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Abstract—The increasing availability of novel health-related
data sources —e.g., from molecular analysis, health Apps
and electronic health records— might eventually overwhelm
the physician, and the community is investigating analytics
approaches that might be useful to support clinical decisions.
In particular, the success of the latest developments in Deep
Learning has demonstrated that machine learning models are
capable of handling —and actually profiting from— high
dimensional and possibly sequential data. In this work, we
propose an encoder-decoder network approach to model the
physician’s therapy decisions. Our approach also provides
physicians with a list of similar historical patient cases to
support the recommended decisions. By using a combination
of a Recurrent Neural Network Encoder and a Multinomial
Hierarchical Regression Decoder, we specifically tackle two
common challenges in modeling clinical data: First, the issue
of handling episodic data of variable lengths and, second,
the need to represent hierarchical decision procedures. We
conduct experiments on a large real-world dataset collected
from thousands of metastatic breast cancer patients and show
that our model outperforms more traditional approaches.

1. Introduction

With the introduction of the Electronic Health Records
(EHR), a large amount of digital information has become
available in clinics. This is expected to encourage more
personal and precise healthcare services and improve patients
experience [1, 2]. On the other hand, it also requires the
physicians to consult a large variety and volume of data in or-
der to perform diagnosis and treatment decisions, such as the
patients’ background information, medical images, genetic
profiles and the patients’ entire medical history. The decision
making process, therefore, could become increasingly com-
plex in connection with the growing amounts of information
collected on each patient. Machine learning based Clinical
Decision Support (CDS) systems could provide a solution
to such data challenges [3, 4, 5]. These systems are able
to actually profit from the large amount of data in high
dimensional space. For instance, the latest success of Deep

Figure 1. The concept of a machine learning based CDS system.
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Learning models lies in their ability to generate more abstract
and informative latent features from the high dimensional
raw features, which turns out to largely facilitate predictive
modeling.

There are multiple ways that a machine learning model
may impact the decision process of a physician, for instance,
by predicting the possible outcome of each decision. [5]
provides physicians with endpoint predictions of patients
with kidney failure. Based on the predicted probabilities of
kidney rejection, kidney loss and death within the next 6
and 12 months, the physician is more informed to select
the correct medication. This class of approaches, however,
might be limited when i) not yet enough endpoints are
labeled in the training data and ii) confounder effect is
presumed in the data situation [6]. Therefore, in this work we
explore another approach to machine learning base decision
support by directly predicting the physicians’ decisions.
More specifically, a machine learning model would calculate
the probability of each decision conditioned on the patient
information. From the viewpoint of the physicians, these
probabilities can be interpreted as recommendation scores.
We illustrate this conceptual framework in Fig. 1. When
properly trained, the machine learning model can be expected



to generate recommendations which –to a certain extend–
agree with the prescriptions actually prescribed by the
committee of physician in the study. In cases where the
physician faces a great number of possible decisions, the
recommendations would narrow down the size of prescription
candidates. On the other hand, the machine learning model
would also implicitly detect anomalous prescriptions, by
checking whether the actual prescriptions are among the top-
n ranked recommendations made by the machine learning
model. Such a system relies on the predictive power of the
machine learning model, which can be trained using historical
data. During training, the model attempts to predict historical
decisions based on the corresponding patient data and the
actually documented decisions can adjust the model so that
it can improve its predictions throughout the training epochs.

Our study is based on a large and up-to-date data set
consisting of almost three thousand metastatic breast cancer
patients in Germany. This dataset includes the patients’
background information, the primary tumor record, etc.,
as well as the development of the cancer such as local
recurrence and metastasis. Included in the dataset are also all
the prescribed treatments each patient obtained throughout
time. Since the physicians make their therapy decisions —
often at a tumor board— after studying all available patient
information, we assume that a machine learning model can
also be trained to map the patient features to the therapy
decisions.

There are two major challenges in the data situation.
Firstly, the patients in the dataset do not share a time axis
and do not visit clinics regularly. On some patients, no more
data was ever recorded after a surgery; while others revisited
the clinics repeatedly for years due to local recurrences
and metastasis. Consequently, the patients have a medical
history of variable length, making it challenging to construct
a common input feature space for all patients. Secondly,
the therapy decisions that we attempt to model are of a
hierarchical structure. For instance, the physician first has to
decide for a radiotherapy before further specifying whether
it should be a curative or a palliative one, and whether it
should be a Brachytherapy or a percutaneous type.

