
Tensor Decompositions for Modeling
Inverse Dynamics

Stephan Baier ∗ Volker Tresp ∗∗

∗ Ludwig Maximilian University of Munich, Oettingenstr. 67, 80538
Munich (e-mail: stephan.baier@campus.lmu.de).

∗∗ Siemens AG and Ludwig Maximilian University of Munich,
Otto-Hahn-Ring 6, 81739 Munich (e-mail: volker.tresp@siemens.com)

Abstract:
Modeling inverse dynamics is crucial for accurate feedforward robot control. The model
computes the necessary joint torques, to perform a desired movement. The highly non-linear
inverse function of the dynamical system can be approximated using regression techniques. We
propose as regression method a tensor decomposition model that exploits the inherent three-
way interaction of positions × velocities × accelerations. Most work in tensor factorization has
addressed the decomposition of dense tensors. In this paper, we build upon the decomposition
of sparse tensors, with only small amounts of nonzero entries. The decomposition of sparse
tensors has successfully been used in relational learning, e.g., the modeling of large knowledge
graphs. Recently, the approach has been extended to multi-class classification with discrete input
variables. Representing the data in high dimensional sparse tensors enables the approximation
of complex highly non-linear functions. In this paper we show how the decomposition of sparse
tensors can be applied to regression problems. Furthermore, we extend the method to continuous
inputs, by learning a mapping from the continuous inputs to the latent representations of the
tensor decomposition, using basis functions. We evaluate our proposed model on a dataset with
trajectories from a seven degrees of freedom SARCOS robot arm. Our experimental results
show superior performance of the proposed functional tensor model, compared to challenging
state-of-the art methods.

Keywords: Tensor modeling, tensor decomposition, inverse dynamics, robot dynamics,
supervised machine learning

1. INTRODUCTION

Within model-based robot control, an inverse dynamics
model is used to compute the necessary joint torques of the
robot’s motors for the execution of a desired movement.
The feedforward control command can be calculated using
the rigid-body formulation uFF = M(q)q̈ + F (q, q̇), with
q, q̇, q̈ being vectors of joint positions, joint velocities, and
joint accelerations. However, in practice many nonlinear-
ities such as friction or actuator forces need to be taken
into account. Thus, methods modeling uFF = f(q, q̇, q̈)
using non-linear regression techniques have shown superior
performance in inferring the required joint torques for
feedforward robot control. The parameters of the function
f are estimated offline using collected trajectories of the
robot. Craig (2005); Nguyen-Tuong et al. (2008); Nakan-
ishi et al. (2005).

Tensor models have been applied successfully in many
application areas, e.g., relational learning, multilinear time
invariant systems, factor analysis, and spatio-temporal
analysis, see Nickel et al. (2011); Pangalos et al. (2013b);
Mørup et al. (2006); Bahadori et al. (2014). Most litera-
ture on tensor modeling, however, is concerned with the
decomposition of dense tensors, i.e., most of the elements
in the tensor are nonzero. Models for sparse tensors have
mainly become popular for the application of modeling

large knowledge graphs, such as Yago, DBpedia, and Free-
base, see Nickel et al. (2011); Suchanek et al. (2007);
Auer et al. (2007). In these models, the elements of the
tensor represent all possible triple combinations of entities
and relations in the knowledge graph. Only elements that
represent known facts from the knowledge graph are set
to one. This results in a very sparse tensor, where the
vast majority of elements are zero. Recently, the approach
has been extended to higher order tensors for the task of
classifying discrete sensor data, see Baier et al. (2016). The
tensor represents the space of all possible combinations
of sensor values. By learning a representation for each
possible value of all sensors, the decomposition allows for
approximating highly non-linear functions.

