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Abstract—The statistical modeling of large multi-relational
datasets has increasingly gained attention in recent years. Typ-
ical applications involve large knowledge bases like DBpedia,
Freebase, YAGO and the recently introduced Google Knowledge
Graph that contain millions of entities, hundreds and thousands
of relations, and billions of relational tuples. Collective factoriza-
tion methods have been shown to scale up to these large multi-
relational datasets, in particular in form of tensor approaches
that can exploit the highly scalable alternating least squares (ALS)
algorithms for calculating the factors. In this paper we extend the
recently proposed state-of-the-art RESCAL tensor factorization
to consider relational type-constraints. Relational type-constraints
explicitly define the logic of relations by excluding entities from
the subject or object role. In addition we will show that in
absence of prior knowledge about type-constraints, local closed-
world assumptions can be approximated for each relation by
ignoring unobserved subject or object entities in a relation. In
our experiments on representative large datasets (Cora, DBpedia),
that contain up to millions of entities and hundreds of type-
constrained relations, we show that the proposed approach is
scalable. It further significantly outperforms RESCAL without
type-constraints in both, runtime and prediction quality.

I. INTRODUCTION

A number of recently developed knowledge bases (KB) like
DBpedia, Freebase or the YAGO ontology all contain millions
of different entities and hundreds to thousands of relations.
Facts in these knowledge bases are usually represented as bi-
nary relations between entities in form of <subject, predicate,
object> triples. The set of all triples defines a large multi-
graph where entities correspond to nodes and relational tuples
correspond to directed links between nodes. For large multi-
relational datasets with a multitude of relations, tensor-based
methods have recently been proposed where binary relations
are represented as square adjacency matrices that are stacked
as frontal slices in a three-way adjacency tensor. Learning is
then based on the factorization of this adjacency tensor where
highly efficient alternating least squares (ALS) algorithms can
be exploited, which partially utilize closed-form solutions. In
most relational learning settings a closed-world assumption
is appropriate and missing triples are treated as negative
evidence, and here ALS, which is applicable with complete
data, is highly efficient. In contrast, when a closed-world
assumption is not appropriate, for example when the goal is
to predict movie ratings, other approaches such as stochastic
gradient descent can be more efficient, where all unobserved
ratings are treated as missing. We argue that by exploiting type-
constraints, the amount of “trivial” negative evidence (under
a closed-world assumption) can be significantly reduced, what
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makes ALS-based methods very attractive again for large type-
constrained data. To the best of our knowledge, there is no ALS
algorithm for factorization that exploits closed-form solutions
and considers type-constraints during factorization. In addition,
in contrast to factorizations that consider every unobserved
triple as missing, type-constraints add prior knowledge about
relations to the factorization, such that triples that disagree with
the type constraints are excluded during factorization. Type-
constraints are present in most datasets of interest and imply
that for a given relation, only subject entities that belong to
a certain domain class and object entities that belong to a
certain range class can be related. For instance, the relation
marriedTo is restricted to human beings. In some domains,
type-constraints often define complex overlapping classes since
any entity can occur as subject or/and object (the domain and
range class of a relation can overlap) in multiple relations
(domain and range classes of different relations can overlap).

By neglecting type-constraints when using ALS under
closed-world assumptions, it is very likely that the factorization
will need more degrees of freedom (controlled by the rank
of the factorization), since the latent vector representations
for the entities and their interactions have to account for a
huge amount of meaningless unobserved relations between
entities. We argue that, especially for larger datasets, the
required increase of model complexity will lead to an avoidable
high runtime and memory consumption. By focusing only on
relevant tuples, high quality latent vector representations can be
constructed with a significant reduction in the required degrees
of freedom.

In this paper we propose a general collective factorization
approach for binary relations that exploits relational type-
constraints in large multi-relational data by using ALS (simi-
lar to [1]). In difference to other factorization methods that
have also been applied to large scale datasets [2], it also
utilizes closed-form solutions during optimization. The pro-
posed method is capable of factorizing hundreds of adjacency
matrices of arbitrary shapes, that represent local closed-world
assumptions, into both a shared low-rank latent representation
for entities and a representation for the relation-specific inter-
actions of those latent entities (Figure 2.b). Additionally we
show that in the absence of a-priori-defined type-constraints,
useful type-constraints can be approximated based on observed
subject or object entities (and potential relations to them).
During factorization, this method assures that relations only
contribute to the latent representations of entities that agree
with their type-constraints.