To address these two issues we propose a neural network
architecture that instantiates the Encoder-Decoder Framework
by [7]. Specifically, we encode the patients’ medical histories
of variable lengths into one fixed-size representation vector
using Recurrent Neural Networks (RNN), and deploy on top
of that a hierarchical regression model, which functions as
a decoder that predicts the therapy decisions. We conduct
experiments on the dataset with multiple choices of encoders
and decoders, as well as different hyper-parameter settings,
and identify their contribution to the modeling quality.
Furthermore, we show that with our model architecture,
one could also provide physicians with a list of similar
historical patient cases to support our prediction, making
it more realistic to deploy such decision support system in
clinics.

The rest of the paper is organized as follows. In Section 2
we discuss multiple related works that inspired the design of
our model. In Section 3 we describe our data situation, includ-

ing the study background and data processing approaches.
In Section 4 we first briefly introduce two specific RNN
models that serve as our encoder network, and then propose
a hierarchical prediction model as our decoder. In Section 5
we present our experimental results and Section 6 wraps up
our present work and give a outlook for future directions.

2. Related Work

Handling sequential EHR data. Due to the sequential
nature of EHR data, there have recently been multiple
promising works studying clinical events as sequential data.
Many of them are inspired by works in natural language
modeling, since sentences can be easily modeled as sequence
of signals. [4] adjusted a language model based on the sliding
window technique in [8], taking into account a fixed number
of events in the past. This model was extended in [5] by
replacing the sliding window with RNNs, which improved
the predictions for prescriptions decision and endpoints. [9]
also applied LSTM-RNN to perform diagnosis prediction
based on sequential input. And a related approach with RNNs
can also be found in [3] to predict diagnosis and medication
prescriptions at the same time throughout time. Such RNN
application was further augmented with neural attention
mechanism in [10], which did not only show promising
results but also improved the interpretability of the model.

RNNs for sequence classification/regression. The
RNN models in these works were implemented in a many-
to-many fashion. That is to say, at each time step the RNN
is supposed to generate a prediction as output. The reason is
that in their data all patients share the same aligned time axis
and regularly visit the clinics. In our work, on the other hand,
there are neither regular visits nor shared time axis. To this
end we implemented many-to-one RNN models that consume
a sequential input and generates only one output. This setting
can be found in a variety of sequence classification/regression
tasks. [11] used such RNN architectures to classify spoken
words and handwriting as sequences. RNNs have been also
applied to classify the sentiment of a sentence such as in the
IMDB reviews dataset [12]. The applications of the RNNs in
the many-to-one fashion can also be seen as the encoding of a
sequence of variable length into one fixed-size representation
[7], which is then decoded to perform prediction as decoding.

Hierarchical classification/regression model. Rather
than a simple classification task where all classes are on
the same level, the therapy decisions turn out to be more
complicated. For instance, the decision of a Brachytherapy
is only observed when the physician decides to prescribe
a radiotherapy in the first place. In order to model such
a decision procedure as realistic as possible, we extend
a hierarchical response model in [13] and deploy it as
decoder on top of RNNs. [14] also proposed a quite similar
architecture to factorize a large softmax layer into a hierarchy.
The purpose was to accelerate the calculation of the softmax,
which in natural language processing often has the size of
the entire vocabulary.



3. Metastatic Breast Cancer Data

In this section we first briefly introduce the classical
breast cancer therapies and then give an overview of our
data situation.

3.1. Metastatic Breast Cancer Treatments

Breast cancer is the one of the most frequent malignant
cancers in the Western world. In Germany, for instance,
approximately 70,000 women suffer from breast cancer each
year with around 30% mortality rate [15, 16]. In many of
these cases, it is the metastasis of the cancer cells to vital
organs that actually causes the patient’s death. There are three
classes of classical treatments of metastatic breast cancer:
radiotherapy, systemic therapy and surgery. Typically, as soon
as a patient is diagnosed with breast cancer, a surgery to
remove the primary tumor would be the first option. In order
to prevent local recurrence and metastasis, the patient would
receive radiotherapies and/or systemic therapies after the
surgery. If, however, local recurrences and/or metastasis are
later diagnosed, the patient might undergo a further surgery,
succeeded by radiotherapies and/or systemic therapies. This
process can be repeated till either i) no more recurrence or
metastasis can be identified or ii) the metastasis is observed
in vital organs and surgery is no longer an option. In the
latter case, radiotherapies and/or systemic therapies would
become the major treatments. Latest discoveries in genetics
have brought about novel systemic therapies that exploit
specific biological characteristics of the cancer cell. Since
these special characteristics are mostly not present in healthy
cells, these targeted therapies have proven to be more efficient
with less severe adverse effect.

3.2. Data Description and Processing

The majority of the dataset was provided by the PRAEG-
NANT study network [17], which has been recruiting patients
of metastatic breast cancer since 2014. The original data are
warehoused in the secuTrial R© database. After exporting and
pre-processing, we could extract information on 2,869 valid
patients.

