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Abstract

In this work we attempt to predict the progression-free survival time of metastatic breast
cancer patients by combining state-of-the-art deep learning approaches with traditional
survival analysis models. In order to tackle the challenge of sequential clinical records
being both high-dimensional and sparse, we propose to apply a tensorized recurrent neural
network architecture to extract a latent representation from the entire patient history. We
use this as the input to an Accelerated Failure Time model that predicts the survival time.
Our experiments, conducted on a large real-world clinical dataset, demonstrate that the
tensorized recurrent neural network largely reduces the number of weight parameters and
the training time. It also achieves modest improvements in prediction, in comparison with
state-of-the-art recurrent neural network models enhanced with event embeddings.

1. Introduction

With the increasing availability of Electronic Health Records (EHR) data in clinics, there
is a growing interest in predicting treatment prescription and individual patient outcome
by extracting information from these data using advanced analytics approaches. Especially
the latest success of deep learning in image and natural language processing has encour-
aged the application of these state-of-the-art techniques in modeling clinical data as well.
Convolutional Neural Networks (CNNs), particularly the deeper architectures with multiple
layers, turn out to be capable of not only handling natural images (Krizhevsky et al., 2012;
Simonyan and Zisserman, 2014; Szegedy et al., 2015), but also medical imaging data for,
e.g., segmentation and captioning (Kayalibay et al., 2017; Shin et al., 2016; Kisilev et al.,
2011). On the other hand, due to the fact that natural language and medical records share
the same sequential nature, Recurrent Neural Networks (RNNs), which have proven to be
powerful in language modeling (Kim et al., 2015; Mikolov, 2012) and machine translation
(Sutskever et al., 2014; Cho et al., 2014), are more frequently applied to medical event
data to predict, e.g., medication prescription and patient endpoints, with promising per-

c©2017.



formances (Choi et al., 2016, 2015). The major advantage of RNNs in handling medical
records lies in their ability to handle sequential inputs of variable lengths in a more generic
way than sliding window approaches (Bengio et al., 2003; Esteban et al., 2015).

In language modeling, the input to the RNN model is typically a word (or even character)
embedding in form of a dense and real vector that represents the word in a latent space.
The embedding idea has inspired its application on medical event data such as Choi et al.
(2015); Esteban et al. (2016); Choi et al. (2016); the reason is that the sequential medical
records are often of categorical type and, after binary-coding, the derived feature vector can
become very sparse in a high dimensional space. Choi et al. (2015) terms such type of input
features as a multi-hot vector and show that they are suboptimal to serve as direct inputs to
plain RNN models. The embedding layer, though reducing the size of the input-to-hidden
weight matrix in an RNN model, still requires parameters determined by the dimension of
the raw multi-hot input and the embedding size.

To handle the high dimensional multi-hot sequential input, we propose in this work a
simpler, more efficient and direct approach by factorizing the input-to-hidden weight matrix
in an RNN model based on tensor factorization. Novikov et al. (2015) first proposed to per-
form Tensor-Train Factorization (Oseledets, 2011) on weight matrices in Neural Networks to
tackle the challenge of input redundancy, such as in fully-connected layers following a convo-
lutional one, or simple feed-forward layers that consume raw pixel data. This tensorization
is proven to be highly efficient and can significantly reduce the over-parameterization in
the weights without sacrificing much of the model expressiveness. Following their work, we
argue that the same challenge of redundant information in high dimensional and sequen-
tial multi-hot vectors can be addressed in a similar way by integrating the Tensor-Train
factorization into RNNs, with the nice property that the factorization is learned efficiently,
together with the rest of the RNN, in an end-to-end fashion.