We will demonstrate the benefits of our approach in the
context of typed-constrained multi-relational datasets on ex-
periments with a small (Cora), a medium (DBpedia-Music)
and a very large (DBpedia) dataset. We further show that the
explicit consideration of relational type-constraints results in
an increase of prediction quality at reduced model complexity
(rank). As a result of the decreased model complexity, signifi-
cant improvements in both runtime and memory requirements
could be achieved.

This paper is structured as follows. The next section
contains related work. In Section III we explain our notation
and review the RESCAL tensor factorization model. In Section
IV we introduce our approach. In Section V we describe our
experiments. We conclude in Section VI.

II. RELATED WORK

[3, 4] provided a general framework for modeling multi-
relational data with collective matrix factorization (CMF) and
showed that a parallel factorization of auxiliary matrices, that
contain additional information about entities (e.g. items or
users), have a benefit on the prediction quality. Unfortunately,
these extensions are limited to a low number of relations to
take contextual information into account in a recommender
system [5, 6, 7, 8, 4]. [9] addressed the sparsity issue with non-
negative constraints. [10] proposes a completely decoupled
CMF approach for simultaneously solving multiple rating
problems and [11] links local factors through a globally shared
multivariate regression model. In [12] two entity types are not
allowed to share more than one relation.

Recently, higher-order tensors factorizations were proposed
for multi-relational learning [1] since they offer a more flexible
and natural representation when dealing with a multitude
of relations. The work of [9] has been extended recently
to tensors [13] as well. Tensors have been applied to Web
analysis in [14] and to ranking predictions in the Semantic
Web in [15]. [16] applied tensor models to rating predictions.
The use of factorization approaches to predict ground atoms
was pioneered in [17]; [1], [18], [19], and [20] applied
tensor models for this task, where [1] introduced the RESCAL
model. This model was the basis of many recent published
works: [21] introduced non-negative constraints, [22] presented
a logistic factorization and [20] explicitly models the 2nd
and 3rd order interactions. [23] introduced neural tensor net-
works that includes a RESCAL factorization and [2] used a
neural tensor decomposition for defining graph-based priors
during construction of the Google Knowledge Vault. They also
exploited local closed-world assumptions (LCWA), a known
concept in the semantic web domain [24].

[25] introduced weighted loss functions for RESCAL. Via
such loss functions it is possible to introduce relational type-
constraints for RESCAL by assigning zero weights to triples
that are excluded through type-constraints. Unfortunately, the
scalability of RESCAL gets lost when using this type of
weighted loss function. The Hadamard (element wise) matrix
product with the weighting tensor leads to expensive matrix op-
erations in the gradients, since a materialization of a complete
frontal slice reconstructed from the learned latent representa-
tion of the data is required (the product AR, AT), which is
dense. Besides the high computational costs that arise during
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this materialization in the gradient, the memory requirements
for this materialization itself will be extensive which makes
this approach impractical. For example, consider the music
domain of DBPedia (311,474 entities). The materialization of
a frontal slice (AR, AT) will need approximately 776 GB of
memory. In this work we will demonstrate how to consider
relational type-constraints with no loss in scalability. We pro-
pose a method that is capable of factorizing type-constrained
multi-relational datasets with millions of entities and hundreds
of relations into a meaningful low-rank factorization on a
commodity hardware.

III. PRELIMINARIES
A. Notation

In the following, calligraphic letters like X" or R represent
tensors. X’ is our notation for a multi-relational list of matrices
with arbitrary shapes. X and R will represent single matrices.
X and X} represent frontal slices of the tensors or lists,
respectively. X;. is the ith row in the matrix X and ;i
a single entry in the tensor X. ® represent the Hadamard
(element-wise) matrix product, where ® is the Kronecker
product.