There are two classes of patient information that are
potentially relevant for modeling the therapy decisions: First
the static information includes 1) basic patient properties,
2) information on the primary tumor and 3) information on
the history of metastasis before entering the study. In total
we observe 26 features of binary, categorical or real types.
We performed dummy-coding on the former both cases and
could extract for each patient i a static feature vector denoted
with mi ∈ R118. We summarize the features in Tab. 1.

The sequential information includes data on 4) local
recurrences, 5) metastasis 6) clinical visits 7) radiotherapies,
8) systemic therapies and 9) surgeries. These are time-
stamped clinical events observed on each patient throughout
time, and at each time step there can be more than one type
of events recorded. All these sequential features are of binary
or categorical nature and are also dummy-coded, yielding

Table 1. OVERVIEW OF ALL STATIC FEATURES.

Static features Feature names and dimensions

1) Basic

Age 1
Height 1
HRT (Hormone Replacement Therapy) 5
parity 9
Mother BC 3
Sister BC 6
Menstruation 1

2) Primary
Tumor

Type 3
Total eval. of the malignancy 8
Total eval. of axilla 4
TAST eval. of the malignancy 8
TAST eval. of axilla 4
Mammography eval. of the malignancy 8
Mammography eval. of axilla 4
Ultrasound eval. of the malignancy 8
Ultrasound eval. of axilla 4
MRI eval. of the malignancy 8
MRI eval. of axilla 8
Metastasis staging 4
Ever neoadjuvant therapy 4
Ever surgery 4

3) History of
metastasis

Lungs 1
Liver 1
Bones 1
Brain 1
Other 10

Total 26 118

for patient i at time step t a feature vector x[t]
i ∈ {0, 1}189.

We denote the whole sequence of events for this patient i
up to time Ti using a set of {x[t]

i }
Ti
t=1. We summarize the

sequential features in Tab. 2.
Since we attempt to model the therapy decisions concern-

ing radiotherapies (item 7), systemic therapies (item 8)1 and
surgeries (item 9), we extract from the medical history of
each patient all possible sub-sequences where the last event
consists of one of the three therapies. Therefore in each of
these sub-sequences, the last event serves as the target that
the model is expected to predict based on all previous events
and the static information. Obviously, instead of the entire
vector x[t]

i we only need the subset of the vector concerning
the therapies and denote this with y ∈ {0, 1}39. Finally the
training/test samples are constructed as

{mi, {x[t]
i }

t∗i−1
t=1 } → y

[t∗i ]
i ⊆ x[t∗i ]

i , (1)

for each possible time step t∗i where one of the therapies is
observed. We illustrate this approach of data processing in
Fig. 2.

From the 2,869 patients we could extract in total 16,314
sequences (i.e. 5.7 sequence per patient on average). The
length of the sequence before a therapy prescription varies
from 0 to 35 and is on average 4.1.

Every time a physician is supposed to prescribe a
treatment, she/he is first supposed to choose one of the
three therapy categories of radiotherapy, systemic therapy
and surgery. For each chosen therapy category the physician

1. Except the fourth feature ”Reason of termination”, which we do not
deem predictable but would serve well as input feature.



Table 2. OVERVIEW OF ALL SEQUENTIAL FEATURES, THEREOF 7), 8)
AND 9) ARE THERAPIES THAT WE ATTEMPT TO PREDICT.

Sequential features Feature names and dimensions
4) Local

Recurrences
Location 4
Type 3

5) Metastasis
Evaluation

Total 6
Lungs 9
Liver 9
Bones 9
Brain 9
Lymph 9
Skin 9
Ovum 9
Soft tissue 8
Kidney 8
Pleural cavity 8
Thorax 8
Muscle 8
Periosteum 8
Other 8

6) Visits Therapy situation 12
ECOG Life status 6

7) Radiation Type 3
Intention 3

8) Systemic

Type 6
Intention 13
Ref. to an surgery 4
Reason of termination 6

9) Surgery Type 10
Total 26 189

will then decide the therapy features. For radiotherapy there
are two 3-dimensional multinomial distributed features: the
radiotherapy intention being either curative, palliative or un-
known; and the radiotherapy’s type being either percutaneous,
Brachytherapy or others. For systemic therapy there are
three multinomial distributed features. The first one describes
6 types of systemic therapy such as antihormone therapy,
chemotherapy, anti-HER2 therapy etc.; the second feature
documents the therapy’s intention, namely an argument based
on the 13 different stagings of the cancer; the third four-
dimensional feature records whether the therapy prescription
is related to a surgery or is unknown. The last category is
composed of 10 Bernoulli distributed variables that describe
the surgery, such as breast conservation surgery, mastectomy,
etc.. Detailed information of the feature values can be found
in Tab. 3.

