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Abstract. This paper addresses issues in constructing a Bayesian net-
work domain model for diagnostic purposes from expert knowledge. Di-
agnostic systems rely on suitable models of the domain, which describe
causal relationships between problem classes and observed symptoms.
Typically these models are obtained by analyzing process data or by
interviewing domain experts. The domain models are usually built in
the forward direction, i.e. by using the expert provided probabilities of
symptoms given individual causes and neglecting the information in the
backward direction, i.e. the knowledge about probabilities of problems
given individual symptoms. In this paper we introduce a novel approach
for the structured generation of a model that incorporates as closely as
possible that subset of the unstructured multifaceted and possibly con-
flicting probabilistic information provided by the experts that they feel
most confident in estimating.

1 Introduction

Bayesian (causal) networks are directed acyclic graphs with edges whose direc-
tion indicates causality and with parameters that capture the joint probability
functions of the involved variables. Bayesian networks arose out of an attempt
to add probabilities to expert systems, and this is still their most common use.
Bayesian networks are well suited for the diagnostic examination of domains
with many random variables, which are interrelated in non-transparent, non-
deterministic relationships. They form a graphical representation of the domain
variables and model their dependence and independence relations. Reference [1]
gives an example of the application of troubleshooting via Bayesian networks
in the domain of GSM cellular mobile systems, and [2], [3] of an application
in the medical domain. Following a short review of Bayesian networks, we ad-
dress issues of modeling a domain with such networks. The main limitation in
building a Bayesian network based on expert knowledge is that the expert can
provide only a subset of the marginal and conditional information needed to
fully describe the joint probability of the problem and symptom variables. In
addition, the expert provided information usually includes probability estimates
in both directions, i.e from problems to symptoms and vice versa. Typically,
Bayesian network models are built by exploiting the available information about
the conditional probabilities in one direction only, usually the expert estimates
of conditional probabilities of symptoms given individual problems, and then
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making assumptions about the missing conditional probabilities describing the
probabilities of symptoms given several problems simultaneously. In this paper
we propose a novel way to match the model to that part of domain information
that can be provided with ease and confidence by human experts. The herein pro-
posed SFOBE (Smallest Forward-Backward Expert-based) approach enables the
use of expert provided estimates of conditional probabilities in both directions,
problem given symptoms and vice versa, in building Bayesian network based
expert domain models. The use of the algorithm is illustrated on an example
domain with four problems and two symptoms.

2 Forward and Backward Modeling Aspects

In this section we examine modeling aspects in constructing a Bayesian network
for diagnosis assistance from expert provided information given in both direc-
tions, forward and backward. Forward probabilities are those needed to build a
Bayesian network as detailed in appendix A, points 2 and 3, namely the marginal
probabilities of root nodes and the conditional probabilities of children given par-
ents. Backward probabilities are the marginal probabilities of leaf nodes and the
conditional probabilities of parents given children. There are two operating di-
rections of a causal model: forward, for model construction and simulation, and
backward, for diagnosis. Our considerations are applicable to domains governed
by cause and effect principles. In this paper we consider only binary variables.

Notation: To shorten formulas and derivations we abbreviate P (R = 1) =
P (R), P (R = 0) = P (R). To avoid confusion we mark distributions by a ”d”
superscript, as in P d(K|P1, P2). The terms root-cause, cause and problem are
used interchangeably to denote the parent in the examined causal hierarchy; and
so are the terms effect, symptom or indicator, which denote the child.

2.1 Two Root-Causes

We first illustrate the various alternatives for modeling a causal dependence, and
the associated degrees of freedom, on the simple case of a single binary symptom
K that is causally dependent on two binary problems P1 and P2, as shown in
Fig. 1. The table lists the conditional probabilities P d(K|P1, P2) for all 23 values
of the three random variables. For example P (K = 1|P1 = 1, P2 = 0) = p1 and
P (K = 1|P1 = 0, P2 = 1) = p2, while P (K = 1|P1 = 0, P2 = 0) = l is the
so-called ”leak” probability, which is the probability that the effect is present
even though none of the causes within the considered domain is present. As
previously said, in order to completely determine a causal model, the following
forward probabilities have to be specified: the probabilities of the root nodes, and
the conditional probability tables of any child node given its parents. In this case
this means specifying the probability distributions of the random variables P1,
P2 and K|P1, P2, that is, the following 6 numbers, the other being determined
by the requirement that the probability of disjoint mutually exhaustive events
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0 1 P1P d(K|P1, P2)
0 1 0 1 P2

K=0 1-l 1-p2 1-p1 1-p
K=1 l p2 p1 p

Fig. 1. Cause-to-effect model of simple domain with two problems and a single common
symptom

sums to one:

P (P1), P (K|P1, P2) = p1, P (K|P1, P2) = p (free parameter)
P (P2), P (K|P1, P2) = p2, P (K|P1, P2) = 0 or l (leak)

The expert can readily estimate the values of the marginal probabilities P (P1),
P (P2) which are the probabilities that problem Pi is present, the values p1, p2

that the symptom is present given that exactly one of the alternative causes is
present, as well as the ”leak” probability that the effect is due to a cause outside
the modeled domain. But it is in general very difficult to obtain an estimate of
the value of p, because two or more causes being present at the same time is
such a rare event that the expert has no intuition about this estimate.

However in our experience the expert readily provides estimates of the values
of the backward probabilities P (K), P (P1|K) and P (P2|K). The first value is
the probability that symptom K is present, and the other numbers are the
probabilities that problem Pi is present given that symptom K is observed.
These are estimates that the expert is quite comfortable with, since this is the
direction of reasoning when doing troubleshooting. The expert detects a problem
by the alarm state of an indicator, and then reasons backwards, thinking what
problem is the most likely, given this finding.

