be approximated by a δ-function.

Fig. 1 shows the empirical elements distribution of 1000
normalized Cauchy random vectors. This indicates that
in sufficiently high-dimensional spaces the density func-
tion of the normalized entries converges to a δ-function.
To explain this, recall the Laurent expansion of the den-
sity function given in Eq. A.13,

fX′1
(x′1) =

2

πqx′21
− 2

q3x′41
+

4π

q5x′61
+O

(
1

q7x′81

)
.

(A.14)
This expansion converges to zero almost everywhere ex-
pect for x′1 = 0 as q →∞.

Figure 1: Empirical distributions of 10000 normalized
Cauchy random vectors with dimensions q = 100, 500,
1000, 5000.

In the following, we provide a full derivation of g(ρC)
proposed in the Conjecture 1.

Conjecture 1. Let X1, · · · ,Xn be independent q-
dimensional random vectors whose elements are inde-
pendently and identically drawn from a Cauchy distri-
bution C(0, 1). Let Θij be the angle between Xi and
Xj . Then, as q → ∞, ρij := cos Θij ∈ [−1, 1],
1 ≤ i < j ≤ n are pairwise i.i.d. with density func-
tion approximated by

g(ρC) = − 2

π2q2ρ3
C

· 1

z
3
2

[
e

1
πz Ei

(
− 1

πz

)]
, (A.15)

where z := 1
q2

(
1
ρ2C
− 1
)

.

Given two Cauchy random vectors X = (X1, · · · , Xq)
and Y = (Y1, · · · , Yq), ρX,Y is approximated by
ρX,Y ≈ X1√

X2
1 ···+X2

q

.

Furthermore, we introduce the new variable zX,Y :=
1
q2 ( 1

ρX,Y
− 1). From Lemma A 2 we have the den-

sity function ĝ(zX,Y). Then, g(ρX,Y) can be directly
obtained from ĝ(zX,Y) by a variable transform, that is

g(ρX,Y) =

∣∣∣∣
dz

dρ

∣∣∣∣ ĝ(zX,Y). With
∣∣∣∣
dz

dρ

∣∣∣∣ = 2
q2ρ3 we imme-

diately get Eq. A.15 as the density function for ρX,Y.

Assume that Eq. A.15 is valid as q → ∞. In the follow-
ing we show that {ρij |1 ≤ i < j ≤ n} are i.i.d random
variables. First, notice that ρij and ρkl are independent
if {i, j} ∩ {k, l} = ∅. It is left to prove that ρX,Y and
ρX,Z are independent, given that X, Y, Z are indepen-
dent random variables.

To prove the independence, consider
E[h1(ρX,Y)h2(ρX,Z)], where h1 and h2 are arbi-
trary bounded functions. Since X, Y, and Z are
independent,

E[h1(ρX,Y)·h2(ρX,Z)]

= E [ E[h1(ρX,Y) · h2(ρX,Z)|X] ]

= E [ E[h1(ρX,Y)|X] · E[h2(ρX,Z)|X] ] .

Given X, the probability density function of ρX,Y
is independent of X. Thus, E[h1(ρX,Y)|X] =∫ 1

−1
h1(ρX,Y)g(ρX,Y) dρ = E[h1(ρX,Y)], and simi-

larly E[h2(ρX,Z)|X] = E[h2(ρX,Z)]. It gives,

E[h1(ρX,Y) · h2(ρX,Z)] = E[h1(ρX,Y)] · E[h2(ρX,Z)],

This concludes that ρX,Y and ρX,Z are also independent.

Recall that the derivation of Eq. A.15 uses the gener-
alized central limit theorem which requires the limiting
condition q →∞. Therefore it is important to check how
the dimensionality q effects the quality of the prediction.

Fig. 2 displays the empirical distribution of ρ, that is
g(ρ) =

∑
1≤i<j≤n

δρij , and the theoretical prediction in

Eq. A.15 for various dimensions q. For the simulation,
n = 10000 random vectors are drawn independently
from C(0, 1). We use the leading orders of the Laurent
series of Eq. A.15 to represent the theoretical predictions.

It can be seen that for a sufficiently high-dimensional
space, say q = 2000, the theoretical prediction fits the
simulation very well. Moreover, the pairwise angles
among Cauchy random vectors converge to π

2 as the di-
mensionality increases.