We conduct experiments on a large real-world dataset consisting of thousands of metastatic
breast cancer patients from Germany. We attempt to predict for each patient her/his
Progression-Free Survival time based on her/his medical history of variable length and
background information, using an Accelerated Failure Time (AFT) model in combination
with the RNN models. The former (Wei, 1992) has always been a promising tool for survival
analysis, especially if one wants to directly model the individual survival time instead of the
hazard. Gore et al. (1984) and Bradburn et al. (2003), for instance, have demonstrated the
application of AFT in modeling progression-free survival in case of breast and lung cancer,
respectively.

The rest of the paper is organized as follows: in Sec. 2 we give an overview of related
works that have inspired our own; in Sec. 3 we provide an introduction to our cohort and
data situation; in Sec. 4 we present the novel techniques of our model in detail and provide
experimental results in Sec. 5. Finally, Sec. 6 provides a conclusion and an outlook on
future works.

2. Related Work

Handling sequential EHR data. Due to the sequential nature of EHR data, there
have been recently multiple promising works studying clinical events as sequential data.
Many of them were inspired by works in natural language modeling, since sentences can



be easily modeled as sequences of signals. Esteban et al. (2015) adjusted a language model
based on the sliding window technique in Bengio et al. (2003), taking into account a fixed
number of events in the past. This model was extended in Esteban et al. (2016) by replacing
the sliding window with RNNs, which improved the predictions for prescriptions decision
and endpoints. Lipton et al. (2015) applied LSTM to perform diagnosis prediction based
on sequential input. A related approach with RNNs can also be found in Choi et al. (2015)
to predict diagnosis and medication prescriptions. This RNN implementation was further
augmented with neural attention mechanism in Choi et al. (2016), which did not only show
promising performances but also improved the interpretability of the model.

RNN for sequence classification and regression. The RNN models in these
works were implemented in a many-to-many fashion. That is to say, at each time step
the RNN generates a prediction as output, since the target in these works is provided at
every time step. In our work, on the other hand, cancer progression is not expected to be
observed regularly. Consequently, we implement many-to-one RNN models that consume a
sequence of input vectors, and generate only one output vector. This setting can be found
in a variety of sequence classification/regression tasks. Koutnik et al. (2014) used such RNN
architectures to classify spoken words and handwriting as sequences. RNNs have also been
applied to classify the sentiment of sentences such as in the IMDB reviews dataset (Maas
et al., 2011). The application of RNNs in the many-to-one fashion can also be seen as to
encode a sequence of variable length into one fixed-size representation (Sutskever et al.,
2014) and then to perform prediction as decoding based on this representation.

Tensor-Train Factorization and Tensor-Train Layer. The Tensor-Train Fac-
torization (TTF) was first introduced by Oseledets (2011) as a tensor factorization model
with the advantage of being capable of scaling the factorization to an arbitrary number of
dimensions. Novikov et al. (2015) showed that one could reshape a fully connected layer
into a high dimensional tensor, which is to be factorized using TTF, and referred to it as a
Tensor-Train Layer (TTL). This idea was applied to compress very large weight matrices in
deep Neural Networks where the entire model was trained end-to-end. In these experiments
they compressed fully connected layers on top of convolutional layers, and also proved that
a Tensor-Train layer can directly consume pixels of image data such as CIFAR-10, achieving
the best result among all known non-convolutional layers. Then in Garipov et al. (2016)
it was shown that even the convolutional layers themselves can be compressed with TTLs.
Yang et al. (2017) first applied TTF to the input-to-hidden layer in RNN variants. They
showed that such modification not only reduced the number of weight parameters in orders
of magnitude, but also could boost prediction accuracy in classification of real-world video
clips, which typically involve extremely large input dimensions.

3. Cohort

3.1 Data Extraction

In Germany, approximately 70,000 women suffer from breast cancer and the mortality is
approximately 33% every year (Kaatsch et al., 2013; Rauh and Matthias, 2008). In many of
these cases, it is the progression, especially the metastasis of the cancer cells to vital organs,
that actually causes the patient’s death. Our dataset, provided by the PRAEGNANT
study network (Fasching et al., 2015), was collected on patients suffering from metastatic



breast cancer and warehoused in the secuTrial R©, which is a relational database system.
After querying and pre-processing, we could retrieve information on 4,357 valid patient
cases, which we define as a patient-time pair, i.e., at that specific time a metastasis and/or
recurrence is observed on that patient. The first patient was recruited in 2014 and the
currently last patient in 2016, but their earliest medical records date back to 1961.