The set of subject entities that potentially participates in a
binary relation is defined by the domain of that relation. The
set of object entities is defined by its range. We further exploit
the concept of local closed-world semantics, which assumes
for each relation that the data is complete regarding only the
observed entities in that relation (links to and from unobserved
entities are ignored). We refer to [2] for a comprehensive
detailed definition.

B. RESCAL

RESCAL [1] is a three-way-tensor factorization model
that has been shown to lead to very good results in various
canonical relational learning tasks like link prediction, entity
resolution and collective classification [26]. One main feature
of RESCAL is that it can exploit a collective learning effect
when used on relational data, since an entity has a unique
representation over occurrences as a subject or as an object
in a relationship and also over all relations in the data.
When dealing with semantic web data, multi-relational data
is represented as triples that are stored in an adjacency tensor
X of shape n X n x m, where n is the number of all entities
in the data and m is the number of relation types. Each of the
m frontal slices X of X represents an adjacency matrix for
all entities in the dataset with respect to the k-th relation.



Given an adjacency tensor X', RESCAL computes a factor-
ization of X’ where each entity is represented via a unigue row
in the r-dimensional latent factor matrix A € R™*" and each
relation is represented via a matrix R, € R"*" (see Figure
1). For optimization a regularized least squares loss function
is minimized.

loss(X, A, R) > Xk — ARLAT|[3
k
Al AlF +Ar D IRkE (D)
k
where A4 > 0 and Ar > 0 are hyperparameters and || - || is

the Frobenius norm. The cost function can be optimized via
very efficient alternating least squares (ALS) that effectively
exploite data sparsity [1]. During factorization, RESCAL finds
a unique latent representation for each entity that is shared
between all relations in the dataset. The relation-specific, often
asymmetric, interaction between subject and object entities are
captured by the frontal slices of the core tensor R.

IV. COLLECTIVE FACTORIZATION OF
TYPE-CONSTRAINED RELATIONS

We now describe the novel collective factorization method
for type-constrained multi-relational datasets. As already dis-
cussed in the introduction, neglecting local closed-world as-
sumptions defined through type-constraints in large type-
constrained multi-relational data can lead to higher require-
ments in degrees of freedom of the factorization model. This
is mostly due to the fact that these factorization approaches
ignore that most entities only play a role in some relations
but are naturally excluded in others. As a consequence, these
models have to account for a huge amount of meaningless
relationships between entities.

In case of the highly scalable RESCAL tensor factorization
[1], where the multi-relational data is organized in a large (but
sparse) adjacency tensor (Figure 2.a), every unobserved rela-
tion between entities is treated as negative evidence because
it ignores type-constraints. Considering given type-constraints
for each relation (colored blocks in the tensor in Figure 2.a),
what we actually want is to achieve a factorization that ignores
all relations between entities that disagree with the type-
constraints. Technically speaking, a collective factorization
of the local sub-matrices (which can have arbitrary shapes)
defined within the adjacency tensor by the type-constraints is
desired (Figure 2.b). The joined factorization of these sub-
matrices guarantees that the latent representation computed by
the factorization will be unaffected by meaningless relations
between entities and reduces the required model complexity
(controlled by the rank). To achieve this, we directly intro-
duce the type-constraints into the RESCAL least-squares cost
function (Equation 1):
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where S and O are lists of binary matrices that represent the
type-constraints for each relation. More precise, they select
latent-vector representations of the entities that agree with the

domain (5’ ) and range (@) constraints of any particular relation.
X, represents the data under local closed-world assumption for
relation k that could have been (but not necessarily) extracted
from the frontal slice X, of the large adjacency tensor X
(X k= SkX kOk) Note that if relation X}, has the shape ny, x
my, then Sk is of shape n; X z and has exactly ny entries
(the remaining ones are zero) that selects rows from the factor
matrix A and stacks them in a new type-constrained factor
matrix A , where z is the total number of entities in the
dataset ané ny is the amount of entities that belong to the
domain of relation k. (Ok performs the same function for the
range of the relation k£ and stacks them into AO of shape
my X z, respectively).

Even though the cost function defined in Equation 2 looks
very similar to the cost function of RESCAL (Equation 1) it
contains important differences, since we are actually factoriz-
ing a list of matrices of arbitrary shapes (indicated by the hat
symbol) instead of uniformly shaped frontal tensor slices.