It implies that in high-dimensional spaces the distribu-
tional uniformity of normalized Cauchy random vectors
could be tenable. We explain this in an intuitive way.
According to Remark A 2, each element in the normal-
ized variable converges independently in distribution to
a Dirac δ-function, which can be constructed as the limit
of a sequence of zero-centered normal distribution

fX′i
(x′i) =

1

a
√
π

e−
x′2i
a2 for a→ 0+.



Figure 2: Comparisons between empirical distributions
and theoretical predictions of ρC for various dimensions,
q = 50, 100, 500, 2000.

Thus, following Lemma A 3, the density function of
fX′ (x

′
1, · · · , x′q) can be approximated by

fX′ (x
′
1, · · · , x′q) =

(
1

a
√
π

)q
e−

x′ᵀx′
a2 for a→ 0+.

This joint distribution is invariant under an arbitrary or-
thogonal rotation. Thus, it is a spherical distribution, as
well as a uniform distribution on Sq−1. A rigorous proof
of this result is still necessary. However, it is beyond the
scope of this work.

A.3 DERIVATION OF COROLLARY 3

Corollary 3. Consider a set of independent q-
dimensional Cauchy random vectors which are pairwise

ε-orthogonal with probability 1− ν. Then the number of
such Cauchy random vectors is bounded by

N ≤
√
πεq

4

[
log

(
1

1− ν

)] 1
2

. (A.16)

Proof. The derivation of this bound is similar to that
of Corollary 2. The probability, that two random vec-
tors whose elements are independently and identically
Cauchy distributed are not ε-orthogonal, is bounded from
above by

Pr(|ρ| ≥ ε) = 2

∫ 1

ε

2

πqρ2
dρ <

4

πq

1

ε
,

where only the leading order Laurent expansion of
Eq. A.15 is considered. Then the quantity P(ε,N) can
be estimated as follows,

P(ε,N) :=

N−1∏

k=1

[1− kPr(|ρ| ≥ ε)] >
N−1∏

k=1

(1− k 4

πεq
)

> (1−N 4

πεq
)N ∼ e−N

2 4
πεq ,

for sufficiently large N , and q → ∞, with N 4
πεq < 1.

If we require P(ε,N) ≥ 1− ν, then the number of pair-
wise ε-orthogonal i.i.d. Cauchy random vectors is upper
bounded by

e−N
2 4
πεq ≥ 1− ν ⇒ N ≤

√
πεq

4

[
log

(
1

1− ν

)] 1
2

A.4 BINDING WITH CORRELATION OR
CONVOLUTION

The filtered mean rank scores with different binding op-
erations are compared in Fig. 3.

Now we give a heuristic explanation. For the sake of sim-
plicity, consider only one semantic triple (s, p, o). For
the binding with circular correlation the holistic repre-
sentations are given by hcorr

s = rp ? ro + ξrs, hcorr
p =

rs ? ro + ξrp, and hcorr
o = rp ? rs + ξro.

On the other hand, for the binding with convolution, the
holistic representations given by: hconv

s = rp ∗ ro + ξrs,
hconv
p = rs ∗ ro + ξrp, and hconv

o = rp ∗ rs + ξro.

Suppose that the subject needs to be retrieved and re-
called using holistic representations only. To quantify
the retrieval quality, a similarity scorr/conv is introduced
for different binding operators. In particular, for binding
with circular correlation scorr := hcorr ᵀ

s (hcorr
p ∗ hcorr

o ),



(a) (b) (c) (d)

Figure 3: Comparison of the filtered MR scores for binding with convolution and binding with correlation (a) for
FB15k-237 with Cauchy initialization, (b) for FB15k-237 with Gaussian initialization, (c) for GDELT dataset with
Cauchy initialization, (d) for GDELT with Gaussian initialization

while for binding with circular convolution sconv :=
hconv ᵀ
s (hconv

p ? hconv
o ).

Before any further derivations, recall that circular corre-
lation can be computed in log-linear complexity via

a ? b = F−1
(
F(a)�F(b)

)
,

where F(·) denotes the fast Fourier transform and
F−1(·) its inverse, and the bar denotes the complex con-
jugate of a complex-valued vector. Moreover, circular
convolution can also be computed via fast Fourier trans-
forms

a ∗ b = F−1 (F(a)�F(b)) .