In this paper we build upon the approach of decomposing
sparse tensors, and apply it to inverse system identifi-
cation. Our model exploits the inherent three-way inter-
action of positions × velocities × accelerations. We first
show how the method can be applied to regression tasks.
Furthermore, we extend the approach to continuous in-
puts, by including basis functions that map the continuous
inputs to the latent representations of the tensor decom-
positions. In this way, we retrieve a functional version
of tensor decompositions. The basis functions also imply
smoothness on the inputs, such that the model is able to
generalize well, in spite of the extreme sparsity. By using

multivariate basis functions we can group inputs, such
that the dimensionality of the tensor decomposition can
be reduced. In our inverse dynamics model we group the
joint positions, velocities, and accelerations of all degrees
of freedom of the robot, resulting in a tensor of order three.
This makes the powerful Tucker decomposition applicable
to the problem.

We evaluate our model on a dataset of a seven degrees of
freedom SARCOS robot arm that was introduced in Vi-
jayakumar and Schaal (2000). An inverse dynamics model
is learned based on collected trajectories, and its perfor-
mance is evaluated on a 10 percent test set. The results
show that our model outperforms a number of competitive
baseline methods, such as linear regression, radial basis
function networks (RBF-networks), and support vector
regression. Furthermore, the Tucker model shows superior
performance over a PARAFAC model.

The paper is structured as follows. The next section gives
an overview of related work. Section 2 shows how the
factorization of sparse tensors can be utilized for regression
problems, and how the tensor decompositions can be
extended to continuous inputs, using basis functions. In
Section 3 we describe a functional Tucker decomposition
for the task of modeling inverse dynamics. Related work is
discussed in Section 4. Section 5 presents the experimental
evaluation. Finally, we conclude our work in Section 6.

2. TENSOR DECOMPOSITIONS USING BASIS
FUNCTIONS

In this section we first show how the decomposition of
sparse tensors can be applied to regression problems with
discrete input variables. We then extend the model to
continuous inputs, by using basis functions, which map
the continuous input to the latent representations of the
tensor decompositions.

2.1 Tensor Decompositions

Tensor decompositions are a generalization of low rank
matrix factorizations to higher order tensors. There are
multiple ways of decomposing a higher order tensor.

The full Tucker decomposition factorizes a tensor Y ∈
Rd1×···×dS into S matrices, including latent representa-
tions for all fibers in each mode. The tensor elements are
expressed by the interaction of the latent representations,
weighted by a core tensor G ∈ Rr̃×···×r̃ such that

Y(v1, . . . , vS) ≈
r̃∑

r1,...,rS

G(r1, . . . , rS) ·A1(v1, r1)·

A2(v2, r2) · . . . ·AS(vS , rS)

(1)

with Ai ∈ Rdi×r̃. The full Tucker decomposition does
not scale to high dimensions, as the core tensor G grows
exponentially with the dimensionality of the tensor; see
Tucker (1965).

A special case of the full Tucker decomposition is the
PARAFAC decomposition, where the core tensor G is
diagonal. All other interactions are left out, such that

Y(v1, v2, ..., vS) ≈
r̃∑

r=1

g(r)·A1(v1, r)·A2(v2, r)·. . .·AS(vS , r).

(2)
with g ∈ Rr̃. As PARAFAC only models the diagonal of
the core tensor, its parameters scale linearly with the order
of the tensor; see Harshman (1970).

2.2 Discrete Input Regression

We consider a regression problem with S ∈ N discrete
input variables. Each of the input variables vi for i ∈
{1, ..., S} assumes one out of Fi ∈ N discrete values.
Furthermore, we consider a dependent variable y. We
model a regression function for a dataset of N training
examples {yj , (vj1, ..., v

j
S)}Nj=1.

All training examples are mapped to a sparse tensor
Y ∈ RF1,...,FS . The tensor is filled with

Y(vj1, ..., v
j
S) = yj ∀j ∈ {1, ..., N}. (3)

The remaining entries of the tensor, which do not occur
in the training data, are left unknown. This results in Y
being a very sparse tensor.

The tensor Y is approximated using a low-rank tensor
decomposition, e.g., the PARAFAC decomposition see
equation 2. Using low ranks for r̃, the approximation
results in a dense tensor Φ. It describes the outcome
y for all combinations of the input variables (v1, ..., vS).
However, it would be impossible to compute and store the
whole approximated tensor Φ; thus, only the parameters
of the decomposition are stored. When predicting y for a
new set of input variables, the representations for that
tuple are indexed, and the approximation is computed
on demand. In principle any tensor decomposition can
be used for the approximation. However, in practice only
few decompositions, such as PARAFAC and Tensor Train
are scale-able to many dimensions, see Harshman (1970);
Oseledets (2011).