However, through the similar formulation of the prob-
lem we are able to exploit the nice scalability properties of
RESCAL in our model. For that we adapted the RESCAL
update functions such that they consider type-constraints and
allow a factorization a list of local closed-world adjacency
matrices. Fortunately we are still able to utilize an efficient
closed-form solution for the update of the latent interactions
matrices Ry,.

A; = lz SEXyAp RE +OF X[ Ag Ry,
k i
-1
> 8iinEx + 0iinFr 3)
k
with By = RpAL A, Ri;
and F, = R{AgkAgkRk

Note that the second part of the equation (the inverse) is
dependent on the domain and range constraints of each re-
lation, and therefore the sum over the relations in the inverse
is dependent on the regarded entity. The term §;;; represents
the i-th diagonal entry of the diagonal matrix Sk S and is
one, if the entity ¢ is part of the domain of relation k£ and
zero otherwise. The term 0;;; represents the i-rh diagonal
entry of the diagonal matrix Of Oy, and is one if the entity
i is part of the range of relation k, zero otherwise. Note
that whereas RESCAL only requires the calculation of one
inverse here we need to calculate z inverses. This can be very
expensive, especially when a high rank is used (the inverse
of a r X r has to be computed). We will discuss in Section
IV-A how the entities can be grouped to reduce the amount
of computed inverses. On the other hand, the first part of
Equation 3 can be calculated very efficiently, especially when
dealing with large type -constrained datasets, since the much
smaller matrices X7 i A 3 and AO are involved. The similar
RESCAL update would have to use the complete frontal slices
X}, of the partially observed tensor X and the whole factor
matrix A in this case (which can be multitudes larger than
Ag, and Ap ).

For the latent interaction tensor R we have to consider,
that each frontal slice is updated with respect to two different
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(a) A partially observed tensor that is factorized by RESCAL (b) Factorizing with respect to domain and range constraints of the relations
Fig. 2. Schematic factorization of type-constrained multi-relational data using RESCAL (a)[1] (ignores type-constraints), and TypeConCF (b), the proposed
model that considers type-constraints during factorization. For better understanding, we used example data from DBpedia (music domain) in the figures. The
colored boxes on the left side of the equations represent the regions defined by relational type-constraints. The white (or transparent) regions correspond to
data that disagree with the type-constraints. On the right sites of the approximation signs, the coloring illustrates which parts of the data (left side) influence
the latent factors during factorization. In both approaches (a,b), the data is factorized into the same latent factor structure, a shared latent representation for the
entities (factor matrix A) and an interaction core tensor R (where each frontal slice is specific for each relation). When using RESCAL (a) which imposes a
closed-world assumption on the whole tensor, then the latent representations of the entities (A) and their interactions (R) are influenced by data that disagrees
with the type-constraints (white boxes). We propose a collective factorization method (TypeConCF) that factorizes the same data, but under local closed-world
assumptions. Thereby a list of local sub-matrices of arbitrary shapes extracted from the partially observed tensor through type-constraints is directly factorized
leading to clean (only colored boxes) latent representations.

For example, the second relation (yellow) is constrained to relate only albums and songs, therefore this relation only influences the latent factors that represent
the song and album entities. The latent representation of genre entities is only determined by the third relation (blue). The fourth relation on the other hand

(green) provides information on the latent representation of musical artists, songs and albums.

sets of latent factors contained in A (namely Ag and A ).
For each frontal slice of R we get the following closed-form
solution for the update:

R, = ((C®B)T(C®B)+ )" (C® B) vec(Xy)
with B = AS‘k and C = Aék'

As in [27] we can exploit the following property of the singular
value decomposition (SVD) regarding the Kronecker product
of two matrices [28]

C®B=(Uc®Ug)(Sc®Ip)(VE @V3)
leading to the much more efficient update for Ry
Ry, = V(P ® UL XxUc)VE 4)

where P is defined as follows: Let () be defined as a diagonal
matrix and where

DBMDCN
Qi = BT Dz A
By~ Cy
with Dg = Yp®Xpand Dg =XYc ® X¢.