First we compute the similarity scorr

scorr = hcorr ᵀ
s (hcorr

p ∗ hcorr
o )

= (rp ? ro + ξrs)
ᵀ[(rs ? ro + ξrp) ∗ (rp ? rs + ξro)]

= (rp ? ro + ξrs)
ᵀ[(rs ? ro) ∗ (rp ? rs)︸ ︷︷ ︸

1©
+

ξ (rs ? ro) ∗ ro︸ ︷︷ ︸
2©

+ ξ rp ∗ (rp ? rs)︸ ︷︷ ︸
3©

+ ξ2rp ∗ ro].

Using that

1© = F−1
[
F(rs)�F(ro)�F(rp)�F(rs)

]
≈ rp ? ro,

2© = F−1
[
F(rs)�F(ro)�F(ro)

]
= Noise,

3© = F−1
[
F(rp)�F(rp)�F(rs)

]
≈ rs,

yields

scorr ≈ (rp ? ro + ξrs)
ᵀ[rp ? ro + ξrs + Noise]

≈ (1 + ξ2) + Noise.

The similarity sconv can be computed in a similar way,

sconv = hconv ᵀ
s (hconv

p ? hconv
o )

= (rp ∗ ro + ξrs)
ᵀ[(rs ∗ ro + ξrp) ? (rp ∗ rs + ξro)]

= (rp ∗ ro + ξrs)
ᵀ[(rs ∗ ro) ? (rp ∗ rs)︸ ︷︷ ︸

1©
+

ξ (rs ∗ ro) ? ro︸ ︷︷ ︸
2©

+ ξ rp ? (rp ∗ rs)︸ ︷︷ ︸
3©

+ ξ2rp ? ro].

Moreover, using that

1© = F−1
[
F(rs)�F(ro)�F(rp)�F(rs)

]
≈ ro ? rp,

2© = F−1
[
F(rs)�F(ro)�F(ro)

]
≈ rs,

3© = F−1
[
F(rp)�F(rp)�F(rs)

]
≈ rs,

leads to

sconv ≈ (rp ∗ ro + ξrs)
ᵀ[ro ? rp + 2ξrs + Noise]

≈ 2ξ2 + Noise.

The optimal hyper-parameter requires ξ < 1 which in
turn yields scorr > sconv. From the derivation of scorr,
we have that the subject-object association pair stored in
hcorr
p contributes the most in scorr ≈ 1 + ξ2 via the term

1©.

A.5 APPROXIMATION OF ρr′o,ho

Here we provide a heuristic study on the relations be-
tween hyper-parameter ξ, λG/C, and the average num-
ber of association pairs Na. Recall that ξ was intro-
duced for holistic representations, and λG/C is defined
as λG/C := E[|ρG/C|].
Consider a subject s. The predicate-object pair (p, o)
is stored in the holistic representation hs along with the
other Na − 1 pairs. This means

hs = ξNars + rp ? ro +

Na∑

i=2

rpi ? roi .



Figure 4: Approximations of ρr′o,ho
(ξ,Na) in the case of Gaussian holistic representations with (a): Na = 10 (b):

Na = 20 (c): Na = 30. We use the experiment setting with dimnsionality q = 5200, λG = 0.0111, and optimal
ξ = 0.14.

Suppose that we aim to identify the object in the triple
(s,p, ·) via hs and hp, where hp is the holistic represen-
tation for the predicate p. We further assume that up to
Na subject-object pairs can be stored in hp having high
enough fidelity, then

hp = ξNarp +

Na∑

k=1

rsk ? rok .

To retrieve the object o, the decoding via circular convo-
lution is obtained as follows

r′o = hp ∗ hs

≈ ξNaro + ξ2N2
a (rp ∗ rs) + ξNa

Na∑

i=2

[rp ∗ (rpi ? roi)]

+ ξNa

Na∑

k=1

[(rsk ? rok) ∗ rs] +

Na∑

k=1

[(rsk ? rok) ∗ (rp ? ro)]

+

Na,Na∑

k=1,i=2

[(rsk ? rok) ∗ (rpi ? roi)]

= ξNaro + ξ2N2
ab1 + ξNa

Na∑

i=2

bi + ξNa

Na∑

k=1

ck

+

Na∑

k=1

dk +

Na,Na∑

k=1,i=2

eki,

where bi, ck, dk, and eki with i, k = 1, · · · , Na are ap-
proximately normalized Gaussian/Cauchy random vec-
tors. This is due to the fact that in high-dimensional
spaces both circular correlation and circular convolution
of two normalized Gaussian/Cauchy random vectors is
approximately a normalized Gaussian/Cauchy random
vectors.