When constructing the model from probability estimates provided by the ex-
pert or in the presence of incomplete data, it is desirable to use exactly those
probabilities that the expert can specify with the highest confidence. These are:

P (P1), P (K|P1, P2) = p1, P (K|P1, P2) = l, P (P1|K)
P (P2), P (K|P1, P2) = p2, P (K), P (P2|K)

that is, a mixture of forward and backward probabilities. Thinking of the freedom
left in the model after specification of the forward probabilities (first 5) we
see that we would like to match 3 backward probabilities, having only one free
parameter, p. Thus one might ask for a causal model that exhibits probabilities
with the ”closest” approximation to the desired ones using distance measure D,
e.g. in the minimum mean square error sense, or in the Kullback-Leibler sense.
There are several ways to do the proposed optimization of the model to the
provided expert probabilities. We mention two:
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1. Fix the forward probabilities, optimize only over the free parameter p, such
that the backward probabilities are approximated as closely as possible. That is,
define the cost function:

C1 = D (
P (K)(P (P1),P (P2),p1,p2,l,p), P t(K)

)
+ D (

P (P1|K)(P (P1),P (P2),p1,p2,l,p), P t(P1|K)
)

+ D (
P (P2|K)(P (P1),P (P2),p1,p2,l,p), P t(P2|K)

) (1)

where in each parenthesis the second term is the target value specified by the
expert, and the first term is the value resulting from fixing the functional argu-
ments given in subscript parentheses.

2. Alternatively allow the forward probabilities to deviate from their specified
values by a small amount ε. Or by εi, if a good reason for different ”noises” along
the different dimensions exists. That is, define

C2 = C1 +D (P (P1), P t(P1)) +D (P (P2), P t(P2))
+D (p1, p

t
1) +D (p2, pt

2) +D (l, lt) (2)

where in each summand the first term is the variable, and the second value is
the target value specified by the expert. Both for C = C1 and for C = C2 the
desired optimum of the cost function C over the variable space is the solution of
the minimization:

min C
p ∈ [0, 1] subj.to

D (P (P1)− P t(P1)) ≤ ε
D (P (P2)− P t(P2)) ≤ ε

D (p1 − pt
1) ≤ ε

D (p2 − pt
2) ≤ ε

D (l − lt) ≤ ε

s.t.
P (K) ∈ [0, 1],

P (P1|K) ∈ [0, 1]
P (P2|K) ∈ [0, 1]

(3)

The minimization with cost function C2 of Eq. (2) includes the one with cost
function C1 of Eq. (1) as a special case, as can be seen by setting ε = 0 and will
therefore result in a lower or equal minimum, i.e. a closer approximation, at the
expense of increased computational effort.

2.2 Effect of a Leak from Outside the Domain

Concerning the ”leak” mentioned before: If for a given symptom K the expert
feels that even in the absence of all the modeled causes within the considered
domain the probability of seeing the symptom present is nonzero, then this can
be modeled so that the effect K results from an effect ”KD” within the domain
at hand and an effect L from outside this domain, as first introduced in [10]. Since
”KD” and L are combined into K via an OR-junction, the following equation
holds for the probabilities of K, KD and L:

P ( K ) = P (KD )P (L ) (4)

From this equation we see that by the addition of a leak, P (K) can not increase,
hence P (K) cannot decrease. Hence adding a leak to the model makes sense if
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and only if the marginal probability P (K) resulting from inputting the forward
probabilities into the Bayesian network is smaller than the probability P (K)
specified by the expert or resulting from the data. If this is not the case, then the
probability P (K) in the Bayesian network has to be decreased. One possibility
is the introduction of a so called ”inhibitor” as described in [13]. Usually the
leak ”L” is modeled implicitly by inclusion of a corresponding entry ”l” in the
probability table of symptom K.

2.3 n Causes

In the case of n problems the conditional probability table of the binary ran-
dom variable K|P1, ..., Pn has 2n entries that have to be specified. Out of these,
according to our experience, the expert finds it feasible to specify 2n+2 probabil-
ities, namely n forward values of the form P (K|P (i), P1, ..., Pi−1, Pi+1, ..., Pn),
i.e. ”probability that the symptom is present given that exactly one problem
is present”, the value of the leak l = P (K|P1, ..., Pn), i.e. ”probability that
the symptom is present given that no problem is present”, P (K), probabil-
ity of the symptom being present, and n backward probabilities of the form
P (Pi|K), i = 1, ..., n, which are the probabilities that the problem is present
given the symptom present. If several symptoms K1, . . . , Km are present, this
has to be done in parallel for each symptom. For n = 2 as we saw the model
is under-dimensioned, and can only approximate the expert estimates in for
example a mean-square sense. Equality is given for 3 problems, n = 3, when
2n = 2n + 2, as after constructing the model there are exactly 4 free parame-
ters to capture the 4 specified backward probabilities. For n > 3 the model is
over-dimensioned compared to what an expert can reasonably specify.

2.4 Noisy-OR, or Reducing Complexity via Proxy Modeling

The classical way to reduce complexity in Bayesian networks is to model the
n-way interaction as ”Noisy-OR”, first introduced by [9], or as ”noisy” versions
of AND, MAX, MIN, ADDER [11], SUM or ELENI [12]. For ”Noisy-OR” this
means associating with each cause an inhibitory mechanism that sometimes pre-
vents the cause from producing the effect, and linking the single noisy causes
with an OR function. This model has n unknowns in the P (K|Pi) probability
table, one for each inhibitory mechanism, reducing the original exponential as-
sessment burden of 2n, to n. Note that if a simple OR function would be used to
link the causes, instead of a ”Noisy-OR” function, there would be no unknown
available to tune the model to the probabilities found in the domain at hand.