Then P can be constructed by a columnwise reshape of the
diagonal in Q.

Note, that we are generally dealing with different domain
and range constraints for each relation, and Aﬁk and Aék
will differ for each update Rj. In contrast to the updates
in RESCAL we cannot use the result of one SVD on the
factor matrix A for all frontal slice updates for R. In our
case we have to perform two SVDs for each update Rj.
This might seem inefficient at first moment, but the SVDs
have to be only calculated for the smaller factor matrices
Ag and Ap . Additionally, the matrix products ULX,Uc
in ﬁquation 4 become much more efficient, since they involve
smaller matrices, when compared with the RESCAL updates,
where U would be as large as A (which has |z| rows).

A. Entity Grouping

The updates for the latent representations of the entities
(factor matrix A) can be further optimized. We can accelerate
these updates by grouping entities that are occurring or are
absent in the same relations. For entities of the same group, the
second part of Equation 3 (the inverse) is the same and needs
only to be calculated once. Consider the following example: If
we look at the example dataset from Figure 2 (DBpedia-Music)
which contains at the time of this writing 311,474 different
entities. If we could assume that all musical artists always
occur together in each relation (as subjects and as objects),
then we could put them into one group. The same could be
applied to songs, genres, record labels and albums. Instead of
calculating 311,474 different inverses we only calculate one
for each group (only five in this example) and decrease the
computation time for the inverses in the A-update dramatically.
To include this kind of domain knowledge, we would only have
to provide the type-constraints in form of the factor selection
matrices S and O.

However, in absence of prior knowledge about the real
type-constraints, the type-constraints (and the corresponding
closed-world assumptions) can be approximated by excluding
every unobserved subject or object in aArelation.1 The derived
lists of type-constraint matrices S and O can then be used for
grouping. In Algorithm 1 our complete approach in absence of
prior knowledge on type-constraints is shown. Please note, that
we also provide a partially observed adjacency tensor as input
to the algorithm in order to exploit a non-random initialization
of the parameters as proposed by [29].

B. Relation to Other Factorizations

The proposed collective factorization will transform in
other well known third-order tensor factorization methods, if

"During factorization the (relation specific) excluded subject and object
entities are then ignored



Algorithm 1 Type-Constrained Collective Factorization

Require: X' (A partially observed adjacency tensor (Figure 2.a))

> r: rank of factorization, A4, Ar: regularization parameters
> Section IV-A
> based on eigendecomposition of -, (X + X Iy 129]

> apply closed-world assumptions to the data: X}, = S3 X0}, (Figure 2.b)

> Equation 3
> Equation 4

1: function TYPECONCF(X, 7, A4, AR)
2: S, O= approximateTypeConstraints(X)
3 AR = initialize(X,r)
4 X = shrink(X,S,0)
5: repeat . o
6: A < update A(X, A, R,S,0,\4)
7: R + updateR(X, A, S, O, \R)
8 until convergence or max iteration reached
9 return AR
10: end function
TABLE 1. STATISTICS OF THE DATASETS USED IN THE EXPERIMENTS.
Dataset Entities Relations Facts
Cora 2497 10 47 547
DBpedia-Music 311 474 7 1 006 283
DBpedia 2255 018 511 | 16945 046

the relational type-constraints have a certain structure. In the
absence of type-constraints, S and O become a collection
of square identity matrices and drop out of the equation.
The result is the RESCAL tensor factorization [1]. If for
each relation the domain and range classes are disjunct, we
get a Tucker2 [30] like decomposition. If we have equal
range constraints for all relations that are disjunct from the
various domain constraints of all relations (which are also
disjunct from each other), we get a similar decomposition as
PARAFAC2 [31] (but Ry, is not diagonal).