2.3 Continuous Inputs

The proposed model so far only works for a discrete input
space. Furthermore, it does not imply any smoothness on
the values of the input variables. Although, this makes
it a powerful, highly non-linear model, it is prone to
overfitting. If the input values follow a natural ordering,
or if they are discretized from a continuous scale, the
model requires many more training examples to learn the
smoothness implicitly. To introduce smoothness explicitly,
and to extend the model to continuous inputs, we use
smooth basis functions for the latent parameters of the
decomposition. Instead of indexing the latent represen-
tation from a matrix, their values are computed using
basis functions. For example, all Ai in equation 2 can be
modeled using a radial basis function

Ai(vi, ri) = exp (−γri‖µri − vi‖2). (4)

This allows for continuous inputs vi ∈ R. The latent
representation is now modeled by the similarity of the
input to the center of the radial basis function. In this
way, similar inputs induce similar representations. The
parameters of the basis function are optimized during
training, to yield optimal regression results. Also a mixture

... torques

...

positions

velocities

accelerations

Fig. 1. Inverse dynamics model using a functional Tucker decomposition. The output tensors and the representation
matrices are replaced by functions (illustrated with dashed lines). The representations are computed given the
continuous inputs using Gaussian kernels.

of discrete and continuous inputs can easily be modeled, by
applying the basis functions only to the continuous inputs,
and learning representation matrices for the discrete input
variables.

It is also possible to group multiple inputs together into
one tensor mode, such that vi ∈ Rm, where m ∈ N
denotes the number of grouped inputs. In this way, the
representation of a tensor mode is calculated given a
vector of continous inputs. The grouping of input variables
reduces the dimensionality of the tensor decomposition,
and thus the number of free parameters.

3. APPLICATION TO INVERSE DYNAMICS

In the following we describe how the continuous tensor
decomposition proposed in section 2 can be applied to
inverse dynamics modeling.

3.1 Functional Tucker Decomposition

We describe a functional Tucker model for the approxima-
tion of the joint torques, necessary to perform a movement
of a robot arm. Figure 1 shows the model schematically.
We consider a robot with C ∈ N degrees of freedom (DoF).
In the following we denote the vectors p, ṗ, p̈, describing the
desired positions, velocities, and accelerations for each of
the c DoFs, as x1, x2, x3 ∈ Rc for syntactic reasons. The
vector y ∈ Rc describes the corresponding joint torques.

We model the function y = f(x1, x2, x3) using a functional
tensor decomposition model. Each input vector is modeled
by one dimension in the tensor decomposition, resulting in
third-order tensors Y, which describe the joint torques.
Each element of the vector y is modeled in a separate
model. The resulting three-dimensional tensors of the form
positions × velocities × accelerations, are then factorized

using the Tucker decomposition with limited rank, result-
ing in a tensor Φ ≈ Y, such that

Φ(x1, x2, x3) =

r̃∑
r1,r2,r3

G(r1, r2, r3) ·A1(x1, r1) ·A2(x2, r2)

·A3(x3, r3).
(5)

A1 to A3 are functions, which map from the c-dimensional
input to the latent representations of the Tucker model.
We model the representations using multivariate Gaussian
kernels, such that

Ai(xi, ri) = exp
(
−(µri − xi)TDri (µri − xi)

)
∀i ∈ {1, 2, 3},

(6)

with µri ∈ Rc representing the centers and Dri ∈ Rc×c

weighting the distance from the centers in the c dimen-
sional input space. The closer a data point is to the center
of a basis function, the higher is its activation. Thus, the
centers of the basis functions can be seen as landmarks
in the input space. All three-way interactions, between
the representations of the three input dimensions, are
explicitly modeled and weighted by the elements of the
core tensor G.

