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I. Introduction: Multivariate Models for 
Relational Learning
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� Advantages of  SRL approaches 

� can handle complex structured representations
� can connect both to machine learning and knowledge 

representation
� connects to first order logic (FOL) via inductive logic programming 

(ILP)

� Object-to-object relationships can be modeled

Statistical Relational Learning (SRL)
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� Representation as directed graph
� Example: RDF (Resource Description Framework) graph of the 

Semantic Web

� Thus: connections to
� Learning on graphs 

Graph Representation 
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� Multivariate models can be quite useful for SRL

� We assume a quite general definition of a multivariate model 
� The model contains (maybe as a building block) a representation 

where several outputs are predicted
� In particular our definition includes Hierarchical Bayesian modeling

SRL and Multivariate Predictive Models 
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A Classical Generic Supervised Learning Task
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Data matrix

� Rows: data points
� Columns:

� Input vector x
� Output scalar  y
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Prediction of Several Output Variables
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� Rows: data points
� Columns: 

� Input vector x
� Output vector y
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Multiple Outputs

“Multiple outputs do not affect each others least squares estimates”

Hastie, Tibshirani, Friedman (2001)

We will study cases, where this statement is not applicable!
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Model Each Output Separately?
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Condition on All Other Variables?
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� Let’s consider some generic examples …
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1: Entity-Centered  Prediction

� Let’s assume a relational data model
� Definition of a statistical unit: typically entities of some type (person)
� Definition of a population: typically entities of some type with some properties (students in 

Munich)
� Definition of random variables associated with entities: attributes, relationships
� Definition of inputs:   typically aggregated information; could also be attributes
� We can derive a regular data matrix (matrixification)
� Advantage: formulated as standard learning problem where powerful learning algorithms 

are available
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information
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“The preference of a user for a movie depends on preference patterns and on movie attributes”

Outputs
� (one or 

several) 
relationships

� attributes

Tresp et al., 2009
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2: Relationship-Centered  Prediction

“young males like action movies”

� Symmetrical representation: 
attributes of two entity types 
are included

Mtt ..1
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3: Joint Models as Coupled Multivariate Models

� The aggregated information might be calculated based in information that is 
incomplete

� One obtains a global coupling of variables or a joint model

“a class label for a document depends on document properties and depends 
on the class label of cited documents (which might partially be unknown)”
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4: Joint Models as Structured Multivariate Models

� The network represents one data point
� All known attributed form the input of one data 

point
� The target variables have a structured form
� Conditional Random Fields (CRFs)

MM cc .... 11 xx

Linkage information

The network represents one data point
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In the remaining part we will discuss different approaches to multivariate 
models and illustrate their application to SRL
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I. Motivation: Multivariate Predictive Models for Relational Learning
II. Hierarchical Bayes - Mixed Models
III. Projection Methods

IV. Multivariate Models: Unstructured
V. Multivariate Models: Structured

VI. Conclusions
VII. Literature

Overview
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II. Hierarchical Bayes

�Predicting the same thing (patient’s length of stay) but in 
different situations (different hospitals)

�Relational setting: many users like many movies
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II.A. 
Problem Settings and Simple Solutions
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� Data is collected for M different situations (entities/sites/tasks) and the 
goal is to learn  predictive models

� Can data from other situations help to improve the prediction of

both               and for a new situation                   ? 

� For simplicity, we consider models linear in the parameters of the form

Typically we only have access to 

Problem Setting
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� describes the relationship between object i with 

attributes                   and  object j

� Example: movie i and user j

Problem Setting: SRL

)( ijf x

ix

Entity-Centered  

Prediction



Page 23

Simple Solution: One Global Model

� We learn one model with all data: Fruits, not apple and oranges
� Data efficient solution

� Problem: ignores differences in different situations

� Dependent on its attributes, a movie is either liked or disliked
(independent of the user)

∑ =
= L

l llwf
1

)()( xx φ
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Simple Solution: Separate Models

� A model for each situation is trained solely on its own data

� Problem: no sharing of statistical strength 
(but sometimes the correct solution)

� Only one output dimension contributes to parameter estimates

� A preference of user j1 tells me nothing about the preference of user j2

∑ =
= L

l lljj wf
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Simple Solution: Situation as Input

� The situation is just another set of inputs to the model, e.g., in form of 
indicator variables

� Data efficient
� Problem: sometimes suitable but the influence of the situation might be 

quite complex in which case this approach might fail

� Dependent on its attributes, a movie is either liked or disliked; in 
addition users have a general preference for movies

),( jf ux
T

jjj u )0,0,0,1,,0,0( , LL ==u
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From Multi-categorical Inputs to Hierarchical Model ing

Another view
� Consider a problem with a multi-categorical input variable

),( jf ux
T

jjj u )0,0,0,1,,0,0( , LL ==u

� This is exactly the case where one might think of applying Hierarchical 
Bayesian modeling! 

� The multi-categorical input is treated as situation
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II.B. 
Hierarchical Bayes / Mixed Models
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New Situation with Few Data Points

� Assume a few data points local in input space

x
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Motivation for Hierarchical Bayes

� Looking at other models
another solution becomes more likely

)(ˆ xf j

x

)(ˆ xf j
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Parameter Distributions

10φ 100φ

� The parameters for the 
different models might 
form again a Gaussian 
distribution 

),(~| Σmw NDnew

100,jw

10,jw

m
• Yu, Tresp, Schwaighofer (2005)

• Raina, Ng, Koller (2006) 
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Parameter Distributions: Entity-Centered  Prediction

10φ 100φ

If a person prefers action movies, this person dislikes romantic movies

),(~| Σmw NDnew
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� A new model sees the “learned” prior

� With a Gaussian (learned) prior we obtain a Gaussian process with 
mean function and covariance kernel given by

Learned Prior

),(~| Σmw NDnew
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Learned Prior in Function Space