V. EXPERIMENTS

In the following we report experimental results on three
different datasets, the Cora® dataset and two datasets extracted
from DBpedia* [32]. Details of these datasets can be inferred
from Table I. We evaluated our approach using simple link
prediction tasks. For all datasets we used the same evaluation
routine as follows: First, we constructed a partially observed
tensor as shown in Figure 2.a (left) from the data, where
the frontal slices correspond to the entity adjacency matrices
for each relation. From the complete tensor, we defined type-
constraints either based on prior knowledge (Cora, DBpedia-
Music) or we approximated them (Section IV-A). For steps
during evaluation we always sampled entries (ones and zeros)
that obey the domain and range constraints of each relation.
We conducted 10-fold cross-validation, where we sampled ten
disjunct sets of entries without replacement from the tensor.
For the Cora dataset, we used the complete data (under local
closed-world assumption) for that, in case of the DBpedia
datasets this was not feasible due to the high amount of
possible entries. In that cases, the sets contained one tenth of
the observed relations between entities (ones in the adjacency
tensor) and ten times as many unobserved relations (zeros).
In each iteration we removed all links present in one set

2We extracted relations that relate at least 1000 entity pairs and excluded
all entities that are related less than 5 times throughout all relations

3http://alchemy.cs.washington.edu/data/cora/

“http://wiki.dbpedia.org/Downloads39?v=pb8;
Properties (Cleaned)

Dataset: Mapping-based

(test set) and factorized the data based on the remaining
data (training set). The quality of the prediction (ranking) is
measured in Area Under The Precision Recall Curve (AUPRC)
using the test set. Reported are always the mean AUPRC
scores with corresponding error bars (they are quite small).
The proposed method (TypeConCF) always used approximated
type-constraints from the training set. Additionally we measure
and compare the runtime in seconds. In case of proposed
method, the grouping of entities is included in those measure-
ments. All experiments are conducted with a Intel(R) Xeon(R)
CPU W3520 @2.67GHz and the models were exclusively
implemented in Python using the numpy/scipy library for
scientific computing (OpenBLAS, 4 Threads). For all experi-
ments and models, 20 iterations of ALS were performed. For
the implementation of RESCAL, we used the python code
provided by the author’.

A. Cora

The dataset links authors, titles and venues through citation
records. In addition, the dataset contains relations that link
different spellings of entities. The results on the Cora dataset
is shown in Figure 3.a and d.

Both models, RESCAL and TypeConCF, perform com-
parable well on this dataset (Figure 3.a). Both achieve a
maximum score of approx. 0.96 in AUPRC (Random: 0.013).
It can be observed that in contrast to RESCAL, the prediction
quality of TypeConCF increases much faster with the rank
of the factorization. At a rank of one, both methods have
a similar low score (0.11). For a rank of 25, TypeConCF
reaches already 0.8 where RESCAL achieves only 0.66 and
at rank 100, TypeConCF reaches almost its maximum score,
where RESCAL achieves a significantly lower score of 0.89.
With higher ranks, RESCAL starts to catch up and achieves a
comparable performance at a rank of approximately 400.

Regarding the runtime of both methods (Figure 3.d), the
RESCAL factorization is clearly faster than TypeConCF when
using the same rank for the factorization. However, if the pre-
diction quality is taken into account, TypeConCF is achieves
a good factorization significantly sooner than RESCAL. For
the maximum prediction quality, RESCAL needs 73 seconds
(since it needs a rank of 500), TypeConCF on the other hand
needs only 20 seconds (rank 200).

Shttps://github.com/mnick/scikit-tensor
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Results on the Cora, DBpedia-Music and DBpedia datasets. (a,b,c) Plotted are the rank used for the factorization against the performance in Area

Under Precision Recall Curve (AUPRC). Red: The performance of the RESCAL tensor factorization on the partial observed tensor constructed from the various
datasets as illustrated in Figure 2.a. Blue: The performance of the proposed collective factorization for type-constrained multi-relational data (TypeConCF) using
the automatic grouping of entities with respect to active entities in each relation (Section IV-A). Grey: Random ranking. (d,e,f) Shown are the same two methods,
but instead of AUPRC the runtime in seconds (including time for training and prediction) is measured. In case of TypeConCeF, the time for the entity grouping

is also included in the measurement.

B. DBPedia-Music-Domain

For the DBpedia-Music dataset, the partially observed
tensor is of shape 311,474 x 311,474 x 7. The relations
are {Genre, RecordLabel, associatedMusicalArtist, associat-
edBand, musicalArtist, musicalBand, album}.