The way complexity is reduced in proxy modeling such as in the HealthMan
project [2],[3], is by introduction of intermediate so-called Noisy-OR ”proxy”
nodes between problem and indicator, Fig. 2. The significance of the proxy nodes
KPi, ”K due to Pi”, is that they capture the event that the indicator K is due
to precisely the problem Pi, which is seen from the probability table: P (KPi =
1|Pi = 0) = 0, together with the following OR-junction of the proxies. That is,
given that the Pi is not present, a possible K = 1 value cannot be due to Pi.
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The following relations hold between the probabilities in the proxy model and

P d(KP1|P1) 0 1 P1

KP1=0 1 1-p
′
1

KP1=1 0 p
′
1

P d(KP2|P2) 0 1 P2

KP2=0 1 1-p
′
2

KP2=1 0 p
′
2

P d(K|KP1, KP2) 0 1 KP1

(OR with leak ) 0 1 0 1 KP2

K=0 1-l
′

0 0 0

K=1 l
′

1 1 1

Fig. 2. Causal model of two problems with Noisy-OR proxy nodes between problem
and indicator layers.

those specified by the expert:

1. The leaks in the two model are identical.
2. The p

′
1 and the p

′
2 in the proxy model are related to the p1, p2 of the direct

model via: p1 = p
′
1 + l ∗ (1− p

′
1) p2 = p

′
2 + l ∗ (1− p

′
2).

3. In the absence of a leak, the p
′
1, p

′
2 in the proxy model are identical to the

p1, p2 in the direct model.
4. In the proxy model there is no free parameter. P (K|P1, P2) is not a free

parameter, as in the direct model, but fixed by specification of p1, p2, l.

In our work we have found that this Noisy-OR proxy model is quite convenient to
model the expert knowledge for a series of domains where troubleshooting or di-
agnosis has to be performed. However, after specifying the forward probabilities,
the Noisy-OR proxy model has only one free parameter left. So this model has the
limitation that it has no means to accommodate the expert-specified backward
probabilities. Since it is important to reduce the complexity to an appropriate
amount to be able to take into account, at least to a certain degree, all those
probabilities that are easy to obtain, this paper proposes an enhanced model,
which we call the SFOBE model: the Smallest Forward-Backward Expert-based
model.

3 The SFOBE Model: the Smallest Forward-Backward
Expert-based Model

The SFOBE model is the smallest model that has as least as many free pa-
rameters as there are expert-specified backward probabilities. Here ”smallest”
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means that there is no other model fulfilling this requirement that has fewer free
parameters.

We propose a building block that is more complex than the Noisy-OR proxy
building block and contains the same number of free parameters as there are
given backward expert estimates that concern the involved problem nodes. Let
a three-cluster denote three problem nodes with a common proxy and no leak,
as shown in Fig.3. A general three-cluster would have 8 free parameters, but since

0 1 P1

0 1 0 1 P2P d(KP |P1, P2, P3)
0 1 0 1 0 1 0 1 P3

KP = 0 1 1-p
′
3 1-p

′
2 1-a 1-p

′
1 1-b 1-c 1-d (or 0)

KP = 1 0 p
′
3 p

′
2 a p

′
1 b c d (or 1)

Fig. 3. Definition of a three-cluster

a separate leak for each problem does not make sense, we can restrict attention
to a three-cluster without leak, as shown in the probability table in Fig.3. So in
a three-cluster if all the entering problem node values are zero we have a cluster
node value of zero. Hence in a three-cluster there are 7 free parameters.

3.1 SFOBE Model Construction

With the three-cluster building-block, the SFOBE model that incorporates the
n+1 forward and n+1 backward probabilities is built according to the following
steps, which are detailed in section 3.2:

1. Build a model that for each symptom K lumps sets of 3 problems causally
related to K into three-clusters and merge these into the node for symptom
K via an OR-with-leak connection, as shown in Fig.4.

2. The root-node marginal probabilities are among the given forward prob-
abilities. In the conditional probability tables in the top layer the given
conditional forward probabilities together with the given leak determine the
entries where exactly one problem is in state 1, leaving as only unknowns
the entries where two or all three problems are in state 1. The OR-with-leak
probability table is specified completely since the leak is known.

3. (a) Set P (P1 = 1, P2 = 1, P3 = 1) = 1. Compute the values of the remaining
free parameters from the given backward probabilities P (Pi|K). If the
obtained parameter values are probabilities (i.e. ∈ [0, 1]) the resulting
model matches the given probabilities exactly. Done.
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(b) Otherwise, set P (P1 = 1, P2 = 1, P3 = 1) = d. Do a constrained op-
timization of the backward probabilities over the subspace (a, b, c, d) ∈
[0, 1]4 under a chosen distance measure D, to approximate as closely as
possible the given backward probabilities.

Performance of this model has to be tested against its alternatives, a) the simple
proxy model without explicit modeling of the backward probabilities, and b) the
proxy model optimized via constrained optimization as shown in 2.1, generalized
to n problems, to avoid overfitting the network to the prior knowledge. Incorpo-
rating mechanisms for learning from the incoming data provides both a check on
the dependence of the quality of the prior knowledge, and a desirable adaptive
component.

3.2 Procedure and Details

We now elaborate on the steps involved in constructing the SFOBE Model ac-
cording to section 3.1. Proofs of assertions are found in the appendix.