After decoding with circular convolutions, the decoded
noisy version of the object needs to be recalled with
ho which is the holistic representation of o. As before,
Na predicate-subject association pairs are assumed to be

stored in the holistic representation of o, with

ho = ξNaro +

Na∑

j=1

rpj ? rsj = ξNaro +

Na∑

j=1

fj ,

where fj , j = 1, · · · , Na are approximately normalized
Gaussian/Cauchy random vectors.

In order to recall the object successfully, the angle be-
tween r′o and ho should be smaller than the expected
absolute angle between two arbitrary vectors, namely
θr′o,ho < E[|θG/C|]. Given the definition of λ, equiva-
lently, it requires ρr′o,ho > λG/C.

Now we turn to approximate the numerator of ρr′o,ho
, that

is r′ᵀo ho. Recall that, in general, the expectation of the
dot product of two normalized, independent random vec-
tors equals 0 due to the symmetry of the density function
g(ρG/C). Therefore, in the following approximation we
only consider noisy terms which are directly related to ro
as adverse effects to a successful retrieval and treat other
terms as white noisy with zero expectation. This yields,

r′ᵀo ho

≈ ξ2N2
a + ξNa

Na∑

j=1

(rᵀofj) + ξ3N3
a (rᵀob1) + ξ2N2

a

Na∑

i=2

(rᵀobi)

+ ξ2N2
a

Na∑

k=1

(rᵀock) + ξNa

Na∑

k=1

(rᵀodk) + ξNa

Na,Na∑

k=1,i=2

(rᵀoeki)

> ξ2N2
a − (ξN2

a + ξ3N3
a + ξ2N2

a (Na − 1) + ξ2N3
a

+ ξN2
a + ξN2

a (Na − 1))λG/C

= ξ2N2
a − (ξ3N3

a + 2ξ2N3
a − ξ2N2

a + ξN2
a + ξN3

a )λG/C.

Furthermore, the denominator of ρr′o,ho can be approxi-
mated in the same way. More concretely, we have

||r′o|| · ||ho|| < ξ2N2
a +Na + 2ξN2

aλG/C

+Na(Na − 1)λG/C.

Combining these results, a sufficient condition to retrieve



the object correctly is given by

ρr′o,ho >

ξ2N2
a − (ξ3N3

a + 2ξ2N3
a − ξ2N2

a + ξN2
a + ξN3

a )λG/C

ξ2N2
a +Na + 2ξN2

aλG/C +Na(Na − 1)λG/C

> λG/C. (A.17)

Consider the experimental setting for the memoriza-
tion task on the FB15k-237 dataset: The dimensional-
ity of the holistic representations is q = 5200, λG(q =
5200) = 0.0111, and λC(q = 5200) = 0.00204. Fig. 4
displays the above approximation of ρr′o,ho

(ξ,Na) for
Gaussian initializations.

After performing grid search, the optimal ξ is found to be
close to the intersection of the curve ρr′o,ho

(ξ,Na = 10)
and the threshold λG. However, for Na > 30, no inter-
section points on ξ > 0 exists. This explains why Gaus-
sian holistic representations have lower memory capacity
compared to Cauchy holistic representations.

More comparisons between Gaussian and Cauchy initial-
izations can be found in Fig. 5.

Figure 5: Comparison of ρr′o,ho
(ξ,Na) for Gaussian

(blue) and Cauchy (green) holistic representations with
(a): Na = 10 (b): Na = 20 (c): Na = 30 (d): Na = 40.

A.6 HOLISTIC ENCODING ALGORITHM

Algorithm 1 Holistic Encoding

Require: hyper-parameter ξ
1: for i = 1, · · · , Ne do
2: Draw r̃

G/C
ei from Gaussian or Cauchy

3: r
G/C
ei ← Norm(r̃

G/C
ei )

4: for i = 1, · · · , Np do
5: Draw r̃

G/C
pi from Gaussian or Cauchy

6: r
G/C
pi ← Norm(r̃

G/C
pi )

7: for i = 1, · · · , Ne do
8: Extract ∈ Ss(ei), So(ei) from Database
9: hsei ←

∑
(p,o)∈Ss(ei)

[Norm(rp ? ro) + ξrei ]

10: hoei ←
∑

(s,p)∈So(ei)

[Norm(rp ? rs) + ξrei ]

11: hei ← hsei + hoei
12: for i = 1, · · · , Np do
13: Extract S(pi) from Database
14: hpi ←

∑
(s,o)∈S(pi)

[Norm(rs ? ro) + ξrpi ]

Remark:

Normalizing initial random vectors can assist the analy-
sis of memory capacities via different sampling schemes.
For example, for the derivation of retrieval condition
Eq. A.17 we heavily relay on the fact that the dot product
of two random vectors - say ri · rj , where ri and rj are
randomly sampled and normalized - is just ρij . In the
memorization task, since triples are recalled by compar-
ing the angles (a.k.a cosine similarity) between decoded
noisy vector and all other holistic vectors, normalization
does not effect the recall scores.