10φ 100φ
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� So we got what we wanted: the new function is guided by the 
previously learned functions



Page 34

� We can decompose using 
a Principal Component Analysis (PCA):

� And obtain:

� From this view point the new model has a Gaussian parameter 
distribution with identity covariance matrix and with new learned 
basis functions formed as linear combinations of the original basis 
functions:

Covariance and Basis Functions
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Architecture: Hierarchical Bayesian Modeling
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Technical Details: EM Updates

� In typical applications noisy measurements for the different situations 
are available. The design matrix for situation j:           inverse Wishart: 

� Complete data likelihood
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Definition of Inverse Wishart

( ) )](tr
2

1
exp[det),|( 12/)2( −+− Σ−Σ∝Σ κκδ δ L

LIW

This definition has the advantage that it is marginalization 
consistent

A. P. Dawid. Some matrix-variate distribution theory: Notational 
considerations and a Bayesian application. Biometrika, 68(1), 
1981 
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As Matrix Factorization

RFYE Φ==)(

• If we look at the estimation of the training targets we get the 
matrix factorization 

( )MR rr K,1=
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Learned Basis Functions

� The key benefit in Hierarchical Bayesian modeling for linear systems is 
that common basis functions are learned that are used for all outputs

� Kernel before and after Training

)()()()()()( ki
T

ki
T

ki
T xxxxxx ψψφφφφ =Σ→
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Comments

� Advantages of Hierarchical Bayes:
� Inclusion of prior knowledge by defining the basis functions
� Generalization to new inputs/rows and new outputs/columns
� No problems with missing outputs

� Alternatively: in Hierarchical Bayes inference is often performed via 
Gibbs sampling or other approximate methods such as variational
learning (see, e.g.,  Latent Dirichlet Allocation, LDA) 

(Blei, Ng, Jordan, 2003)

� Naturally  Hierarchical Bayes is also applicable  beyond linear models

� Gelman, Carlin, Stern and Rubin (2003) provide a thorough discussion of Hierarchical 
Bayesian models
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Three Phases in HB modeling

� First Phase: With no data yet available the model for a new situation 
follows the prior (the mean function)

� Second Phase: With some data available for a new situation,  a model 
follows more closely a previous model that fits those data well

� Finally: With increasing data available, the model becomes 
independent of the learned prior

� Dimensional reduction:  Derived basis functions 

with a small                 are ignored

∑=
l

lklkkk vd )()( ,, xx φψ

kkd ,
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When Hastie’s Statement is Applicable

� If the hyper parameters (in our case:           ) are known a priori, i.e., 
they represent the empirical parameter distribution, then all output 
functions are independent
� Or: if output functions have no common prior distribution (predicting 

apples and oranges)

� In contrast, if the prior is learned then all measurements influence all 
predictions!

Σ,m
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Frequentist Equivalent: Mixed Models

� Known: 

� (unknown but) Fixed effect: 

� Random effect: 

� Special case: 

� regression model with 
random coefficients

� Relationship to HB-model: 

jjjjj Zy ε++Φ= bm*,

),0( Σ∝ Kj Nb
),0( 2

jNj j
Λ∝ σε N

jjZ Φ=

jj bmw +=

m

jb

jj Z,Φ
� New: correlated 

contributions that 
cannot be explained 
by the inputs (“noise”)

� Collaborative effect!

� MM: As Bayesian as a 
frequentist will ever get

� HB: as frequentist as a 
Bayesian will ever get
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� As already discussed, a system of fixed basis functions and 
Gaussian weight prior

� … is technically equivalent to a Gaussian process with 
covariance

and mean function

� Thus: 
� as parametric HB boils down to learning  

, 
� GP-HB boils down to learning 

Gaussian Process Hierarchical Bayes (GP-HB)
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GP-HB: Learning in Function Space

� Now we consider GP-HB in function space
� A prior for mean and covariance kernel is defined for a finite set of

points (typically the training data and some test points)) 

� MAP estimates for kernel and mean are calculated using EM 
equations 

� is the base kernel and can be used to represent prior 

knowledge about the kernel shape

.                 is the respective Gram matrix. 
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EM Learning for GP-HB

� In typical applications noisy measurements for the different situations 
are available (for missing data: simply set noise variance to infinity) 

� Complete data likelihood
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Reconstruction

RFYE ==)(

• If we look at the estimation of the training targets we get



Page 48

Induction: Generalizing to New Inputs

� GP-HB does not distinguish between the content-based effect and 
the collaborative effect

� Only the content-based effect can be generalized to new inputs 
(movies)

� To generalize to new inputs (induction) one can use different 
approximations. Schwaighofer, Tresp, Yu (2004) propose

� Schwaighofer, Tresp, Yu (2004) 
� Yu, Tresp, Schwaighofer (2005)

� Lawrence and Platt (2004): similar approach but without priors on mean and kernel

),()())(,(),( 11
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• 10000 documents with a total of 81 labels (situations) with TFIDF features; on average each document 
has  3.96 labels.

• The test set contains 9700 examples;  All: evaluation on all the test points. Partially Labeled: each test 
document with at least one label in some category.