3.2 Feature Processing

There are two classes of patient information that are potentially relevant for modeling the
PFS time:

First, the static information includes 1) basic patient information, 2) information on the
primary tumor and 3) history of metastasis before entering the study. In total we observe
26 features of binary, categorical or real types. We perform binary-coding on the former
both cases and could extract for each patient case i a static feature vector denoted with
mi ∈ R118.

The sequential information includes 4) local recurrences, 5) metastasis 6) clinical visits
7) radiotherapies, 8) systemic therapies and 9) surgeries. These are time-stamped clinical
events observed on each patient throughout time. In total we have 26 sequential features of
binary or categorical nature. Binary-coded, they yield for a patient case i at time step t a

feature vector x
[t]
i ∈ {0, 1}196. We denote the whole sequence of events for this patient case

i up to her/his last observation at Ti before progression (in form of either local recurrences

or metastasis) using a set of {x[t]
i }

Ti
t=1. The length of the sequences vary from 1 to 35 and

is on average 7.54.

Due to the binary-coding, each mi and x
[t]
i yield on average sparsities of 0.88 and 0.97,

respectively, for each i and t.

3.3 Distribution of the Target Variable

We denote the number of days till the next recorded progression using zi, and assume it to
be a realization of a random variable Zi to serve as the target variable of our model.

In total, we attempt to model the distribution of PFS time as Generalized Regression
Model (GRM):

Zi
i.i.d.∼ F(Θi) where Θi = g−1(η

[Ti]
i ). (1)

where Zi is a variable independently conditioned on some features that represent the patient
case, where g−1 is analogous to the inverse link function in GRMs and maps the time

dependent input η
[Ti]
i to the set of distribution parameters Θi.

We would assume Zi to be Log-Normal distributed and specify Eq. (1) to be:

Zi
i.i.d.∼ logN (µi, σi) with µi = g−1(η

[Ti]
i ) = g−1

(
f
(
mi, {x[t]

i }
Ti
t=1

))
. (2)

In the section that follows we elaborate in detail the construction of the function f ,
which maps the static and sequential features of a patient case into a latent representation

η
[Ti]
i to serve as the input to the AFT model, a special case of GRM.



4. Methods

In this section, we first give an introduction to the Tensor-Train Layer; we then use this to
replace the weight matrix mapping from the input vector to hidden state in RNN models.
Thereafter, we briefly review the Accelerated Failure Time model that consumes the latent
patient representation produced by the Tensor-Train RNN.

4.1 Tensor-Train Recurrent Neural Networks

Tensor-Train Factorization of a Feed-Forward Layer Novikov et al. (2015) showed
that the weight matrix W of a fully-connected feed-forward layer ŷ = Wx + b can be
factorized using Tensor-Train (Oseledets, 2011), where the factorization and the weights
are learned simultaneously. This modification is especially effective, if the layer is exposed
to high-dimensional input with redundant information, such as pixel input and feature maps
produced by convolutional layers. In this work, we show that the challenge of multi-hot
representation of sequential EHR data can also be handled using TTL by integrating it into
RNNs.