3.2 Model Training

For training the model, we take a maximum likelihood
approach. We minimize the negative log-likelihood of the
collected dataset {yj , (xj1, x

j
2, x

j
3)}Nj=1 as

l = −log
N∑
j=1

p(yj |xj1, x
j
2, x

j
3,Θ), (7)

where Θ includes the parameters of the decomposition and
the basis functions. Assuming a Gaussian distribution, we
get the squared error cost function

Table 1. Normalized mean squared error for all 7 degrees of freedom in percent. Mean and
standard deviation of ten random data splits.

Method DoF 1 DoF 2 DoF 3 DoF 4 DoF 5 DoF 6 DoF 7 Mean ± std in %

Linear Regression 6.80 11.62 10.82 5.81 12.81 22.59 6.73 11.03 ± 0.26
RBF-Network Regression 2.64 1.79 1.01 0.41 4.07 3.91 1.17 2.14 ± 0.19
Support Vector Regression 0.88 0.67 0.43 0.15 1.04 0.72 0.34 0.60 ± 0.28

Functional-Tucker 0.59 0.28 0.46 0.24 1.03 0.91 0.31 0.55 ± 0.24
Functional-PARAFAC 1.64 1.14 0.61 0.32 1.30 1.17 0.50 0.96 ± 0.22

C =

N∑
i=1

(Y(xj1, x
j
2, x

j
3)− Φ(xj1, x

j
2, x

j
3))2. (8)

Note, that the cost function considers only nonzero el-
ements of the tensor, i.e., the sparsity of the tensor is
exploited. We minimize equation 8 using gradient descent.
In experiments, we found the stochastic optimization algo-
rithm Adam, see Kingma and Ba (2014), which adopts the
learning rate automatically for each parameter, to work
best for this task. The sampling of stochastic mini-batches
for each update has also shown advantageous, for speeding
up training.

We initialize the centers of the Gaussian kernel in a
preprocessing step, using three k-means clusterings, such
that

Ji =

r̃∑
i

N∑
j=1

‖xji − µri‖2 (9)

are minimized for i ∈ {1, . . . , 3}, see Lloyd (1982). All
matrices D are initialized with the identity matrix. The
elements of the core tensor G are initialized randomly
with a Gaussian distribution of mean zero and standard
deviation 0.05. While training all parameters are further
optimized. We implemented the model using the compu-
tational python library Theano, see Theano Development
Team (2016).

4. RELATED WORK

Multiway data analysis has found applications in a number
of different areas, such as signal processing, neuroscience,
and data mining, see Cichocki (2014); Mørup et al. (2006);
Harshman (1970); Kolda and Bader (2009). Recently,
tensor models also have found applications in control
engineering such as for modeling hybrid systems, see
Pangalos et al. (2013a) and multilinear dynamical systems,
see Rogers et al. (2013). Furthermore, tensor methods have
been applied to Boolean networks, see Cheng et al. (2010)
and pneumatic models, see Gróf et al. (2010).

The factorization of sparse matrices has become popular in
recommendation systems, especially due to its success in
the Netflix challenge, see Koren et al. (2009). Extensions
to higher order tensors can be found in the modeling
of large knowledge bases, such as Yago, DBpedia, or
Freebase, see Nickel et al. (2011, 2015). The multi-graphs
have been modeled using sparse three-dimensional tensors
and decompositions such as RESCAL, see Nickel et al.
(2011, 2015). The approach of factorizing sparse tensors
has further been exploited in Baier et al. (2016). Here, the
decomposition of sparse tensors is applied to multi-class
classification with discrete input features.

Tensor regression methods are concerned with the regres-
sion of high dimensional data, structured in a multidimen-

sional array. Tensor methods allow for efficient modeling
where traditional methods are often insufficient, due to
the complex structure of the data and the high input
dimensionality. Tensor regression learns a linear mapping
and deals with dense input tensors. Thus, their approach is
fundamentally different from ours; see Zhou et al. (2013);
Yu and Liu (2016).

Our approach shows some similarities to RBF-networks
which are able to approximate any non-linear function
by using radial basis functions. RBF-networks have been
successfully applied to a number of tasks including control
engineering, see Broomhead and Lowe (1988). The main
difference to our proposed functional Tucker model is
that RBF-networks learn one latent representation for
the complete input, and map it to the output; whereas,
the functional Tucker model learns a representation for
each tensor mode and jointes them using the tensor
decomposition model. In this way multi-way interactions
are modeled explicitly.