Predicting Reuter’s labels

• SVM, RR: separate 
models for each task

• RMTL: only learns 
common mean function 
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Fast Implementation of GP-HB

• Straightforward of the EM approach on Netflix will take thousands of hours per 
iteration

• Fast implementation plus model simplification leads to 5h/iterations
• VB: variational Bayes matrix factorization. SVD: SVD for sparse matrices. BPMF: 

Bayesian Probabilistic Matrix Factorization. NSVD: Max Margin Matrix 
Factorization. NPCA: nonparametric PCA (GP-HB) 

• Yu, Zhu, Lafferty, Gong (2009)



Page 52

Summary Hierarchical Bayes

�Main benefit: data for a given situation is supported by data from other 
situations
�Training:

� Inputs (objects) can be arbitrary in different situations
(from another view: no problems with missing outputs)

�Generalization 
� to new objects (inputs) is possible
� to new situations (output dimensions) is possible

�Output driven regularization / dimensionality reduction!
�Not limited to models that are linear in the parameters
�More helpful references: 
�Caruana (1995), Thrun (1996): early work

� Zhang, Ghahramani and Yang (2005): find latent independent components (not just 
uncorrelated components)

� Barutcuoglu, Schapire and Troyanskaya (2006): application to gene function prediction
� Krishnapuram, Yu, Yakhnenko, Rao,  Carin (2008): recent NIPS workshop



Page 53

II.C. 
Nonparametric Hierarchical Bayes

�The prior parameterization needs to be quite 
expressive!
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)( ∞→N
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Prior Distribution

MLw

Posterior Distribution

Set of max. likl. 
estimates; 

Set of max. likl. 
estimates where a 
nonparametric 
distribution might be 
appropriate

A Problem with Low-dimensional  HB Approaches

w

w w
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Another View

10φ 100φ

� A latent mixture model for 
the distribution of the 
parameters

� Latent variable (clustering) 
model of functions, not 
data points! 

� Multi-modal learned prior 
distribution

100,jw

10,jw
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(Soft) Grouping of Variables or Functions
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� Colors: cluster assignment (grouping of outputs/functions, not data 
points)

� In each cluster, parameters are shared
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Finite Models: 
A Particular Mixtures of Experts Models (Regression)

� After training, let parameter vector         be assigned to cluster l

� As a prediction for situation j, based its past data                   one 
obtains

� Can be interpreted as a mixture of expert approach 
with experts                                    and  weight

� Note that in contrast to the typical mixture of expert approach, we 
assign a whole function (i.e., situation) to a component

∑ =
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l jjlj lZPffE
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� Tresp and Yu (2004)

lw
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Dirichlet Process Mixture Models for Multitask 
Learning

� Tresp, Yu (2004): Overview
� Jordan (2005): Tutorial
� Tresp (2006): Tutorial
� Xue, Liao, Carin, Krishnapuram (2007) 

� If, in a Bayesian approach, we let the number 
of components go to infinity, we obtain a  
Dirichlet process mixture model

� Automatic model selection: in the sampling 
procedure only a finite  number of states is 
being used

� This is equivalent to a nonparametric 
hierarchical Bayesian approach

w
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π
0α

jD
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Stick breaking 
representation of a 
Dirichlet process mixture 
model
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II.D 
Nonparametric Hierarchical Bayes for 

Relational Learning
� Dirichlet Process MixtureModels
� Gaussian Processes
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Generalization of Dirichlet
Process Mixture Models
(Nonparametric HB)
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Predicting a Single Relationship Type

� We will first be concerned with the situation where only one relationship 
type is concerned

� In this case a matrix representation is appropriate where

describes the relationship between row entity i and column entity j

� A new aspect: attributes for both input entities and output entities are 
available! 

� Symmetrical representation
� Note that, as before,  the whole network of interlinked entities should 

be considered to represent a single data point, thus the matrix does not 
represent i.i.d samples 

� In the spirit of the previous discussion we will focus on generalizations 
of nonparametric models 

jiy ,
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Hierarchical Bayesian versus Multivariate Mixture Models  

� Hierarchical Bayes:
� In a mixture model: columns are grouped and share parameters

� A common parameter  vector is assigned to several output 
dimensions or columns (in the same cluster)

� In a multivariate analysis
� In a mixture model: rows are grouped and share parameters

� A common parameter vector is assigned to several data points 
(in the same cluster) 

� Now
� A mixture model for both rows and columns 
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Mixture Analysis of Multivariate data
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� Colors: cluster assignment (grouping of data points)
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Recall: Mixture Analysis of Outputs
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� Dirichlet process mixture models (Nonparametric Hierarchical Bayes)
� Colors: cluster assignment (grouping of outputs/functions, not data 

points)
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Mixture Analysis of Input Objects and Output 
Objects
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� Colors: cluster assignment (grouping of outputs/functions, not data points)
� t: attributes of output objects
� Infinite Hidden Relational Model (IHRM, Xu et al. 2006, Kemp et al. 2006)

1t MtL

� Note: not really one matrix anymore: a relational data base would require at 
least two tables

Relationship-

Centered  

Prediction

Joint Models 

as Coupled 

Multivariate 

Models
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Example: Social Network

To introduce the IHRM we use a 
social network example

� Some persons are known to be 
friends

� Persons can either be male or 
female

� Can we predict friendship?

Graphical representation:
� Sociogram
� Entity-relationship graph
� RDF-Graph

� Xu, Tresp, Yu, Yu (2008)



Page 67

Relational Graph and Random Variables

� Each random variable 
stands for the truth value of 
a statement
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A Possible Ground Bayesian Networks

� The red directed arcs indicate 
direct probabilistic 
dependencies

� Here we assume that 
friendship can be predicted by 
the attributes (gender)

� We obtain a ground Bayesian 
network

� Problems:

� Only local dependencies; 
no global propagation of 
information

� No collaborative effect 
(exploiting friendship 
patterns)
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Hidden Relational Model (HRM)

� In the HRM we introduce a latent 
(cluster) variable for each object

� The latent variable is the parent of all 
nodes involving statements that 
include the object

� The latent variable represents the 
unknown information that would be 
sufficient to predict links (latent 
attributes)

� The state of the latent variable 
depends on

� The attributes (gender)
� The links an object is involved in and the states of the latent variables of the 

objects involved in the link. 
� Identification of roles of actors
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Infinite Hidden Relational Model (IHRM)

Infinitely many states!