4. A Predictive Model of Therapy Decisions

In this section we provide an introduction to the two core
ingredients of our proposed model: the many-to-one RNNs
and a Multinomial Hierarchical Regression model. Eventually,
both will be joined to form the complete predictive model.

4.1. Recurrent Neural Network as Encoder

Recurrent Neural Networks, especially the more advanced
variants of Gated Recurrent Units (GRU) [18], presented
in Eq. (2), and Long Short-Term Memory (LSTM) [19,
20] as in Eq. (3) have proven to be powerful in modeling

Figure 2. Illustration of generating training and test sequences from the
medical history of a patient. From a complete sequence of clinical events,
we extract all possible sub-sequences that end with one or multiple therapies,
in this case at t1i , t2i and t3i . At each time step, if a specific event is not
observed, its corresponding features are zero-padded, yielding a common
feature space at each time step.
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multidimensional sequential data such as sensory and natural
language data [21, 22].

GRU:

r[t] = σ(W rx[t] +U rh[t−1] + br)

z[t] = σ(W zx[t] +Uzh[t−1] + bz)

d[t] = tanh(W dx[t] +Ud(r[t] ◦ h[t−1]))

h[t] = (1− z[t]) ◦ h[t−1] + z[t] ◦ d[t],

(2)

LSTM:

k[t] = σ(W kx[t] +Ukh[t−1] + bk)

f [t] = σ(W fx[t] +Ufh[t−1] + bf )

o[t] = σ(W ox[t] +Uoh[t−1] + bo)

g[t] = tanh(W gx[t] +Ugh[t−1] + bg)

c[t] = f [t] ◦ c[t−1] + k[t] ◦ g[t]

h[t] = o[t] ◦ tanh(c[t]).

(3)

Both models generate for each time stamped input x[t] a
hidden state h[t] that depends on both the current input x[t]

and the last representation h[t−1].
If one has a sequence of targets {y[t]}Tt=1 with the same

length as {x[t]}Tt=1 (a many-to-many model) such as in [3, 5],
one could build a prediction model on top of every hidden
state: ŷ[t] = φ(h[t]) ∀t. On the other hand, one could also



Table 3. THE MODELING TARGET: THERAPY CATEGORIES, THERAPY
FEATURES AND FEATURE VALUES.

Therapy category Therapy feature Feature value

7) Radiation

Intention
Curative
Palliative
unknown

Type
percutaneous radiation
Brachytherapy
Other radiotherapies

8) Systemic

Type

Anti-hormone therapy
Chemotherapy
Anti-HER2 therapy
Other anti-body therapy
Bone specific therapy
Other therapies

Intention

CM0/First treatment.
CM0/Treatment of local recc.
1st line met
2nd line met
3rd line met
4th line met
5th line met
6th line met
7th line met
8th line met
9th line met
not filled
unknown

Ref. to surgery

Neoadjuvant
Adjuvant
No surgery
Unknown

9) Surgery Type

Breast-Conserving Therapy
Mastectomy
Excision
Trial Sampling
Diagnostic Sampling
Sentinel-Node-Biopsy
Skin Sparing Mastectomy
Port-Implantation
Paracentesis
Reconstruction

have a many-to-one model with only one target y for the
whole input sequence of {x[t]}Tt=1. In such case a prediction
model consumes the last hidden state, which recurrently
depends on all its predecessors, in form of ŷ = φ(h[T ]).

Interestingly, [7] proposed a Encoder-Decoder-
Framework for machine translation, which involves both
of these variants. First a many-to-one RNN encodes a
sentence of the source language into its last hidden state
vector, which is interpreted as the representation for the
entire sentence. The second one is a many-to-many RNN. It
consumes the last hidden state of the encoder as its first
hidden state and generates a sentence of the target language.
We illustrate this model using a simple example in Fig. 3.

In their work the many-to-one RNN was proven capa-
ble of learning a fixed-size representation from the entire
input sequence of variable length, which is an appealing
characteristics for our data situation as well. In our data,
each patient case has a medical history of variable length,
and the number of clinical events observed before a therapy
prescription varies between 0 and 35. With such an encoder

Figure 3. The Encoder-Decoder-Framework for Machine Translation by
[7]. The encoder RNN outputs only its last hidden state when it sees the
end-of-sentence symbol. At the same time, the decoder RNN consumes
this hidden state as its initial one and generates the first word. The decoder
keeps generating words till it generates the end-of-sentence symbol.
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RNN we could extract from such sequential input a more
abstract and compact vector representing the entire history
of the patient up to a specific time step. For the sake of
simplicity, we denote such a many-to-one RNN (either GRU
or LSTM) using a function ω:

h
[t∗]
i = ω({x[t]

i }
t∗

t=1), (4)

where h[t∗]
i is the last hidden state.