Inverse dynamics are traditionally modeled using the rigid-
body formulation, see Craig (2005). However, general re-
gression techniques such as locally weighted projection re-
gression (LWPR), Gaussian Processes, and RBF-networks,
have shown advantageous for learning inverse dynamics,
see Vijayakumar and Schaal (2000); Rasmussen (2006).
The topic was subject to a number of studies, see Burdet
and Codourey (1998); Nguyen-Tuong et al. (2008). Sup-
port vector regression has shown superior performance for
this task.

5. EXPERIMENTS

In this section we evaluate our proposed method on an
inverse dynamics dataset including movements from a
seven degrees of freedom SARCOS robot arm. We compare
against various other state-of-the-art regression techniques
for this task.

5.1 Dataset

The dataset was introduced by Vijayakumar and Schaal
(2000). 1 It contains data from a SARCOS robot arm
with seven degrees of freedom. The data was collected
from the moving robot arm at 100Hz and corresponds to
7.5 minutes of movement. The dataset includes 21 input
dimensions, consisting of 7 joint torques, 7 joint positions,
7 joint velocities, and 7 joint accelerations. The whole
dataset consists of 42482 samples. We split the dataset
randomly into 90 percent training and 10 percent test
data. Additional 5 percent of the training set where used
as a validation set. The task is to learn a model on the
training data, which models the 7 joint torques, given the
1 http://www.gaussianprocess.org/gpml/data/

positions, velocities and accelerations. The offline learned
model can then be applied in the forward controller of the
robot. The dataset has been subject to some studies on
the topic, see Vijayakumar and Schaal (2000); Rasmussen
(2006). The regression task has been found to be highly
non-linear. Non-linear regression techniques outperformed
the rigid-body dynamics formulation by a large margin.
The performance of the regression techniques is evaluated
on the test set, which includes unseen movements. We
repeated the random split 10 times and report the average
results and the standard deviation of multiple trials.

5.2 Baselines

We compare our model against various state-of-the art
regression techniques, modeling the function y = f(q, q̇, q̈).
The baseline models we consider are linear regression,
RBF-networks and support vector regression. In previous
studies support vector regression has shown the best
results on this task. For all baseline models a concatenated
vector x = [q, q̇, q̈] is built. The linear regression model
learns a linear mapping from the inputs to the outputs,
such that

y = Wx+ b. (10)

RBF-networks model the regression problem as,

y =

r̃∑
i=1

wi exp (−βi‖x− ci‖2). (11)

The parameters ci, βi and wi are learned using backpropa-
gation. We initialized the parameters ci with the centroids
of a k-means clustering on the training data, where r̃ is
the number of centroids.

Support vector regression (see Smola and Vapnik (1997))
has shown state-of-the-art results in modeling inverse
dynamics. It predicts y as,

y =

N∑
j=1

(αj − α?
j)k(xj , x) + b (12)

with k(x, x′) being a kernel function. In the experiments
we use a Gaussian kernel. αj and α?

j are Lagrange multi-
pliers, which are determined during optimization. In our
experiments we use the libsvm library, see Chang and Lin
(2011).

Furthermore, we compare the functional Tucker model
proposed in Section 3 with a functional PARAFAC model.
For the functional PARAFAC model we replace the tensor
decomposition in equation 5 with a PARAFAC decompo-
sition, as shown in equation 2.