Step 1

Let there be n binary problems identified as relevant to the considered symptom
by the domain expert. According to the proposed model they are lumped into
three-clusters as defined in Fig.3, which are then merged via an OR-with-leak
connection into the observable domain symptom. Dividing n by 3 we can write
n = 3f + r, with the rest r ∈ {0, 1, 2}. Depending on r, the division into three-
clusters will either come out evenly, or there will be one or two left over problem
nodes, as shown in Fig.4. There f = bn/3c and c = dn/3e.1 If n is not divisible
by 3 the appendices E, F gives guidelines how to select the surplus problems.
In choosing which problems to lump together the expert should be consulted
whether there is any logical aggregation of problems into subdomains (such as
for the symptom fever, ”fever due to respiratory tract infections” and ”fever
due to abdominal problems”). If not, our current approach is to group problems
arbitrarily.
Step 2

For i = 1, . . . , n let problem Pi be linked to the three-cluster node KPk, with
k = di/3e. We summarize the 3n + 2 known probabilities:

Given: P (Pi), i = 1, . . . , n
pi = P (K|Pi, Pj , j 6= i), i = 1, . . . , n
l = P (K|P1, ..., Pn),
P (K),
P (Pi|K), i = 1, ..., n.

(5)

1 Floor function bxc=largest integer not larger than x, ceiling function dxe=smallest
integer not smaller than x.
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P d(KPc|Pn) 0 1 Pn

KPc=0 1 1-p
′
n

KPc=1 0 p
′
n

P d(KPc|Pn−1, Pn) 0 1 Pn−1

0 1 0 1 Pn

KPc = 0 1 1-p
′
n 1-p

′
n−1 0

KPc = 1 0 p
′
n p

′
n−1 1

0 1 P1

0 1 0 1 P2P d(KPk|P1, P2, P3)
0 1 0 1 0 1 0 1 P3

KPk = 0 1 1-p
′
3 1-p

′
2 1-a 1-p

′
1 1-b 1-c 1-d (or 0)

KPk = 1 0 p
′
3 p

′
2 a p

′
1 b c d (or 1)

Fig. 4. SFOBE model. In the probability table of a three-cluster KPk we may omit
for simplicity the cluster index and call the three problems merging therein P1, P2, P3.

The probabilities required to fill the minimum forward backward model are:

Wanted: P (Pi), i = 1, . . . , n

l
′
= P (K|KPk, k = 1, . . . , c)

For all clusters KPk : k = 1, . . . , f

p
′
1 = P (KPk|P1, P2, P3),

p
′
2 = P (KPk|P2, P1, P3),

p
′
3 = P (KPk|P3, P1, P2),

a = P (KPk|P1, P2, P3),
b = P (KPk|P2, P1, P3),
c = P (KPk|P3, P1, P2).
d = P (KPk|P1, P2, P3).

For n 6= 3dn/3e need additionally: r=1: p
′
n, r=2: p

′
n−1, p

′
n.

(6)

Step 2a: The leaks in the two model are identical (for proof see appendix B).

l
′
= l (7)

Step 2b: Computation of the p
′
i, i = 1, . . . , n (for proof see appendix C):

p
′
i = pi−l

1−l (8)

Step 3a: Exact backward step
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As outlined we set P (P1 = 1, P2 = 1, P3 = 1) = 1. In the probability tables
of each three-cluster there are 3 remaining parameters, a, b, c. For each cluster
independently, j = 1, . . . , f , the values of aj , bj , cj that effect exact matching
of the backward probabilities are computed. The results may or may not be
probabilities, as remains to be seen. We omit for simplicity the index j, and call
the three problems merging into cluster KP : P1, P2, P3. Let

x =




a
b
c


 (9)

Then x is the solution to the vector equation:

(D1M1 −D2M2)x = g −D1v1 + D2v2 (10)

where the matrices D1,D2,M1,M2 and vectors d,v1,v2 are given by:

D1 =




1− P (K|P1) 0 0
0 1− P (K|P2) 0
0 0 1− P (K|P3)


 (11)

D2 =




1− P (K|P1) 0 0
0 1− P (K|P2) 0
0 0 1− P (K|P3)


 (12)

M1 =




0 P (P2)P (P3) P (P2)P (P3)
P (P1)P (P3) 0 P (P1)P (P3)
P (P1)P (P2) P (P1)P (P2) 0


 (13)

M2 =




P (P2)P (P3) 0 0
0 P (P1)P (P3) 0
0 0 P (P1)P (P2)


 (14)

g =




P (K|P1)− P (K|P1)
P (K|P2)− P (K|P2)
P (K|P3)− P (K|P3)


 (15)

v1 =




p
′
1P (P2)P (P3) + P (P2)P (P3)

p
′
2P (P1)P (P3) + P (P1)P (P3)

p
′
3P (P1)P (P2) + P (P1)P (P2)


 (16)
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v2 =




p
′
2P (P2)P (P3) + p

′
3P (P3)P (P2)

p
′
1P (P1)P (P3) + p

′
3P (P3)P (P1)

p
′
1P (P1)P (P2) + p

′
2P (P2)P (P1).