A fully-connected feed-forward layer, in form of:

ŷ(j) =
M∑
i=1

W (i, j) · x(i) + b(j), ∀j ∈ [1, N ] with x ∈ RM , y ∈ RN , (3)

can be equivalently rewritten as

Ŷ(j1, j2, ..., jd) =

m1∑
i1=1

m2∑
i2=1

...

md∑
id=1

W((i1, j1), (i2, j2), ..., (id, jd)) ·X (i1, i2, ..., id)

+ B(j1, j2, ..., jd),

(4)

so long as the input and output dimensions can be factorized as M =
∏d
k=1mk, N =∏d

k=1 nk. Therefore, the vectors x and y are reshaped into two tensors with the same num-
ber of dimensions: X ∈ Rm1×m2×...×md ,Y ∈ Rn1×n2×...×nd , respectively, and the mapping
function becomes Rm1×m2×...×md → Rn1×n2×...×nd . Though mathematically equivalent, Eq.
4 represents a more general description of Eq. 3 and, more importantly, provides a high
dimensional weight tensor of W that can be factorized using TTF:

Ŵ((i1, j1), (i2, j2), ..., (id, jd))
TTF
= G∗

1(i1, j1, ; , ; ) G∗
2(i2, j2, ; , ; ) ... G∗

d(id, jd, ; , ; ), (5)

where a G∗
k ∈ Rmk×nk×rk−1×rk is termed as a core tensor, specified by ranks rk for k ∈ [0, d].

Now instead of explicitly storing the full tensor W of size
∏d
k=1mk · nk = M ·N , we only

store its TT-format, i.e., the set of low-rank core tensors {G∗
k}dk=1 which can approximately

reconstruct W .

For the rest of the paper, we denote a fully-connected layer of ŷ = Wx + b, whose
weight matrix W is factorized with TTF as ŷ = TTL(W , b,x), or TTL(W ,x), if no bias
is required.

Tensor-Train RNN In this work we investigate the challenge of modeling high dimen-
sional sequential data with RNNs. For this reason, we factorize the matrix mapping from



the input to the hidden state with a TTL as in Yang et al. (2017). More specifically, in
case of LSTM, a particular form of RNN by Hochreiter and Schmidhuber (1997); Gers et al.
(2000) and GRU, another variant by Chung et al. (2014), we TT-factorize the matrices that
map from the input vector to the gating units as in Eq. (6):

TT-GRU:

r[t] = sig(TTL(W r,x[t]) +U rh[t−1] + br)

z[t] = sig(TTL(W z,x[t]) +Uzh[t−1] + bz)

d[t] = tanh(TTL(W d,x[t]) +Ud(r[t] ◦ h[t−1]))

h[t] = (1− z[t]) ◦ h[t−1] + z[t] ◦ d[t],

TT-LSTM:

k[t] = sig(TTL(W k,x[t]) +Ukh[t−1] + bk)

f [t] = sig(TTL(W f ,x[t]) +Ufh[t−1] + bf )

o[t] = sig(TTL(W o,x[t]) +Uoh[t−1] + bo)

g[t] = tanh(TTL(W g,x[t]) +Ugh[t−1] + bg)

c[t] = f [t] ◦ c[t−1] + k[t] ◦ g[t]

h[t] = o[t] ◦ tanh(c[t]).

(6)

For the sake of simplicity, we denote a many-to-one RNN (either with or without Tensor-

Train, either GRU or LSTM) using a function ω: h
[Ti]
i = ω({x[t]

i }
Ti
t=1), where h

[Ti]
i is the

last hidden state as in Eq. (6).
In order to also take into account the static features (Esteban et al., 2016) such as patient

background and primary tumor, we concatenate the last hidden state of the RNN with the

latent representation of the static features as η
[Ti]
i = [h

[Ti]
i , qi] with qi = ψ(Vmi), where

V is a standard trainable weight matrix and ψ denotes a non-linear activation function.
Finally, we have specified the function f with respect to Eq. (2) as:

g(µi) = η
[Ti]
i = f

(
mi, {x[t]

i }
Ti
t=1

)
=
[
ψ(Vmi), ω({x[t]

i }
Ti
t=1)

]
. (7)

The vector η
[Ti]
i represents the static patient information as well as the medical history

of patient i up to time step Ti. In the context of GRM-like models, η
[Ti]
i would be the raw

covariates, while in our case, it is a more abstract latent representation generated from a
variety of raw and potentially less structured features. This point of view provides us with
an interface between representation learning and the GRM models.