5.3 Results

We report the normalized mean squared error (nMSE) for
the regression task, which is defined as the mean squared
error of all data points divided by the variance of the target
variable in the training data. Table 1 summarizes the mean
nMSE for all seven degrees of freedom in percent. In the
rightmost column the mean of all seven degrees of freedom
is shown. All results, as well as the standard deviation are
referring to the average result of 10 random data splits.
The performance of the regression techniques varies across
the DoFs. The linear model reaches an nMSE of 11.03%

 0

 0.5

 1

 1.5

 2

 2.5

 3

 5 10 15 20 25 30 35 40 45 50

n
M

S
E
 i
n
 %

Rank

functional Tucker
functional PARAFAC

Fig. 2. Normalized mean squared error of the functional
Tucker and functional PARAFAC model, in depen-
dency of the embedding rank.

in average. The nonlinear RBF-networks performs much
better with an nMSE of 2.14% in average. The number of
of hidden neurons for the RBF-network was set to 1000.
With larger numbers the predictive performance did not
increase. The support vector regression model yields a
very good result of 0.60%. Here, we set the parameter C
to 600 and ε to 0.1. All hyperparameters were evaluated
on a separate validation set. Our proposed functional
Tucker model resulted in a slightly better nMSE of 0.55%.
Especially, for the first two DoFs the functional Tucker
model performs significantly better than support vector
regression. For the other DoFs the results of support
vector regression and functional Tucker decomposition
are very close to each other. The parameter efficient
functional PARAFAC model reaches an nMSE of 0.96%
in average. Figure 2 shows the performance of the two
functional tensor decomposition models in dependence of
the rank of the decompositions. For the Tucker model,
the performance converges at a rank of 30 and for the
PARAFAC model at a rank of 40. It is also notable that
both methods already perform relatively well with a very
small rank of 5. The nMSE of the Tucker model is 2.09%
with a rank of 5 and the nMSE of the PARAFAC model
is 2.43%. Both functional tensor models show clearly
better results than RBF-networks. This indicates that the
explicit modeling of the three-way interaction, yields a
significant improvement.

6. CONCLUSION

In this paper we apply a tensor model, that is based
on the Tucker decomposition, to inverse dynamics. Our
proposed model exploits the inherent three-way interac-
tion of positions × velocities × accelerations. We show
how the decomposition of sparse tensors can be applied
to regression tasks. Furthermore, we propose to augment
the tensor decompositions with basis functions for allowing
continuous input variables. In this way, a functional ver-
sion of a tensor decomposition can be derived. Representa-
tions for each tensor mode are induced through the basis
functions and fused by the tensor model. The parameters
of the basis functions are learned using backpropagation.
Experiments on an inverse dynamics dataset, derived from
a seven degrees of freedom robot arm, show promising re-
sults of our proposed model for the application of learning

inverse dynamics. The proposed functional Tucker model
outperforms RBF-networks, and even support vector re-
gression, which has shown state-of-the-art performance on
this task. Our extension of tensor decomposition models
to continuous inputs enables a wide range of application
areas. Especially if an inherent multi-way structure exists
in the data, functional tensor models can be advantageous
over traditional techniques, by explicitly modeling the
multi-way interaction. Within automatic robot control the
approach might be further extended to learning also a
functional Tucker model for a feedback controller based
on the tracking errors.

REFERENCES

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak,
R., and Ives, Z. (2007). Dbpedia: A nucleus for a web
of open data. In The semantic web, 722–735. Springer.

Bahadori, M.T., Yu, Q.R., and Liu, Y. (2014). Fast mul-
tivariate spatio-temporal analysis via low rank tensor
learning. In Advances in neural information processing
systems, 3491–3499.

Baier, S., Krompass, D., and Tresp, V. (2016). Learning
representations for discrete sensor networks using tensor
decompositions. International Conference on Multisen-
sor Fusion and Integration for Intelligent Systems.

Broomhead, D.S. and Lowe, D. (1988). Radial basis
functions, multi-variable functional interpolation and
adaptive networks. Technical report, DTIC Document.

Burdet, E. and Codourey, A. (1998). Evaluation of
parametric and nonparametric nonlinear adaptive con-
trollers. Robotica, 16(01), 59–73.

Chang, C.C. and Lin, C.J. (2011). Libsvm: a library
for support vector machines. ACM Transactions on
Intelligent Systems and Technology (TIST), 2(3), 27.

Cheng, D., Qi, H., and Li, Z. (2010). Analysis and control
of Boolean networks: a semi-tensor product approach.
Springer Science & Business Media.