In order to also take into account the static features
such as patient information and primary tumor, we follow
[5] and concatenate the output of the RNN with the latent
representation of the static features.

z
[t∗]
i = (h

[t∗]
i , qi) with qi = ψ(HTmi), (5)

where H is a usual trainable weight matrix and ψ denotes
a non-linear activation function. Therefore, the vector z[t

∗]
i

represents the static patient information as well as the medical
history of patient i up to time step t∗. Such a vector functions
as an abstract patient profile that represents all relevant
clinical information in a latent vector space, where patients
with similar background information and medical history
could be encouraged to be placed in a specific neighborhood.
This very characteristic of the latent vector space is key to
the latest success of Deep Learning, in that it facilitates the
classification and regression models built on top of it.

4.2. Hierarchical Response Model as Decoder

We attempt to model the therapies in a similar fashion
as the physicians’ prediction procedure. A physician first
has to choose one therapy category, and then to specify for
the chosen category its features. We propose a Multinomial
Hierarchical Regression (MHR) to model this procedure.

In the first step we model the probability that each of
the three therapy categories is chosen at time step t∗ for



patient i using a multinomial variable C [t∗]
i with a softmax

activation:

P(C [t∗]
i = k | mi, {x[t]

i }
t∗

t=1) =
exp

(
(z

[t∗]
i )Tγk

)
∑
∀k′ exp

(
(z

[t∗]
i )Tγk′

) ,
(6)

where z[t
∗]

i , as defined in Eq. (5), is the latent representation
for the patient up to this time step and γk serves as the
category-specific parameter vector.

Then in the second step, given a specific therapy category
k, we denote the number of therapy features in this category
with Lk and model the lk-th multinomial distributed feature
variable Fk,lk , whose conditional probability can be modeled
with

P(F [t∗]

i,k,lk
= r | C [t∗]

i = k,mi, {x[t]
i }

t∗

t=1) =

=
exp

(
(z

[t∗]
i )Tβk,lk,r

)
∑
∀r′ exp

(
(z

[t∗]
i )Tβk,lk,r′

) , (7)

if k=1 or k=2, i.e. in case of radiotherapy or systemic
therapy where therapy features in each category are multiple
multinomial distributed. Therefore one would need the
softmax function to model the probabilities that the therapy
feature takes one specific value r. We denote the parameter
vector βk,lk,r with three levels of subscripts: k suggests the
category of the therapy, lk selects one specific multinomial
feature from this category, and r denotes the r-th possible
outcome of this feature. For instance, we would use β1,2,3

to denote the parameters corresponding to the hierarchy
of radiotherapy / type / other_radiotherapy,
implying that the type of the radiotherapy is of other kinds
(3rd column, 6th row in Tab. 3 ).

If the therapy category suggests the surgery, i.e. k=3,
whose features consist of Lk=10 Bernoulli variable, we
would have instead of Eq. (7) the following formulation:

P(F [t∗]

i,k,lk
= r | C [t∗]

i = k,mi, {x[t]
i }

t∗

t=1)

=σ
(
(z

[t∗]
i )Tβk,lk,r

)
,

(8)

with r = 1 in all cases, because a Bernoulli variable has an
one-dimensional outcome.

The product of Eq. (6) and (7) as well as that of Eq. (6)
and (8) yields the joint probability of both therapy feature
and category as

P(F [t∗]

i,k,lk
= r ∧ C [t∗]

i = k | mi, {x[t]
i }

t∗

t=1). (9)

But due to the fact that

P(F [t∗]

i,k,lk
= r ∧ C [t∗]

i 6= k | mi, {x[t]
i }

t∗

t=1) = 0, (10)

in all cases, this joint probability of Eq. (9) is equal to

P(F [t∗]

i,k,lk
= r|mi, {x[t]

i }
t∗

t=1), (11)

applying the law of total probability, yielding the marginal
prediction and allowing us to perform the optimization

Figure 4. A simplified illustration of deriving the marginal probability of the
therapy feature. From the vector z representing a patient one calculates the
category probability and the feature probability conditioned on the category.
Then product of the two yields the joint probability of feature and category.
Combined with the joint probability of feature and non-category, which is
always 0, one would get the marginal probability of the feature.

P(C=k) P(Fk=r|C=k) 

P(Fk=r ᴧ C=k) P(Fk=r ᴧ C≠k)=0 

P(Fk=r) 

z 

+ 

• 

against the target vector. The calculation with these proba-
bilities is illustrated in Fig. 4. A same design can also be
found in [14], where they factorize a large softmax layer
into such a tree-like hierarchy.