 (17)

All the probabilities on the right hand sides are given or easily derived: P (Pi) =

1− P (Pi), from Bayes’ formula,

P (K|Pi) = P (Pi|K)
P (K)
P (Pi)

(18)

and, again with Bayes’ formula,

P (K|Pi) = P (Pi|K)
P (K)
P (Pi)

= (1− P (Pi|K))
P (K)

1− P (Pi)
. (19)

The proof is given in appendix D. The matrices M1,M2 and the vectors v1,v2

have a circular symmetry that ensures that they obey the requirement that all
the rows of (M1x+v1)P (Pi) + (M2x+v2)P (Pi) are equal, for i = 1, 2, 3. This
results from the fact that, using (32), (33) for the last equality,

P (KP ) = P (KP, Pi) + P (KP, Pi) = P (KP |Pi)P (Pi) + P (KP |Pi)P (Pi)
= ei

T (M1x + v1)P (Pi) + ei
T (M2x + v2)P (Pi) (20)

independently of which unit vector ei, i ∈ 1, 2, 3 is chosen. The matrices M1,M2

and the vectors v1,v2 indeed fulfill this requirement, as can be easily verified.
So we have to solve, separately for each cluster, an inhomogeneous system of
three equations with three unknowns, where all coefficients are known. The co-
efficient matrix D1M1 −D2M2 is:

D1M1 −D2M2 = (21)

−P (K|P1)P (P2)P (P3) P (K|P1)P (P2)P (P3) P (K|P1)P (P2)P (P3)

P (K|P2)P (P1)P (P3) −P (K|P2)P (P1)P (P3) P (K|P2)P (P1)P (P3)
P (K|P3)P (P1)P (P2) P (K|P3)P (P1)P (P2) −P (K|P3)P (P1)P (P2)




and its determinant equals:

det(D1M1 −D2M2) = (22)

= P (P1)P (P2)P (P3)(1− P (K))2
(

2P (K)−
3∑

i=1

P (K, Pi)
)

where each of the terms in the last parenthesis is computed as:

P (K, Pi)) = P (Pi)− P (Pi|K)P (K). (23)

If the determinant is nonzero, then the system matrix is full rank and the system
has a unique solution. Looking at the r.h.s. of (22), the first four terms are
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clearly nonzero, since a cause that is never true would not be modeled and
a symptom that is always present isn’t much of a symptom. Due to noise in
the estimates there is a zero likelihood that the last term is zero. However,
due to the necessity to obtain probabilities as solutions to (10), a very small
determinant is undesirable as well. We know that ∀i, P (K, Pi) < P (K), in fact
P (K, Pi) < min(P (K), P (Pi)). So we expect P (K, Pi) to be much smaller than
P (K), resulting in a clearly positive determinant.

The problem is that in many cases the entries of the resulting solution vector
x will not be probabilities. In that case one can do a constrained optimization
over [0, 1]3, as outlined in (1).

Step 3b: Constrained optimization backward step

The constrained optimization is done as outlined in (1) to (3). The approach
we have used in the numerical examples of the next section is to take the given
forward estimates for granted and approximate the given backward estimates as
closely as possible with the model. The general formulas for P (K) and P (Pi|K)
are

P (K) = 1− P (K) = (1− l) ·
∏

clusters

(1− P (KP )) (24)

and

P (Pi|K) =
P (Pi)
P (K)

·
(

1− (1− P (K))
1− P (KP |Pi)
1− P (KP )

)
, (25)

where problem Pi belongs to cluster KP . For Noisy-OR P (K) and P (Pi|K) are
completely determined by the forward estimates as:

Noisy-OR proxy:

P (K) = 1− (1− l) ·
n∏

i=1

(
1− p

′
i · P (Pi)

)

P (Pi|K) = P (Pi)
P (K) ·

(
1− P (K) 1−p

′
i

1−p
′
i
·P (Pi)

)
(26)

where the p
′
i are as given in (8). This can be seen e.g. from the probability table

in Fig.4 for the single left-over problem, which has a Noisy-OR connection. For
three-clusters on the other hand the P (Pi|K), for Pi, i ∈ 1, 2, 3 belonging to
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cluster KPk, k ∈ 1, ..., dn/3e, and P (K) are:

three-cluster:

P (K) = 1− (1− l) ·
dn/3e∏
k=1

(1− P (KPk))

k ∈ 1, . . . , bn/3c :
P (KPk) = ei

T
(
(M1x + v1)P (Pi) + (M2x + v2)P (Pi)

)

P (Pi|K) = P (Pi)
P (K) ·

(
1− P (K) 1−ei

T (M1x+v1)
1−P (KPk)

)

r = 1 :
P (KPdn/3e) = p

′
n · P (Pn)

P (Pn|K) = P (Pn)
P (K) ·

(
1− P (K) 1−p

′
n

1−p′n·P (Pn)

)

r = 2 :
P (KPdn/3e) = p

′
n · P (Pn)P (Pn−1) + p

′
n−1 · P (Pn)P (Pn−1)+

+P (Pn)P (Pn−1)

P (Pn|K) = P (Pn)
P (K) ·

(
1− P (K) 1−p

′
n·P (Pn−1)−P (Pn)P (Pn−1)

1−P (KPdn/3e)

)

P (Pn−1|K) = P (Pn−1)
P (K) ·

(
1− P (K) 1−p

′
n−1·P (Pn)−P (Pn)P (Pn−1)

1−P (KPdn/3e)

)

(27)

where the P (KPk) were taken from (20), ei, i ∈ 1, 2, 3, denotes the unit vector
and x is the vector of parameters a, b, c that we can vary within the unit cube
in order to achieve a better approximation of the backward probabilities.