A.7 NOTATIONS

In Table 1 and Table 2, we summary important notations
introduced in Section 3 and 4, respectively.

A.8 FURTHER EXPERIMENTAL DETAILS

After searching for the optimal hyper-parameter ξ for
holistic encoding, holistic representations with superior
memory capacity will be fixed and applied to the next
inference tasks.

The architecture is a simple 2-layered fully-connected
neural network, which map high-dimensional holistic
representations (q = 3600) of subjects, predicates, and
objects to low-dimensional (h2 = 256) representations,
separately. We choose ReLU as the activation func-
tion for faster training, and batch normalization after the
hidden-layer for regularization. In order to reduce the



Table 1: Notations for ε-orthogonality

Symbol Meaning

X
q-dimensional random variable with elements
drawn from Gaussian or Cauchy distribution

Θij
Angle between two random variables Xi and
Xj

ρij
Cosine of the angle between random variables
Xi and Xj

g(ρG)
Asymptotic density function of ρij given an en-
semble of Gaussian random variables Xi, i =
1, · · · , n, with n→∞

g(ρC)
Asymptotic density function of ρij given an en-
semble of Cauchy random variables Xi, i =
1, · · · , n, with n→∞

λG Expectation value of |ρG|
λC Expectation value of |ρC|

number of trainable parameters, the network has a bottle-
neck structure with the dimensionality of the hidden-
layer h1 = 64. The extracted low-dimensional features
are then combined via tri-linear dot-product, similar to
DISTMULT.

In summary, given a triple (s,p, o) the scoring function
ηspo takes the following form:

ηspo =〈BN(ReLU(hsW
e
1))We

2,

BN(ReLU(hpW
p
1))Wp

2,

BN(ReLU(hoW
e
1))We

2〉,

where hs, hs are the holistic representations for the sub-
ject s and object o; hp is the holistic representation for
the predicate p. Note that there are two separate net-
works for extracting low-dimensional features of entities
and predicates, respectively. In particular, We

1 ∈ Rq×h1

and We
2 ∈ Rh1×h2 are shared weights for entities, in-

cluding subjects and objects; Wp
1 ∈ Rq×h1 and Wp

2 ∈
Rh1×h2 are shared weights for predicates.

For training the model, we minimize the following binary
cross-entropy loss with l2 regularization:

L = − 1

m

m∑

i=1

(yi · log(σ(ηxi))+

(1− yi) · log(1− σ(ηxi))) + λ||A||22,

where the label vector yi has dimension {0, 1}1×N for
1-N scoring to accelerate the link prediction tasks. To be
more specific, during the training given a triple (s,p, o),
we take the subject-predicate pair (s,p) and and rank it
against all object entities o ∈ E ; take the predicate-object

Table 2: Notations for holistic representations

Symbol Meaning

∗ Circular convolution

? Circular correlation

Norm Normalization operator, Norm(r) := r
||r||

Ne Number of entities in the KG

Np Number of predicates in the KG

Na
Average number of association pairs encoded in
holistic representations of entities

r
G/C
ei

Random initialization of entity ei with elements
drawn from Gaussian or Cauchy distribution

r
G/C
pi

Random initialization of predicate pi with ele-
ments drawn from Gaussian or Cauchy distribu-
tion

hs
ei

Holistic representation of entity ei as subject

ho
ei

Holistic representation of entity ei as object

hei Overall holistic representation of entity ei

hpi Holistic representation of predicate pi

ξ Hyper-parameter for holistic encoding

pair (p, o) and rank it against all subject entities s ∈ E
simultaneously as well.

Hyper-parameters in the HOLNNG and HOLNNC are
optimized via grid search with respect to the mean recip-
rocal rank (MRR). The ranges for grid search are as fol-
lows - learning rate {0.001, 0.003, 0.005}, l2 regulariza-
tion parameter {0., 0.01, 0.05}, decay parameter in the
batch normalization {0.99, 0.9, 0.8, 0.7}, and batch size
{1000, 3000, 5000}.
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