In [13] a very similar approach is referred to as the
Multinomial Model with Hierarchically Structured Response.
The major difference lies in the fact that in [13] only one
multinomial response on the second level is linked with each
category on the first level. This is apparently not sufficient
for our data situation where multiple multinomial therapy
features fall into each therapy category. Therefore we extend
this model and allow for multiple of such links.

Finally we illustrate the complete model architecture
in Fig. 5. There the RNN encoder outputs its last hidden
state that represents the whole sequence and is concatenated
with the latent representation mapped from the static patient
information. This concatenated vector forms the input to
the hierarchical model, which in the first step calculates the
therapy category probabilities and in the second step the
therapy feature probabilities conditioned on corresponding
category. These two levels of probabilities are multiplied,
giving the joint probabilities of category and feature, which
are equivalent to marginal feature probabilities as proven in
Eq. (10).

5. Experiment

We evaluate our encoder-decoder model from two aspects.
First we assess the prediction quality and then demonstrate
that our model can be exploited to identify similar historical
patient cases in a very efficient way.

5.1. Modeling of Therapy Decisions

In order to take into account the prediction stability, we
conduct cross-validation by splitting the 2,869 patients into 5
disjoint sets, and then query their corresponding sequences to
form the training and test sets. In contrast to performing the
splitting on the level of sequences, this approach guarantees



Figure 5. Our proposed model architecture. The radiotherapy features consist of two 3D multinomial variables (red-colored). The systemic therapies consist
of on 4D, one 16D and one 3D multinomial variables (orange-colored). The surgery feature consists of 10 Bernoulli variables (purple-colored).
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that the model only predicts for completely new patients
whose information was never –not even partially– present
during training, making the experiments more challenging
and realistic. For the rest of this section we report the aver-
age performances of cross-validations, for all experimental
settings including baseline models.

With respect to the sizes of qi that represents the static
information and h[t∗]

i that represents the medical history, we
conduct experiments with two settings. In a smaller setting
we define qi ∈ R64 and h[t∗]

i ∈ R128 and present the results
in Tab. 5, while Tab. 6 provides experimental results with a
larger setting of qi ∈ R128 and h[t∗]

i ∈ R256.
Further hyper-parameters are set as follows: the output of

h
[t∗]
i in RNN is activated with tanh. We apply 0.25 Dropout

[23] for weights in RNNs and 0.001 Ridge penalization
for the MHR and logistic decoders. Each model instance is
trained with Adam [24] step rule for a maximum of 1000
iterations with early stopping mechanism.

We present two classes of evaluation metrics. First,
column-wise average Area Under ROC (AUROC) and Area
Under Precision-Recall-Curve (AUPRC), which are well-
known metrics applied to measure the classification quality,
should indicate the models’ capability to assign patients
to the correct therapy features. Secondly, we report multi-
label ranking-based metrics of Coverage Error (CE) [25] and
Label Ranking Average Precision (LRAP) [26] in the scikit-
learn library [27]. In contrast to precision and recall based
metrics, they are calculated row-wise and thus evaluate for
each patient how many recommended therapies were actually
prescribed. LRAP ranges between 0 and 1 just as AUROC
and AUPRC. CE describes how many steps one has to go in
a ranked list of recommendations till one covers all ground
truth labels. In our case, the average number of labels in each
patient case is 4.4 and the total number of possible labels

is 39. The CE shall therefore be ideally 4.4, suggesting a
perfect prediction, and be 39 in worst case scenario (Tab. 4).

Table 4. RESULTS OF EXPERIMENTS WITH TWO WEAK BASELINES:
RANDOM PREDICTION AND CONSTANT MOST POPULAR PREDICTION.

Weak Baselines AUROC AUPRC CE LRAP
Random 49.7% 9.4% 38.2 11.2%

Most Popular 50.0% 21.3% 13.9 38.6%

We experiment with three encoders and two decoders.
The baseline encoder is a simple Feed-Forward Layer

(FFL) consuming the raw sequential information that is
aggregated with respect to time. Then the aggregated feature
vector is concatenated with the static feature vector for
each patient case. Such aggregation can be interpreted as
a hand-engineered feature processing, where each feature
represents the total number of observed feature values. It also
corresponds to the bag-of-words approach [28] in Natural
Language modeling, this approach completely neglects the
order in which the feature values are observed. As a more
advanced solution we apply GRU and LSTM as RNN
encoders as introduced in Section 4.1, which are expected to
capture the information regarding the events order as well.