The vector η
[Ti]
i also functions as an abstract patient profile that represents all rele-

vant clinical information in a latent vector space, where patients with similar background
information and medical history would be placed in a specific neighborhood. This very
characteristics of the latent vector space is key to the latest success of deep or representa-
tion learning, because it facilitates the classification and regression models built on top of
it, which is, in our case, an AFT model that is presented as follows.

4.2 Accelerated Failure Time Model

The AFT model is a GRM-like parametric regression that attempts to capture the influence
that the features in ηi have on a variable Zi, which describes the survival time till an event
is observed:

Yi = ηTi β +Ri, with Yi = log(Zi), (8)

where β is the weight vector and Ri
i.i.d.∼ DR is the residual whose distribution can be

specified by DR. Common choices for DR are Normal, Extreme Value and Logistic distri-
butions. The variable Z would correspondingly be Log-Normal, Weibull/Exponential and



Log-Logistic distributed, respectively. As Eq. (8) suggests, an AFT model assumes that the
covariates have a multiplicative effect on the survival time, ’accelerating’ —either positively
or negatively— the baseline time till which the event of interest occurs. To see that one
only has to rewrite Eq. (8) as Zi = Z0 exp

(
ηTi β

)
with Z0 = exp (Ri), so that the baseline

survival time Z0 is accelerated to a factor of exp{ηTi β}. In other words, if one covariate j
increases by a factor of δ, the failure time is to be accelerated by a factor of exp{δβj}, so
long as all other covariates remain the same. The Proportional Hazard Cox Regression, on
the other hand, assumes such a multiplicative effect over the hazard.

We are specifically assuming that the target variable Zi follows a Log-Normal distribu-

tion and that, implicitly, the residuals are normal distributed, i.e., Ri
i.i.d.∼ N (0, σi). One

could therefore plug Eq. (8) into the normal distribution assumption and have
log(Zi)−ηT

i β
σi

i.i.d.∼
N (0, 1), which allows us to perform training with the Mean Squared Logarithmic Error.

5. Experiments

5.1 Experimental Details and Evaluation Approach

We conduct 5-fold cross-validations by splitting the dataset into proportions of 0.8 / 0.2
disjoint subsets for training / test tasks. We train our models with 0.25 dropout (Srivastava
et al., 2014) rate for the weights in (TT-)RNNs, and 0.025 ridge-penalization in feed-forward
layers, with the Adam (Kingma and Ba, 2014) step rule for 200 epochs. Since the dimension
of 196 can be represented with prime factors 22 × 72, we experiment two different settings
of [7, 28] and [4, 7, 7] to factorized the input dimension. The corresponding factorizations
of the RNN output’s dimension are [8, 8] and [4, 4, 4], respectively. In the first case, the
Tensor-Train-Factorization becomes equivalent to a two mode PARAFAC/CP (Kolda and
Bader, 2009) model, and we therefore denote GRU and LSTM with this setting as CP-GRU
and CP-LSTM, respectively, for the sake of simplicity. We also experiment two different
TT-ranks of 4 and 6. All models are trained with objective function of Mean Squared
Logarithmic Error (Chollet, 2015). We set the size of the non-linear mapping of the static
feature qi to be 128.

Since the target Z follows a Log-Normal instead of Normal distribution, it is not ap-
propriate to measure the results in term of Mean Squared Error (MSE) as is with usual
regression models. We therefore report the more robust metric of Median Absolute Error
(MAE) defined as MAE = mediani(|zi − ẑi|). Even on the logarithmic scale of Y , MSE
is not a reliable metric in this case either, since the Squared Error of a yi = log zi would
increase in Z exponentially as yi increases. In other words, two similar Squared Errors on
the logarithmic scale Y might imply totally different errors in Z. We therefore report the

coefficient of determination as R2 = 1−
∑

i(yi−ŷi)2∑
i(yi−ȳ)2

on the logarithmic scale of Y .