Setting P (P1 = 1, P2 = 1, P3 = 1) = d: The above optimization can be
enhanced by the one additional degree of freedom allowed by the 6p-model,
namely by removing the fixed choice P (P1 = 1, P2 = 1, P3 = 1) = 1, that was
made in 3.1.3a, and allowing it to equal d ∈ [0, 1]. This way we gain the ability
to match the backward probabilities more closely. The changes that need to be
made before using (27) are to replace M1, M2, v1 and x by:

Md
1 =




P (P2)P (P3)
M1 P (P1)P (P3)

P (P1)P (P2)


 Md

2 =




0
M2 0

0


 (28)

vd
1 =




p
′
1P (P2)P (P3)

p
′
2P (P1)P (P3)

p
′
3P (P1)P (P2)


 vd

2 = v2 xd =




a
b
c
d


 (29)
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4 Numerical Example

In order to illustrate the approach two series of experiments were performed.
For both experiments a Bayesian network with 4 problems and 2 symptoms was
considered. In the first series of experiments, all the probabilities specified by the
expert were randomly and independently drawn from a uniform distribution over
[0, 1], including the target (i.e. expert specified) probabilities in backward direc-
tions, P (Kj) and P (Pi|Kj). Although these probabilities are in reality highly
dependent on each other, for illustration purposes we have generated them as
independent random variables. The Noisy-OR proxy network has no freedom for
further optimization once the forward probabilities are specified. On the other
hand, the SFOBE network has some freedom to accommodate the specified prob-
abilities in the backward direction to some degree. For each model the mismatch
between the probabilities in the model and the target probabilities given by the
expert is measured by different reasonable distance measures. We have calcu-
lated the Kullback-Leibler distance, the absolute value of the difference, and
the square root of minimum mean square error. The statistics of the calculated
distances after one thousand experiments is given in Tab. 1.

Model Mean(KL) Std(KL) Mean(abs) Std(abs) Mean(sqrt) Std(sqrt)

Noisy-OR proxy 0.37 0.18 0.48 0.11 0.18 0.03

SFOBE 0.27 0.16 0.41 0.11 0.16 0.03

Table 1. Distance of noisy-OR proxy model respectively SFOBE model to target for
experiment 1, measured via Kullback-Leibler distance (KL), absolute value of difference
(abs) and square root of minimum mean square error (sqrt).

As expected, the extra freedom of the SFOBE network has resulted in a
smaller average error and a smaller or equal standard deviation of the error.
Although the first series of experiments is equally fair to both models, it is not
realistic, because the backward probabilities were generated as independent ran-
dom variables, although they are not. For this reason the distances to the target
probabilities are quite large in absolute value. A more realistic scenario is chosen
for the second series of experiments. There all the probabilities in the forward
direction necessary to fill the complete probability table of the network in Fig.5
were randomly and independently drawn from a uniform distribution over [0, 1].
The backward probabilities were then read off the network. Then the perfor-
mance of the two models: Noisy-OR-proxy model of Fig.6 and SFOBE-model of
Fig.7 were compared in the same way as for the first series of experiments. For
each model the mismatch between the probabilities in the model and the target
probabilities given by the expert was measured by different reasonable distance
measures. We have calculated the Kullback-Leibler distance, the absolute value
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Fig. 5. Fully connected Bayesian network of domain with four root-causes and two
symptoms. All variables are binary random variables with the states 1=yes and 0=no.

Fig. 6. Noisy-OR proxy model of Bayesian network with four root-causes and two
symptoms. All variables are binary random variables with the states 1=yes and 0=no.

of the difference, and the square root of minimum mean square error. The statis-
tics of the calculated distances after three thousand experiments is given in Tab.
2. Again the SFOBE model clearly outperforms the Noisy-OR proxy model in

Model Mean(KL) Std(KL) Mean(abs) Std(abs) Mean(sqrt) Std(sqrt)

Noisy-OR proxy 0.040 0.063 0.139 0.029 0.065 0.015

SFOBE 0.016 0.01 0.078 0.029 0.035 0.013

Table 2. Distance of noisy-OR proxy model respectively SFOBE model to target for
experiment 2, measured via Kullback-Leibler distance (KL), absolute value of difference
(abs) and square root of minimum mean square error (sqrt).

its ability to approximate that set of probabilities that the expert can estimate
with confidence.
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Fig. 7. SFOBE model of Bayesian network with four root-causes and two symptoms.
All variables are binary random variables with the states 1=yes and 0=no.

5 Conclusion

This paper discussed the derivation of Bayesian network based domain models
used for diagnostic purposes. These models are derived from the available human
expert knowledge by interviewing domain experts. It was shown that a typical
problem in expert interviewing is the presence of partial conditional information
in both directions: from root-causes to symptoms and vice-versa, from symptoms
to root-causes. This is because of the way the expert thinks about the domain
when he is doing problem diagnosis. This paper has presented a rigorous math-
ematical analysis of the expert knowledge based design of Bayesian networks
describing the dependencies between two groups of discrete binary random vari-
ables (root causes and symptoms) where the prior information characterizes
both the forward and backward reasoning. A suitable parametric model was in-
troduced which can accommodate information in both directions. The validity
of the probability estimation algorithm is shown on a suitable example with
four root-causes and two symbols. The obtained results might lead to the refine-
ment of the information provided by the expert, which could render an improved
model. The discussed examples have been binary, however the applications in
[1], [2] and [3] deal with mixtures of binary and multivariate variables and the
considerations presented here are amenable to multivariate extensions.
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Appendix

A. Short Review of Bayesian Networks

The main ingredients of a causal network are, [4]:

1. Nodes, each with a finite state of mutually exclusive states, interconnected
by directed arrows, to form a directed acyclic graph;

2. Prior probability distributions on all root nodes (i.e. nodes with no parents);
3. Conditional probability tables for each child node given its parents;
4. In some domains the directed links have a causal interpretation. Indepen-

dently of a possible causal interpretation the property of conditional inde-
pendence (d-separation in graphical model literature) holds, which says that:
(a) For serial connections, A and C are conditionally independent given B

(Fig. 8).
(b) For diverging connections, B,C,...,N are conditionally independent given

A (Fig. 9).
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Fig. 8. Serial connection in causal model.