The baseline decoder is a single-layered logistic regres-
sion, which is a popular choice in multi-class multi-label
classification tasks in machine learning. Please note that this
approach does not fully satisfy the distribution assumption
of the target. For instance, a therapy feature variable is
multinomially distributed, implying the mutual exclusiveness
of the probable outcomes of the feature values and this aspect
cannot be taken into account with a flat logistic regression.
Such mutual exclusiveness has to be taken into account
especially in clinical data. For instance a physician is only
supposed to prescribe one medication from a class of related
medications. Since our proposed MHR model, presented in



Sec. 4.2, is mathematically solid from this perspective, it is
interesting to see it actually outperforms a more popular but
less accurate alternative.

We conduct experiments applying all possible combina-
tions of encoders and decoders, to identify i) which combi-
nation yields the best prediction performance and ii) which
encoder contributes the most to the model performances
given the same decoder, and vice versa.

Table 5. AVERAGE RESULTS OF EXPERIMENTS WITH DIFFERENT
ENCODERS AND DECODERS, WITH qi ∈ R128 AND h

[t∗]
i ∈ R256

Encoder Decoder AUROC AUPRC CE LRAP

FFL Logistic 69.4% 13.4% 12.61 48.6%
MHR 70.3% 13.9% 11.79 49.3%

GRU Logistic 81.8% 28.8% 8.57 61.3%
MHR 82.1% 31.2% 8.26 62.3%

LSTM Logistic 79.6% 24.7% 9.47 57.9%
MHR 81.9% 30.2% 8.53 61.4%

Table 6. AVERAGE RESULTS OF EXPERIMENTS WITH DIFFERENT
ENCODERS AND DECODERS, WITH qi ∈ R64 AND h

[t∗]
i ∈ R128

Encoder Decoder AUROC AUPRC CE LRAP

FFL Logistic 69.8% 13.4% 12.83 48.3%
MHR 70.2% 13.9% 11.83 49.2%

GRU Logistic 80.0% 26.2% 9.28 59.0%
MHR 81.3% 28.2% 8.71 61.3%

LSTM Logistic 78.7% 23.0% 9.93 56.4%
MHR 80.6% 26.7% 9.12 59.5%

Comparing Tab. 5 with 6 one could observe that, with a
larger size for the representation vector, the prediction quality
can be improved in almost all cases. With both parameter
settings the combination of GRU encoder and the hierarchical
decoder yields the best quality scores.

It is to note that both decoders on top of the baseline
FFL encoder show suboptimal results compared with those
on top of RNN encoders, i.e., GRU and LSTM encoders
significantly boost the prediction quality even with a mere
logistic regression as decoder. On the other hand, the MHR
model further improves the prediction quality in comparison
with a flat logistic regression. This suggests that the RNN
encoders contribute a larger proportion to the prediction
quality, while the multinomial hierarchical decoder alone
does not improve the model to a significant extent without a
decent encoder model. One could draw the conclusion that
the encoded representation of a patient case plays a central
role in this model. In total, the prediction best quality is
provided by GRU encoder and MHR decoder.

5.2. Identification of Similar Patient Cases

In a realistic application scenario in a clinic, it is as
important to provide physicians with recommended therapies
as to provide a list of similar patient cases. If the set of
similar patient cases have received therapies similar to the
recommended ones, it will support these recommendations
and encourage the physician to interpret the recommendations

with more confidence. But due to the fact that patients have
medical histories of variable lengths, it is nontrivial to apply
common distance metrics directly on the patient features
to quantify the similarity. For instance, it is impossible
to mathematically directly calculate the distance between
a patient having undergone a breast conservation surgery
and another patient with one mastectomy followed by three
successive radiotherapies, although it might be obvious for
a physician to tell the difference/similarity.

To this end, we propose that the derived latent vector of
z
[t∗]
i , representing the patient i’s profile up to time t∗, can

be exploited to identify similar patient cases, since all such
vectors have the same dimension.

Using a trained encoder network, we map all training
patient cases and the a test case into the latent feature
space and define there a k-NN model. The k training cases
neighboring the test case can therefore provide a prediction
for the test case. This approach reusing trained representation
is closely related to the so-called transfer learning [29], where
one exploits the latent representations learned for one task
for new tasks. In our case, however, we have the same task
solved by a new predictive model that consumes the learned
representations.

If the k-NN model is able to identify patient cases having
received therapies that agree with the recommended ones,
then the latent vectors correctly represent such similarity.

We report the results of such k-NN models that is applied
on latent representations originally learned with GRU and
LSTM encoder combined with logistic and hierarchical
decoder in Tab. 7 and 8 for the two parameter settings of
the latent vector sizes, respectively. Please note that an RNN
encoder converges to different weight parameters combined
with different decoders. Therefore, although we only apply
the encoder network, it is necessary to differentiate between
the two decoder cases. The k is here set to be 30. We realize
that a smaller k would hurt the prediction quality and a
larger k does not further improve the model.