In Figure 3.b the prediction quality with increasing rank
used in RESCAL and TypeConCF are shown. Clearly, the pro-
posed method performs much better than RESCAL, especially
at ranks below 200 (RESCAL: 0.663, TypeConCF: 0.770). As
observed with the Cora dataset, RESCAL’s prediction quality
starts to catch up at higher ranks and it is expected to hit a
comparable performance at some very high rank. RESCAL
reaches a score of 0.734 at a rank of 400 (TypeConCF:
0.792). Just the factor matrices require approximately 1 GB
of memory at this rank. On the other hand, the factorization
with TypeConCF reaches the same score approximately at a
rank of 100 (consuming about 4 times less memory).

When comparing the runtime of both methods (Figure 3.e),
it can be observed that in contrast to the observations for
the Cora dataset, the runtime of TypeConCF is comparable
to RESCAL, and even slightly starts to outperform it at
ranks higher than 300. As already discussed in Section IV,
the benefits on calculating the updates based on the much
smaller, relation specific factor matrices A g0 and Aék become
more prominent. With increasing rank, these smaller matrices
grow much slower in their absolute size than the complete
factor matrix A and therefore the runtime suffers less from an
increase in rank (and even compensates for the more complex
inverse calculation in the A-updates).

Note, that TypeConCF clearly outperforms RESCAL when
additionally considering the prediction quality in the runtime
comparison. RESCAL reaches an AUPRC score of 0.734 using
a rank of 400 after approximately one hour, where TypeConCf
needed only 9 minutes (rank 100).

C. DBPedia

Especially when dealing with a dataset of this size (the
partially observed tensor is of shape 2,255,018 x 2,255,018 x
511), is important to use models which achieve high prediction
quality with low rank, since every additional dimension in
the factorization consumes approximately 18 MB of additional
memory. Note, that we are now dealing with a high amount
of relations (511) where entities can be linked by multiple re-
lations. Most collective matrix factorization approaches would
not be applicable in this case.

In Figure 3.c it can be observed, that due to the sparsity
of the tensor (6.52 x 1079 %), RESCAL has problems to
capturing data structure and constructs a factorization of low
quality at a very low rank (0.345 AUPRC, rank 50). At a
rank of 5 the performance is barely above a random ranking
(RESCAL: 0.119, Random: 0.112)%, where TypeConCF results
already in a factorization that clearly captures structure in
the data (AUPRC: 0.511). Furthermore, at a rank of 50, the

SWe observed that the coefficients in the factor matrices A and the core
tensor R for RESCAL were all very close to zero, meaning that RESCAL
indeed tried to fit the overwhelming amount of zeros in the data.



factorization starts to become of reasonable quality (0.667))
where RESCAL clearly fails (0.345).

On a multi-relational dataset of this size, the calculations
in the updates based on the very much smaller factor matrices
become very efficient, and with increasing rank the gap in
runtime is expected to increase further, since the absolute size
of the smaller factor matrices ASk and Aék increases slower
when compared to the complete factor matrix A. This can
be exactly observed in Figure 3.f. At a rank of 50, RESCAL
needs almost 16 hours for the factorization (Figure 3.f) and
results in a low quality factorization (AUPRC:0.345), where
TypeConCF needs only 3.5 hours and constructs a meaningful
factorization of the data (AUPRC: 0.667) at a very low-rank.

VI. CONCLUSION

We have proposed a general collective factorization ap-
proach for large type-constrained multi-relational data that is
able to exploit relational type-constraints during factorization.
Our experiments showed that in addition to faster convergence
we obtained better prediction accuracy and the approach uses
less memory, if compared to RESCAL. More precisely, we
demonstrated on all datasets that the link prediction quality
of the proposed model increased significantly faster with the
rank of the factorization than with RESCAL, which generally
needed a significantly higher rank to achieve similar AUPRC
scores for the link prediction tasks. In case of the very large
DBpedia datasets with millions of entities and hundreds of
relations, our method was able to make meaningful predictions
on a very low-rank of 50, a rank where RESCAL failed.

In addition, we showed through our experiments that useful
type-constraints can be approximated by defining them based
on actual observed subject and object entities in each relation
in absence of prior knowledge.
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