� In the IHRM the number of states 
in each latent variable is infinite

� We achieve a nonparametric 
hierarchical Bayesian model in 
form of a Dirichlet process 
mixture model

� A property of the Dirichlet
process mixture models: During 
inference, the number of hidden 
states is adapted to the data in a 
self organized way
� Important if different object 

types are involved 
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Information Propagation in IHRM 

� Information propagates along 
“relational paths”

� All known information propagates 
to the relation of interest via 
hidden variables of the involved 
objects
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Advantages of the IHRM

� Easy to apply without any extensive structural learning
� Structural learning in Statistical Relational Learning can be quite 

demanding

� Information can flow through the network of latent variables and have 
a global effect
� Collaborative effect (exploiting friendship patterns)

� The ground network is guaranteed to have no directed loops

� Clustering in relational domain (multi-relational clustering)
� Analysis of clustering structure based on relational information
� Each entity class can learn its optimal number of clusters

� No computationally-expensive feature construction (aggregation) and 
no global normalization
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Inference/Learning in the IHRM

� A full Bayesian approach for learning and inference in the IHRM is 
feasible (and even practical) using Gibbs sampling

� Mean-field approximations

� Gibbs sampling simulates the model (i.e., samples from parameters 
and variables) conditioned on the observations
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Generalization

� N-ary relations

� Arbitrary number of entity types

� Multiple kinds of relations

� General Relational Model!

Joint Models 

as Coupled 

Multivariate 

Models

),,|1( )3()2()1(
,, kjikji HHHRP =

),,|1( )3()2()1(
,, kji

ltype
kji HHHRP ==
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Inference in the IHRM

We derived and compared various inference and learning 
approaches

� Gibbs sampler derived from the Chinese restaurant process 
representation (Kemp et al. 2004, 2006, Xu et al. 2006); 

� Gibbs sampler derived finite approximations to the stick 
breaking representation

� Dirichlet multinomial allocation (DMA)
� Truncated Dirichlet process (TDP)

� Two mean field approximations based on those two 
approximations

� A memory-based empirical approximation (EA)
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Experiment 1:
Experimental Analysis on Movie Recommendation

Task description
� To predict whether a user likes a movie given attributes of users and 

movies, as well as known ratings of users.
� Data set: MovieLens
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MovieLens Attributes

1998~1995; 1994~1990; 1989~1980; after 1979Year (4)

Action; Adventure; Animation; Children's;
Comedy; Crime; Documentary; Drama; 
Fantasy; Film-Noir; Horror; Musical; Mystery;
Romance; Sci-Fi; Thriller; War; Western 

Genre (18)
Movie

Administrator; Artist; Doctor; Educator;
Engineer; Entertainment; Executive; 
Healthcare; Homemaker; Lawyer; Librarian;
marketing; None; Other; Programmer; 
Retired; Salesman; Scientist; Student; 
Technician; Writer;

Occupation 
(21)

Female; MaleGender (2)

>61; 60~46; 45~27; 26~19; 18~13; 12~4Age (6)

User
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Experimental Analysis on Movie Recommendation

69289267.6366.5465.8365.26MF-TDP

------38664.5564.5564.1063.91EA

774716499368.5366.7365.7165.13GS-CRP

12

34

44

#Compm

66.86

68.33

68.27

given20

66.54

67.69

67.82

given15

65.00

65.96

66.35

given10

8

52

59

#Compu

289364.23MF-DMA

2529565.64GS-DMA

3377065.51GS-TDP

given5
Time (s)

Prediction Accuracy (%)
Method

� Sampling based on the stick-breaking representation is faster than 
CRP-based Gibbs sampling since Z can be updated in a block; it also 
gave comparable performance

� Gibbs sampling finds many more components than mean field but only 
less than 10 have significant weight 
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Movie cluster analysis
Gibbs sampling with CRP

Event Horizon (1997)
Batman & Robin (1997)
Escape from L.A. (1996)
Batman Forever (1995)
Batman Returns (1992)
101 Dalmatians (1996)
The First Wives Club 
(1996) 
Nine Months (1995)
Casper (1995) 
……

Swingers (1996) 
Get Shorty (1995) 
Mighty Aphrodite (1995)
Welcome to the Dollhouse 
(1995)
Clerks (1994) 
Ed Wood (1994)
The Hudsucker Proxy 
(1994) 
What's Eating Gilbert 
Grape (1993)
Groundhog Day (1993)……

Big Night (1996)
Antonia's Line (1995) 
Three Colors: Red (1994) 
Three Colors: White (1994) 
Cinema Paradiso(1989)
Henry V (1989)
Jean de Florette (1986)
A Clockwork Orange 
(1971)
Citizen Kane (1941)
Mr. Smith Goes to 
Washington (1939) ……

My Best Friend's Wedding 
(1997)
G.I. Jane (1997)
The Truth About Cats & 
Dogs (1996)
Phenomenon (1996)
Up Close & Personal 
(1996)
Tin Cup (1996)
Bed of Roses (1996)
Sabrina (1995)
Clueless (1995)……

Star Wars (1977) 
Star Wars: The Empire 
Strikes Back (1980)
Raiders of the Lost Ark 
(1981)

Shawshank Redemption 
(1994) 
Wrong Trousers (1993)
Schindler's List (1993)
Silence of the Lambs 
(1991) 
One Flew Over the 
Cuckoo's Nest (1975)
Godfather (1972) 
Rear Window (1954)
Casablanca (1942)

Brave Heart (1995)
Forrest Gump (1994)
Fugitive (1993)
Terminator 2: Judgment 
Day (1991)
Indiana Jones and the 
Last Crusade (1989)
Die Hard (1988)
Aliens (1986) 
Terminator (1984)
Return of the Jedi (1983)

Conspiracy Theory (1997) 
The Game (1997) 
Air Force One (1997)
Ransom (1996)
The Rock (1996)
Primal Fear (1996)
Crimson Tide (1995) 
In the Line of Fire (1993)
The Abyss (1989)
……

Cluster 4 (32/51)
children

Cluster 3 (49/98)
comedy

Cluster 2 (76/113)
old, non US, drama

Cluster 1 (161/207)
very new and popular

Cluster 8 (3/6)
H. Ford, Star Wars

Cluster 7 (8/13)
old drama

Cluster 6 (9/15)
old action

Cluster 5 (16/27)
new action
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Experiment 2:
Gene Interaction and Gene Function

Task
� Cluster analysis 
� Prediction of gene functions given the information on the gene level 

and the protein level, as well as the interaction between the genes.