Fig. 9. Diverging connection in causal model.

(c) For converging connections, B,C,...,N, are conditionally independent if
neither A nor one of its descendants have received evidence (Fig. 10).
If however there is evidence present for A or one of its descendants,
then its a-priori independent common ancestors become dependent. To
see this, consider a binary domain where an effect can be explained by
two different causes. Then if the effect is present our reasoning is that an
increase in likelihood of one of these causes effects a decrease in likelihood
of the other, a see-saw effect also called ”explaining away”.

Fig. 10. Converging connection in causal model.

If possible, the dependence/independence relations asserted by the connections
in the model should be validated by actual data.

With these ingredients, the important quantities in the domain can be mod-
eled together with their dependence relations and with probability tables quan-
tifying these dependencies. When evidence on the state of variables is received,
the reasoning is performed by updating the various probabilities. There exists
a large body of software packages for Bayesian networks, see e.g. [5]. A col-
lection of different application domains and data sets can be found in [6]. The
name ”Bayesian network” comes from Bayes’ formula for conditional probability,
which is fundamental for the propagation of the evidence.

In summary, causal networks provide a rigorous and efficient framework for
inference, i.e. for calculating the probability of non-observable variables given a
set of observations of related observable variables. For further details we refer
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to Pearl, e.g. [7], who is one of the founders of the field. A detailed theoretical
discussion is found in [8] and the ten pages of references therein.

B. Proof of Step 2a:

l = P (K|P1, . . . , Pn) = P (K, KP1, . . . , KPc|P1, . . . , P2)
= P (K|KP1, . . . , KPc, P1, . . . , P2) · P (KP1, . . . , KPc|P1, . . . , P2)
= P (K|KP1, . . . , KPc) · 1 = l

′
(30)

We have used the independence properties of serial causal links and the fact that
the KPk are independent, given no evidence on K. The fact that the leaks are
the same in the direct and the proxy model makes sense, because the leak node
is a direct ancestor of the indicator node K, separate from the problem nodes,
hence is not affected by the introduction of the proxies. ut

C. Proof of Step 2b:

Let problem Pi belong to the cluster KPC(i), where we have chosen as a con-
venient cluster index C(i) the set of indices of the problems connected to that
cluster. For the n forward values specified by the expert of the form ”probability
that the symptom is present given that exactly one problem is present”, the
following equations hold:

pi = P (K|Pi, Pj , j 6= i) = (31)
= P (K, KPC(i),KPk, k 6= C(i)|Pi, Pj , j 6= i) +

+ P (K, KPC(i),KPk, k 6= C(i)|Pi, Pj , j 6= i) =

= P (K|KPC(i), KPk, k 6= C(i), Pi, Pj , j 6= i) ·
·P (KPC(i),KPk, k 6= C(i)|Pi, Pj , j 6= i) +

+ P (K|KPC(i), KPk, k 6= C(i), Pi, Pj , j 6= i) ·
·P (KPC(i),KPk, k 6= C(i)|Pi, Pj , j 6= i) =

= P (K|KPC(i), KPk, k 6= C(i)) · P (KPC(i)|Pi, Pj , j 6= i) ·
·P (KPk, k 6= C(i)|Pi, Pj , j 6= i) +

+ P (K|KPC(i), KPk, k 6= I(i)) · P (KPC(i)|Pi, Pj , j 6= i) ·
·P (KPk, k 6= C(i)|Pi, Pj , j 6= i) =

= 1 · p′i · 1 + l · (1− p
′
i) · 1 = l + p

′
i · (1− l)

where the second equality holds since the event ”Pj , ∀j 6= i” implies ”KPk, k 6=
C(i)”; to obtain the one but last equality we have used for the 1st multi-
plicative term property 4a of Bayesian networks and for the 2nd multiplica-
tive term property 4c; and for the last equality we have used the fact that
P (KPC(i)|Pi, Pj , j 6= i) = P (KPC(i)|Pi, Pj , j ∈ C(i), j 6= i) since KPC(i) and
{Pj , j /∈ C(i)} are independent if no common descendent has received evidence.
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Equation (8) follows. Remains to show that this assignment results in probabili-
ties, i.e. the right hand side (r.h.s.) of (8) ∈ (0, 1). This is clearly true, as long as
the leak is a small number not exceeding any probability pi that the symptom
is due to a single one of the modeled causes. Should the expert initially name a
larger leak, contributors to this leak from outside the modeled domain need to
be included in the model, say as L1, and then the pi are P (K|Pi, Pj , j 6= i, L1),
until the residue leak is indeed ”negligible” compared to the modeled contribu-
tions. ut

D. Proof of Step 3a:

From the large probability table in Fig.4 P (KP |Pi) and P (KP |Pi) are expressed
in terms of the sought variables a, b, c as:

P (KP |P1) = p
′
1P (P2)P (P3) + bP (P2)P (P3) + cP (P2)P (P3) + P (P2)P (P3)

P (KP |P2) = p
′
2P (P1)P (P3) + aP (P1)P (P3) + cP (P1)P (P3) + P (P1)P (P3)

P (KP |P3) = p
′
3P (P1)P (P2) + aP (P1)P (P2) + bP (P1)P (P2) + P (P1)P (P2)

P (KP |P1) = p
′
3P (P3)P (P2) + p

′
2P (P3)P (P2) + aP (P2)P (P3)

P (KP |P2) = p
′
1P (P1)P (P3) + p

′
3P (P1)P (P3) + bP (P1)P (P3)

P (KP |P3) = p
′
1P (P1)P (P2) + p

′
2P (P1)P (P2) + cP (P1)P (P2)