Cichocki, A. (2014). Tensor networks for big data analytics
and large-scale optimization problems. arXiv preprint
arXiv:1407.3124.

Craig, J.J. (2005). Introduction to robotics: mechanics and
control, volume 3. Pearson Prentice Hall Upper Saddle
River.

Gróf, P., Takarics, B., Petres, Z., and Korondi, P. (2010).
Tensor product model type polytopic decomposition of
a pneumatic system with friction phenomena taken into
account. In Applied Machine Intelligence and Informat-
ics (SAMI), 2010 IEEE 8th International Symposium
on, 153–158. IEEE.

Harshman, R.A. (1970). Foundations of the parafac
procedure: Models and conditions for an” explanatory”
multi-modal factor analysis.

Kingma, D. and Ba, J. (2014). Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kolda, T.G. and Bader, B.W. (2009). Tensor decomposi-
tions and applications. SIAM review, 51(3), 455–500.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factor-
ization techniques for recommender systems. Computer,
(8), 30–37.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE
transactions on information theory, 28(2), 129–137.

Mørup, M., Hansen, L.K., Herrmann, C.S., Parnas, J., and
Arnfred, S.M. (2006). Parallel factor analysis as an
exploratory tool for wavelet transformed event-related
eeg. NeuroImage, 29(3), 938–947.

Nakanishi, J., Farrell, J.A., and Schaal, S. (2005). Com-
posite adaptive control with locally weighted statistical
learning. Neural Networks, 18(1), 71–90.

Nguyen-Tuong, D., Peters, J., Seeger, M., and Schölkopf,
B. (2008). Learning inverse dynamics: a comparison.
In European Symposium on Artificial Neural Networks,
EPFL-CONF-175477.

Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E.
(2015). A review of relational machine learning for
knowledge graphs: From multi-relational link prediction
to automated knowledge graph construction. arXiv
preprint arXiv:1503.00759.

Nickel, M., Tresp, V., and Kriegel, H.P. (2011). A three-
way model for collective learning on multi-relational
data. In Proceedings of the 28th international conference
on machine learning (ICML-11), 809–816.

Oseledets, I.V. (2011). Tensor-train decomposition. SIAM
Journal on Scientific Computing, 33(5), 2295–2317.

Pangalos, G., Eichler, A., and Lichtenberg, G. (2013a).
Tensor systems - multilinear modeling and appli-
cations. In Proceedings of the 3rd International
Conference on Simulation and Modeling Methodolo-
gies, Technologies and Applications, 275–285. doi:
10.5220/0004475602750285.

Pangalos, G., Eichler, A., and Lichtenberg, G. (2013b).
Tensor systems-multilinear modeling and applications.
In SIMULTECH, 275–285.

Rasmussen, C.E. (2006). Gaussian processes for machine
learning.

Rogers, M., Li, L., and Russell, S.J. (2013). Multilinear
dynamical systems for tensor time series. In Advances
in Neural Information Processing Systems, 2634–2642.

Smola, A. and Vapnik, V. (1997). Support vector regres-
sion machines. Advances in neural information process-
ing systems, 9, 155–161.

Suchanek, F.M., Kasneci, G., and Weikum, G. (2007).
Yago: a core of semantic knowledge. In Proceedings of
the 16th international conference on World Wide Web,
697–706. ACM.

Theano Development Team (2016). Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688. URL
http://arxiv.org/abs/1605.02688.

Tucker, L.R. (1965). Some Mathematical Notes on Three-
mode Factor Analysis [by]. Urbana, Department of
Psychology, University of Illinois.

Vijayakumar, S. and Schaal, S. (2000). Locally weighted
projection regression: An o (n) algorithm for incremen-
tal real time learning in high dimensional space. In In-
ternational conference on machine learning, proceedings
of the sixteenth conference.

Yu, R. and Liu, Y. (2016). Learning from multiway data:
Simple and efficient tensor regression. In Proceedings of
the 33nd International Conference on Machine Learning
(ICML-16), 238–247.

Zhou, H., Li, L., and Zhu, H. (2013). Tensor regression
with applications in neuroimaging data analysis. Jour-
nal of the American Statistical Association, 108(502),
540–552.