Attribute data: CYGD (Comprehensive Yeast Genome Database) from 
MIPS (Munich Information Center for Protein Sequences)
� 1000 Genes
� Attributes: Chromosome, Motif, Essential, Class, Phenotype, Complex, 

Function

Interaction data: DIP (data base of interacting proteins) 
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IHRM Model

Ground Network

Task: Genes (1243) have one or more 
functions (14)[1-4] (cell growth, cell 
organization, transport, … ) to be 
predicted; 862 for genes for 
training, 381 for testing

Genes might interact with one another

For a gene one or more phenotypes
(11)[1-6] are observed in the 
organism

How the expression of the gene can 
complex with others to form a larger 
protein  (56)[1-3] 

The protein coded by the gene might 
belong to one or more structural 
categories (24) [1-2]

A gene might contain one or more 
characteristic motifs (351) [1-6] 
(information about the amino acid 
sequence of the protein)

Gene attributes are: essential (an 
organism with a mutation can 
survive?), which chromosome

Ground Network



Page 82

Cluster Structure

Some gene clusters: the genes in the same cluster have dense 
interactions; but the genes in the different clusters have rare interactions.

Node: gene
Link:   interaction 
Color: cluster.
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5592.61Structural Category

10092.14Interaction

1093.08Attributes of Gene

4592.71Phenotype

693.12Motif

19791.13Complex

Importance
Prediction Accuracy (%)

(without the relationship)
Relationships

The importance of a variety of relationships in 
function prediction of genes

Relevance of Attributes and Relationships
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Integration of  Ontology into IHRM

signal peptidase actin filaments microtubules

Ontology-related 
probabilistic dependency

cytoskeletontranslocon
Complex

Ontology
Gene motif

function

Z

interact

…

Ontologies are a valuable 
source of prior information
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Integration of  Ontology into IHRM (2)

800 (Training) / 200 (Test)

Without Ontology: 0.89

With Ontology:       0.93

Without  Ontology: 0.83

With Ontology:        0.89
AUC

200 (Training) / 200 (Test)
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Experiment 3:
Context-Dependent Statistical Trust Learning: Who do you trust? 
When? 

� The need for an evaluation of trustworthiness of agents in future e ncounters
is getting increasingly important in distributed systems since contemporary 
developments such as the Semantic Web, Service Oriented Architectures, 
Pervasive Computing, Ubiquitous Computing and Grid Computing are applied 
mainly to open and dynamic systems with interacting autonomous agents

� Most existing statistical trust models do not perform well when there is no long 
history of interactions in a predefined and consistent environment

� We  implement and learn context sensitive trust from past experience using a 
probabilistic relational model

� A seller might be trustworthy if offering a specific product, but not another 
product. 

� Being the most popular online auction and shopping website fraud on eBay is a 
serious and well-known issue. 

� eBay users leave feedback about their experiences

Rettinger, Nickles, Tresp (2008)



Page 87

� % of positive ratings[2]
� eBays feedback score [5]

� More than x number of 
positive ratings

� Member since

� Top eBayCategory[47]
� Condition [new/used]

� Final price
� # of bids

� Feedback [2]

� Task:
� Predict               for new 

situation

Infinite Hidden Relational Trust Model

sellers

items

aATT

sATT

cATT

tATT

tATT
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eBay Data

� 47 sellers (agents)
� 631 different items (states)

� 1818 rated sales (47x631 possible sales)

4 agent clusters versus 40 item clusters (black: tr ustworth)

47 agents in 4 agent clusters
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Predictive Performance

� Predicting Ratings:
� 95% confidence interval, 5-fold cross-validation

� Ratio: Baseline
� SVM: Support Vector Machine, DecTree: Decision Tree
� +ID: Different way of propositionalizing by adding an ID-number for 

every entry

Accuracy ROC Area
Ratio 48.5334 ( ± 3.2407) -
SVM 54.1689 ( ± 3.5047) 0.512 ( ± 0.0372)

DecTree 54.6804 ( ± 5.3826) 0.539 ( ± 0.0502)
SVM+ID 56.1998 ( ± 3.5671) 0.5610 ( ± 0.0362)

DecTree+ID 60.7901 ( ± 4.9936) 0.6066 ( ± 0.0473)
  IHRM 71.4196 (± 5.5063) 0.7996 (± 0.0526)



Page 90

Experiment 4:
Integrating DL-Ontologies

� Integrating ontological background knowledge
� From a formal ontology to a probabilistic relational model i.e., the 

Infinite Hidden Semantic Model (IHSM) that obeys formal constraints 
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Experiments - Social Networks
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FOAF from livejournal.com

Roles: Taxonomie:

Statistics: 
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SHOIN(D) constraints for FOAF

• The age of persons and the schools they are attending is partially 
known

• The ontology designer specifies that persons under the age of 6 are 
not allowed to attend a school

• Constraints:
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• Protege: Ontology engineering

• Jena: Triple Store

• Pellet: Deductive Reasoning

• Colt: Linear Algebra, Statistics

Software
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Results: Number of Components

• IHSM (with constraining) needs more components for the concepts 
affected by constraints compared to IHRM (without constraining)

• For "School" and "Person" additional components were learned for
inconsistent individuals

• For "Date" only 2 components were found: A "too young and one "old 
enough" component
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Results: Predictive Performance for Different Roles

• Area under the ROC (AUC) and 95% confidence intervals for 
predicting relations

• Those relations where randomly chosen for testing and 
withhold from training via a 5-fold cross-validation.