Or, compactly, 


P (KP |P1)
P (KP |P2)
P (KP |P3)


 = M1 ·




a
b
c


 + v1 (32)

and 


P (KP |P1)
P (KP |P2)
P (KP |P3)


 = M2 ·




a
b
c


 + v2. (33)

with M1,M2,v1,v2 as given in (13), (14), (16), (17).
We need an equation containing P (KP |Pi) and P (KP |Pi) as the only un-

knowns. Clearly:

P (K|Pi) = P (K, KP |Pi) + P (K, KP |Pi) (34)
= P (K|KP, Pi) · P (KP |Pi) + P (K|KP, Pi) · P (KP |Pi)
= P (K|KP ) · P (KP |Pi) + P (K|KP ) · P (KP |Pi)
= 1 · P (KP |Pi) + (1− P (KP |Pi)) · P (K|KP )

and analogously

P (K|Pi) = P (KP |Pi) + (1− P (KP |Pi)) · P (K|KP ) (35)

Therefore, equation the last term equal of both equations

P (K|Pi)− P (KP |Pi)
1− P (KP |Pi)

=
P (K|Pi)− P (KP |Pi)

1− P (KP |Pi)
(36)
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from which follows, after multiplying cross-wise and gathering terms

P (KP |Pi) · (1− P (K|Pi))− P (KP |Pi)(1− P (K|Pi)) = P (K|Pi)− P (K|Pi)
(37)

As desired, this equation contains P (KP |Pi) and P (KP |Pi) as the only un-
knowns. Equivalently:

D1 ·



P (KP |P1)
P (KP |P2)
P (KP |P3)


−D2 ·




P (KP |P1)
P (KP |P2)
P (KP |P3)


 = g (38)

where D1,D2,g are as given in (11), (12), (15). Inserting (32) and (33) into (38)
results in (10). ut

E. Case r = 1 (one surplus problem):

Equation (37) has to be obeyed also by a single surplus problem Pn left over
after lumping groups of 3 problems together. From its probability table in Fig.4
we read that P (KP |Pn) = p

′
n and P (KP |Pn) = 0, hence:

p
′
n · (1− P (K|Pn)) = P (K|Pn)− P (K|Pn) (39)

or, with (8),

pn − l

1− l
=

P (K|Pn)− P (K|Pn)
1− P (K|Pn)

=
P (K|Pn)− P (K)

1− P (Pn)− P (K) + P (Pn|K)P (K)
(40)

where the last equality was obtained by using (19). Note that pn 6= P (K|Pn),
but rather P (K|Pn, Pj , j 6= n). So, after using (18), we get:

pn = l + (1− l) · P (K)
P (Pn)

· P (Pn|K)− P (Pn)
1− P (Pn)− P (K) + P (Pn|K)P (K)

(41)

In the above equation all the quantities are given, being estimates provided by
the expert. Therefore (41) is a consistency condition that has to be fulfilled by
the given estimates for the problem that is chosen to be the surplus problem
after clustering in groups of three. We have on purpose isolated on the l.h.s
the estimate the expert feels least confident about, in our case the pn, i.e. the
probability that the symptom is present given that a single one of the possible
causes is present. Then arguably the r.h.s. may constitute a better estimate. A
reasonable way to achieve consistency is to compute for all the problems

δi = |l + (1− l) · P (K)
P (Pi)

· P (Pi|K)− P (Pi)
1− P (Pi)− P (K) + P (Pi|K)P (K)

− pi|, (42)

then proceeding from the problem with smallest δ in ascending order ask the
expert if he is comfortable with the replacement of his estimate of pi by the
r.h.s. of (41), then choose the first problem where he agrees as the surplus one.
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Equivalently one could from the start ask the expert to provide a confidence
indicator for each of his estimates - he will feel less confidant about cases he
rarely sees - and replace the first value that has confidence under a threshold.
Note that the consistency condition given here has to be obeyed by each problem
in a Noisy-OR model.

F. Case r = 2 (two surplus problems):

Likewise, equation (37) has to be obeyed also by each of two surplus problems
Pn−1, Pn left over after lumping groups of 3 problems together. From their prob-
ability tables in Fig.4 we read that P (KP |Pn) = p

′
n · P (Pn−1) + P (Pn−1) and

P (KP |Pn) = p
′
n−1 · P (Pn−1), hence:

(
P (Pn−1)(1− P (K|Pn)) −P (Pn−1)(1− P (K|Pn))

−P (Pn)(1− P (K|Pn−1)) P (Pn)(1− P (K|Pn−1))

)
·
(

p
′
n

p
′
n−1

)
= (43)

=
(

P (K|Pn)− P (Pn−1)− P (K|Pn)P (Pn−1))
P (K|Pn−1)− P (Pn)− P (K|Pn−1)P (Pn))

)

The determinant of the square matrix can be shown to be

det = P (K)[ 1 −P (K)− P (Pn)− P (Pn−1) +
+ P (K)P (Pn|K) + P (K)P (Pn−1|K)] =

= P (K)( P (K)− P (K, Pn)− P (K, Pn−1)) (44)

hence is almost surely nonzero, and with high likelihood positive, if we expect the
presence of a cause to more than halve the probability of absence of a relevant
symptom. One could choose as the two surplus problems those whose pn, pn−1

corresponding via (8) to the p
′
n, p

′
n−1 obtained from above are closest to the

estimates thereof given by the expert. Note that these consistency conditions
would have to be obeyed by each problem pair if we chose a model where we
cluster problems together in pairs of two, instead of three, with the probability
table as shown in Fig.4 for two problems.