Table 7. RESULTS OF EXPERIMENTS WITH k-NN ON TOP OF THE LATENT
REPRESENTATIONS DERIVED BY DIFFERENT MODEL ARCHITECTURE

SETTINGS, WITH qi ∈ R128 AND h
[t∗]
i ∈ R256 .

orig. Encoder orig.Decoder AUROC AUPRC CE LRAP

GRU Logistic 78.7% 30.0% 9.69 63.0%
MHR 79.3% 32.2% 9.82 63.2%

LSTM Logistic 78.6% 28.7% 9.80 62.7%
MHR 79.0% 32.2% 9.83 63.3 %

Table 8. RESULTS OF EXPERIMENTS WITH kNN ON TOP OF THE LATENT
REPRESENTATIONS DERIVED BY DIFFERENT MODEL ARCHITECTURE

SETTINGS, WITH qi ∈ R64 AND h
[t∗]
i ∈ R128

orig. Encoder orig.Decoder AUROC AUPRC CE LRAP

GRU Logistic 78.1% 28.6% 9.75 62.9%
MHR 79.1% 29.8% 9.71 63.3%

LSTM Logistic 78.3% 28.5% 9.78 62.5%
MHR 79.1% 30.2% 9.69 63.2%

One could observe that the k-NN performances are in
total quite close to those reported in Tab. 5 and 6.



Figure 6. The distance matrix between a sample of 100 decisions predicted
by i) the encoder-decoder model and ii) the k-NN model based on the
latent representations with four different encoder-decoder settings. Top-left:
GRU+sigmoid; top-right: GRU+hierarchical; bottom-left: LSTM+sigmoid;
bottom-right: LSTM+hierarchical.

However, if we build the same k-NN classifier on top of
the raw features aggregated in time and concatenated with
the static features, the prediction quality is observed to be
much worse: The AUROC and AUPRC decrease to 75.2%
and 23.3%, respectively, while the CE and LRAP to 11.61
and 56.8%, respectively. This suggests that the RNN encoder
is capable of generating more dense and informative latent
features for each patient case.

In order to compare the concrete decision made by the
original encoder-decoder model and the k-NN model on each
specific patient case, we calculate the Euclidean distances
between the predictions made by i) the encoder-decoder
model and ii) the k-NN model based on the same encoder
and decoder setting for each patient case. We visualize in Fig.
6 the distance matrices as heat map. One could observe that
the diagonal entries, which represent prediction distances
between the complete model and the k-NN model for the
same patient cases, are systematically lower in value.

To this end, we argue that the latent vectors can represent
a patient case with medical history of variable length in a
unified vector space, where the topological characteristics
of patients are well preserved. This additional feature of
our encoder-decoder model enables the identification of
similar patient cases, which can support and supplement
the predictive recommendations.

6. Conclusion

We have proposed an Encoder-Decoder network that
predicts physicians’ therapy decisions as well as provides
a list of similar patient cases. The model consists of an
RNN encoder that learns an abstract representation of the
patient profile, and a hierarchical regression that decodes
the latent representation into therapy predictions. Such a
predictive model can serve to support clinical decisions, to
detect anomalous prescriptions and to support physician by
searching for similar historical cases.

We have conducted experiments on a large real-world
dataset collected from almost three thousands of metastatic
breast cancer patients. The experimental results demonstrate
that the RNN encoder greatly improves the modeling quality
compared with plain feed-forward models that consume
aggregated sequential features. The hierarchical regression
model also outperforms a flat logistic regression as a decoder.
We have also shown that our model is capable of providing
lists of similar patient cases, although it is nontrivial to
measure distance among patients, when they all have medical
histories of variable lengths.

The generic contribution of this work consists of follow-
ing aspects:

• We transfer the popular Encoder-Decoder architecture
from NLP to the clinical domain;

• We propose a hierarchical classifier that mimics the
actual multi-step decision procedure;

• We empirically prove that the latent vector represent-
ing each patient case produced by RNN encoders in
general facilitates the prediction with k-NN, logistic
regression and MHR;

• We showed that such latent representations can be
exploited to identify similar patients with higher
quality than with aggregated sequential features.

Encouraged by the success of the RNN models in
handling sequential data, one interesting and realistic im-
provement of the model would be to integrate attention
mechanisms [30, 31] into the RNN encoder. The model
would, for instance, be able to identify which historical
event has contributed most to the decision, which could
further improve the model’s interpretability and encourage
its application in clinics.
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