• Roles "attends" and "dateOfBirth" are both affected by the 
constraints, so it is obvious that IHSM achieve a higher performance.

• However, "knows" is not directly affected by the constraints and still 
IHSM shows improved performance

• This shows that the constraints chosen by the ontology 
designer conform with the actual evidence.
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Generalization of 
Gaussian Processes
Hierarchical Bayes
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Relationship-Centered Prediction with Gaussian Proces ses

� Gaussian Processes HB  can also be 
generalized to a two-sided solution

� Let Y be a link matrix and let F be  its 
approximations

� With  SVD

one solution is 

� We can integrate attribute information by 
assuming that 

are Gaussian processes (input dependent)

TVDUF
~~=

∑=

=

kjkiji
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Stochastic Relational Model: 
Multi-task Learning using Task-specific features

� Similar architecture but the latent components consist of  K continuous 
variables generated from Gaussian processes













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� Yu, Chu, Yu, Tresp, Xu (2006)
� Zhu, Yu, Gong (2008)
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� Yu, Chu, Yu, Tresp, Xu (2006)
� Yu and Chu (2007)
� Bonilla, Chai, and Williams (2007)
� Zhu, Yu, Gong (2008)

Relationship-

Centered  

Prediction

Joint Models 

as Coupled 

Multivariate 

Models
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Stochastic Relational Model
Multi-task Learning using Task-specific features (2)


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� Given two prior kernel 

functions based on row 
& column features: 

SRM defines a 
distribution for the rank-k 
relational function f(x,t)

� Generalization of matrix 
factorization using 
attributes in a 
hierarchical Bayesian 
framework

),(),,( 00 jjii ′′ ΣΩ ttxx

� Efficient Gibbs sampler is developed to do full Bayesian inference (code is available online)
� Applied to Netflix data (480189x17770), gave excellent performance
� In the limit k->infinity, f(x,t) follows a Gaussian process                        .

),0( Σ⊗ΩGP ),(),(),( ''',' jjiijiij ttxxffCov ΣΩ=
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• C. Lippert, S.-H. Weber, Y. Huang, V. Tresp, M. Schubert, H.-P. 
Kriegel: Relation Prediction in Multi-Relational Domains using 
Matrix Factorization, NIPS 2008 Workshop on Structured Input 
Structured Output

• Z. Xu, K.  Kersting, V. Tresp. Multi-relational learning with gaussian
processes. In Proceedings of the 21st International Joint 
Conference on Artificial Intelligence (IJCAI-09), July 2009. 

Some Related Work
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Summary

� The IHRM is a natural generalization of mixture models and of 
nonparametric Bayesian models to relational domains: both 
attributes and relationships can be predicted

� The  SRM is a natural generalization of GP-HB to a relational domain

� Both the IHRM and the SRM can be generalized to Joint Models (as
Coupled Multivariate Models)
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III.  Projection Methods
� For the set of objects all (or many) outputs (labels) are available  

� before � now 
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Projection Methods:

� Recall: Hierarchical Bayes
defines new derived basis functions

� The projection methods considered here have a similar goal: they
define new basis functions as a linear combination of the existing 
basis functions, such that the (independent) prediction of the outputs 
is improved

∑=
l

lklkkk vd )()( ,, xx φψ
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Projection Methods:

� Projection methods are only mentioned in passing

� They are closely related to HB modeling
� There is a huge literature

� But
� Little or no use in relational modeling
� Require: complete training data
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� Principle component regression (PCR) is based on an optimal 
approximation of the design matrix

where

� The derived basis functions are  

� In our context, the disadvantage of PCR is that it only considers input 
information

Projection Methods: Principle Component Regression 

)()( , xx k
k

jkj v φψ ∑=

F
TVW ||||min −Φ IVV T =
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Projection Methods: Canonical Correlation 

� It is desirable to also take into account output information

� An example is Canonical Correlation Analysis (CCA), which solves

� The solution is based on a generalized eigenvector problem 

� Related: Partial Least Squares (PLS), Linear Discriminant Analysis 
(LDA)

( ) ( )Yvu T
vu Φ,max 1,1 == vvuu TT

� Shawe-Taylor and Christianini (2004)



Page 108

Summary: Projection Methods

� Suitable when for a given x, the target is known at all (or most) 
situations in training but in testing, no outputs are available

� Close connection to Hierarchical Bayes modeling

� Suitable for predicting many labels of objects (text annotaions, image 
annotations) based on object features!

� Generalization 
� to new objects (inputs) is possible
� to new situations (output dimensions) is possible

� Output driven dimensionality reduction!
� Limited to models that are linear in the parameters resp. kernel

representations
� There is a huge literature on projection methods 

(e.g., papers in Hardoon, Leen, Kaski and Shawe-Taylor (2008)

� For relational learning not so interesting, since assumes complete data 
in training
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IV. 
Multivariate Modeling: Unstructured
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Main Difference

� With Hierarchical Bayes and with Projection Methods: after training, 
there is no coupling between the various outputs

∏ =
= M

j iijiii yPyP
1 ,,* ),|(),|( wxwx

� Now we consider models, for which -after training- the dependencies 
between the outputs are part of the model

),|,,( ,1, wxiMii yyP L

� In particular in induction, both approaches behave differently
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Predicting a Single Output

� From

we can marginalize and obtain 

)|,,( ,1, iMii yyP xL

∑=
jiMii yyy
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L xx

Thus the marginal of a single output variable given the input is, in 
general,  a complex mixture model
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Mixture Models
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Mixture Model 

� Joint distribution (complete data)

� Integration out the latent variable  leads to the log-likelihood (EM-training)

)|,()(),,( ,*,* lZyPlZPlZyP iiiiiii ==== xx

� Prediction 
of a single output:

� Sharing strength: component assignments of a data point in training 
depend on all outputs

� Infinite number of clusters ->(Another) Dirichlet process mixture model
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Conditional from Joint: Mixture Model




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� Colors: cluster assignment (grouping of data points)
� In each cluster (grouping of rows) parameters are shared

Entity-Centered  

Prediction
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Dirichlet Process Mixture Models for Multivariate 
Learning

w
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Stick breaking 
representation of a 
Dirichlet process mixture 
model
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Relational Mixture Models

� J. S. Breese, D. Heckerman, C. M. Kadie. Empirical Analysis of 
Predictive Algorithms for Collaborative Filtering. UAI 1998

� B. Marlin, R. Zemel, S. Roweis, M. Slaney.
Collaborative filtering and the missing at random assumption. UAI-
2007
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Reduced Rank Linear Models
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Reduced Rank Penalized Model

� Consider the SVD

� The penalized least squares prediction  can be written as 

� Where 

� Reduced Rank: only singular vectors up to rank r are considered
� Disadvantage: no sharing of statistical strength

YU
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Joint Reduced Rank Penalized Model

� Consider the SVD of the data matrix

� The penalized least squares prediction can again be written as 

� Where again

� Reduced Rank: only singular vectors up to rank r are considered
� Advantage: Sharing of statistical strength!

� V.Tresp, Y. Huang, M. Bundschus, A. Rettinger. Materializing and 
querying learned knowledge. IRMLeS 2009
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Entity-Centered  

Prediction
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Application to the Semantic Web

Semantic Web is based on the Resource Description Framework (RDF)
� RDF triples (subject,property,object) present the relationship between 

things
� The linking structure forms a directed, labeled graph, i.e. RDF graph
� An example: Jack knows Joe

subject:    <http://www.example.org/Jack> 

property: <http://xmlns.com/foaf/0.1/knows>

object:    <http://www.example.org/Joe>

http://www.example.org/Jack

http://www.example.org/Joe

http://xmlns.com/foaf/0.1/knows
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� Each node in this cloud diagram represents a distinct data set 
published as Linked Data

� The arcs indicate that links exist between items in the two connected 
data sets.

Linked Open Data (LOD) Project

In our experiments 
FOAF is used, which 
is a distributed social 
domain describing 
persons and their 
relationships in SW 
format.

Part of the Linking Open (LOD) Data Project Cloud Diagram 
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Characteristics and Challenges of Linked Data

Linked Data is

The size of the WebLarge scale

Many different entity types and relationshipsHeterogeneous

Information is missing, e.g., for privacy reasonsIncomplete

E.g., only a tiny subset of all possible persons are someone’s 
friends

Extremely 
sparse

So we can do: data integration, query answering, reasoning, and learning , but it 
is also

It is arranged in an hierarchical ontologyStructured

It uses RDF to make typed statements that link arbitrary things 
in the world

Generic

It is linked to other external data sets and can in turn be linked 
to from external data sets

Interlinked

It uses URIs as names for thingsDereferenceable
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Relationship Prediction on the Semantic Web

Again, the Linked Data is notoriously incomplete and sparse . A huge 
amount of potential inter- and intra-relationships is to uncover.

For doing this, we developed a machine learning framework which
� is used to predict potential relationships and attributes by 

exploiting regularities in the data using statistical relational learning 
algorithms

� is capable to deal with the challenge data situation on the SW, i.e. 
sparse data and missing information

� scales well with the size of the SW
� is as easy to use as “push-button”
� In addition, the learnt relationships and their probabilities can be 

easily integrated into standard query language
[V. Tresp et al.,  2009]
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Data Set – ER-Diagram

Person Date

Interest

School

#BlogPosts

OnlineChat

Account

Location

DateOfBirth

Has

Attends
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Posted

Residents

Knows

n 1

n m

n1

nm

nm

n

1

n

m

Entity-relationship diagram of LJ-FOAF domain
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Data Matrix (FOAF)
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Results: Who wants to be Trelena’s Friend
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Topic Models



Page 128

Probabilistic Latent Semantic Indexing (pLSI)

�The pPLSI has been introduced as a probabilistic 
generative model for document collections (Hofmann, 
1999)
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�This is the probability that word j is added to document i
�Z is a latent variable 

β
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pHITS

�pHITS uses the same idea to model citation links between 
documents (Cohn and Chang, 2000)

Z d
M

d

�Cohn and Hofmann (2001) have combined pLSI and 
pHITS to model citation networks by including words as 
document attributes (Missing Link)

�Predicting links from word counts and existing links
�A related infinite version based on Dirichlet processes has 

been proposed by Sinkkonen, Parkkinen, Aukia and Kaski
(2008)
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Latent Dirichlet Allocation (LDA)

�The LDA model is a proper Hierarchical Bayesian version 
of the pLSI model

Z w

M

θ βα

)|(Dir)( αθθθ ==dP

�The LDA model has been used to model network data in 
the infinite DERL model of Xu and Tresp (2005)
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Mixed-membership stochastic block models (MMSB)

�The MMSB is another generalization of the pLSI/LDA 
models for network modeling (Airoldi et al.)

�Model: link between node i and node j
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V
Multivariate Modeling: Structured
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Intuition: Structured Output Prediction Problems 

� Exploit correlations and constraints in the outputs

� Based on independent classification, since the “v” had a higher 
probability than an “s”, an OCR gives “Braunvchweig” as an answer

� Since “sch” is very common in German, an “s” becomes more 
likely

� “Braunschweig” is in the dictionary  

“s” or “v”



Page 134

Intuitive Example  

A B C
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Intuitive Example  

A B C
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Examples 

� Text to text-content (annotation)

� Text to parse trees

� Machine translation: English to French

� Images to image segmentation

� Images to image content

� Images to image annotation

� Images to image 3D pose

� Images to image robot arm coordinates
� From projections to reconstructed 

de-noised image (CT, MRI)

� DNA to DNA-segmentation

� DNA to protein structure
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Important Model Class:  Conditional Log-Linear Models

� How does one design interesting multivariate models?
� An interesting class: conditional log-linear models (a.k.a generalized 

linear models) 
� Model design boils down to the design of interesting features

� Feature functions                                   Parameters: 
(input, output):
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Conditional Log-Linear Models from Graph Structure

� Given a undirected graphical structure and its independence 
assumptions, a probability distribution factorizes in clique potentials as
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Conditional Log-Linear Models from Graph Structure

� A particular parameterization

� If the features imply an independency structure, conditional log-linear 
models are also known as
� Conditional Markov networks
� Conditional (Markov) Random Fields (CRFs)
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Parameters Sharing

� Often one assumes some invariance, e.g., 

� Each clique uses the same feature functions
� Data efficiency
� Can handle sequences with varying lengths
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Training and Recall

Form the conditional version of a joint model or directly formulate a 
conditional model and train the conditional model directly

Log-likelihood:

Prediction: e.g., 
by finding the most 
likely configuration:
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Conditional Random Fields (CRFs)

� CRFs for named entity recognition
� Input: 50 000 and more textual features
� Output: Sequence of maybe 10 entity classifications (with maybe 5 

states for each entity: null, city, organization, person name, 
occupation) (Lafferty,  McCallum, Pereira, 2001)

� Increasingly replacing Hidden Markov Models in many applications
� Interactions between outputs are explicitly modeled (since low-

dimensional)
� Parameter sharing
� Prediction: iterative process
� Clear performance benefits from training a multivariate model!
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Conditional Random Fields
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CRFs for Named Entity Recognition and Relation Extraction

Altered expression Genetic variation

• Mining of the complete GeneRIF Db for gene-disease relations
• Known disease gene pairs  according to GeneCards Db is 3.962 

compared to 4.856  in our network (as of May 2009)

• Bundschus, Dejori, Stetter, Tresp and Kriegel (2008) 
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Social Network Analysis 

� Outputs y correspond to attributes of entities (wealth, social status)
� Inputs are grouped and describe properties of nodes (e.g., persons)
� Often there is only one network (one data point): learning via 

parameter sharing
� New challenge since  number of neighbors is varying: aggregation

M
M yy KL ,,,, 1

)()1( xx

• Chakrabarti,  Dom and Indyk (1998)
• Neville and Jensen (2000)

• Taskar, Abbeel and  Koller (2002)
• Lu and Getoor (2003) 

• Neville and Jensen (2004)
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Collective Classification in Social Network Analysi s 

• Collective classification: a class label of an entity depends on the class 
label of entities to which a relationship exists (“knows”) (homophily)

• Inference in the network via  Gibbs sampling, relaxation labeling, iterative 
classification or loopy belief propagation

• Simple propagation models, e.g., Gaussian random in semi-supervised 
learning give very competitive results. 
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HasAttributes

Examples

• The wealth of person j depends on 
features of the person j,  and on the 
wealth of the persons that person j
knows (person m and person l) and the 
wealth of persons which know person j
(person k)

• The classification of document j
depends on the classes of cited and 
citing documents and on document 
attributes (hypertext classification)
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Summary: Structured Output Prediction 

� In structured output prediction constraints between outputs implied 
by a graphical model are exploited, which  leads to a reduction in 
model complexity (exploitation of independencies)

� Parameter sharing leads to data efficient models

� At the same time, the dependency between input and a single output 
variable can be highly complex (highly complex mixture model)

� Highly active area of research (e.g., Gökhan, Hofmann, Schölkopf, Smola, Taskar, 
Vishwanathan, 2007, Borgwardt, Tsuda, Vishwanathan, Yan, 2008)
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What We  Did Not 
Cover
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What we Did Not Cover: Max Margin Approaches

These approaches are related to CRFs but optimize a margin-based 
cost function

• No normalization function
• Potentially: advantages in terms of accuracy and tunability to 

specific loss functions 

• Taskar, Guestrin and Koller (2004)
• Tsochantaridis, Hofmann, Joachims and Altun (2004)
• Tsochantaridis, Joachims, Hofmann, and Altun (2006)
• Rousu, Saunders, Szedmak and Shawe-Taylor (2006)
• Rousu, Saunders, Szedmak and Shawe-Taylor (2007) 
• Altun, Hofmann and Tsochantaridis (2007)
• Weston, Bakir, Bousquet, Mann, Noble and Schölkopf (2007)
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What we Did Not Cover: Neural Networks

� The very first Neural Networks had multiple outputs (e.g., Nettalk)
� There are Neural Networks for multi-task learning and for structured 

prediction
� E.g.,  papers by Yann LeCun, Yoshua Bengio, Leon Bottou, Patrick 

Haffner,  …

� Also ICML 2009 Workshop on Learning Feature Hierarchies. 
Organizers: Kai Yu, Ruslan Salakhutdinov, Yann LeCun, Geoff Hinton, 
Yoshua Bengio
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Conclusions 

� In many situations it makes sense to predict M outputs than to only predict one
� This is also true in SRL where many correlated variables can be predicted 

� Structures Output Prediction exploits both prior knowledge about the structural 
independencies between outputs and parameter sharing

� An important model class concerns conditional random fields (CRFs)
� Structures Output Prediction has been shown to be effective in Social Network modeling

� We discussed Hierarchical Bayes
� Nonparametric Hierarchical Bayes (Gaussian processes, Dirichlet process mixture 

models) provide flexible model classes
� We discussed applications to SRL

� Multivariate modeling exploits dependencies between inputs and outputs but also 
dependencies in between outputs

� Often all outputs are sensitive to a parameter and learning is data efficient
� They are most effective for the prediction of relationships
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