All our models are implemented in Theano (Bastien et al., 2012) and deployed in Keras
(Chollet, 2015). The experiments were conducted on a NVIDIA Tesla K40c Processor.

5.2 Prediction of Progression-Free Survival

As weak baselines we first report the performance of standard Cox and AFT Regression
using the R package survival(Therneau, 2015; Terry M. Therneau and Patricia M. Gramb-



Model TT-Rank MAE R2 Time(sec.) #Parameters

GRU - 156.7 ± 6.6 0.295 ± 0.018 3,598 74,880
LSTM - 159.5 ± 13.7 0.274 ± 0.014 5,956 99,840

Emb.+GRU - 136.2 ± 14.8 0.635 ± 0.009 4,957 24,832
Emb.+LSTM - 136.8 ± 11.9 0.633 ± 0.014 6,170 28,928

CP-GRU
4 135.6 ± 10.0 0.630 ± 0.018 1,689 1,568
6 136.8 ± 9.3 0.623 ± 0.015 1,773 2,352

TT-GRU
4 136.5 ± 9.4 0.632 ± 0.020 1,940 752
6 136.2 ± 11.4 0.634 ± 0.019 2,178 1,464

CP-LSTM
4 135.2 ± 8.4 0.637 ± 0.018 3,390 1,792
6 133.7 ± 10.7 0.625 ± 0.023 3,530 2,688

TT-LSTM
4 140.0 ± 10.4 0.645± 0.025 3,729 816
6 132.9 ± 9.9 0.630 ± 0.017 4,050 1,560

Table 1: Experimental results: average MAE, R2, average training time, the number of all
parameters responsible for mapping the raw input to the hidden state in RNNs.

sch, 2000). The Cox Regression (in term of median survival estimate in the package) yields
an average MAE score over the cross-validation of 214.5 and the AFT 208.7. The input to
both models are the raw features aggregated w.r.t time axis. Such aggregation is also ap-
plied in Esteban et al. (2015) and is proven to be a reasonable alternative solution to handle
time stamped features, since each entry represents the number of feature values observed
up to a specific time step, though ignoring the order in which the events were observed.

We apply two further classes of baseline models: First, we expose GRU and LSTM di-
rectly to the raw sequential features and then, secondly, we add a tanh activated embedding
layer of size 64, between the raw input feature and the RNNs, following the state-of-the-art
of Choi et al. (2015). The corresponding results are presented in the first four rows in
Tab. 1. Compared to aggregated sequential features, RNNs are indeed able to generate
representations that facilitate the AFT model on top of them, reducing the MAE from over
200 to ca. 150. The embedding layers as input to RNNs turn out to yield even better
results of 136, with less parameters but longer training time. This confirms the point made
in Choi et al. (2015) that such input features of both high dimensionality and sparsity are
suboptimal input to RNNs.

In further experiments we test our TT-GRU, TT-LSTM, CP-GRU and CP-LSTM imple-
mentations with different TT-ranks. Though exposed to the raw features, these tensorized
RNNs yield prediction quality comparable with –and sometimes even better than– the state-
of-the-art embedding technique and require on average ca. 40% of the training time and
2%−10% of parameters. Compared with plain RNNs, they merely require 1% to 3% of the
parameters.

In contrast to Novikov et al. (2015) where tensorization slightly decreased the prediction
quality, we actually observe on average a modest improvement with TT-RNNs. For instance,
the MAE is improved from 136.2 to 135.6 in case of GRU and from 136.8 to 132.9 in case of
LSTM. Such MAE measures around 135 implies that these model can provide a prediction
of PFS time with an accuracy of plus-minus four months time for the non-extreme patient
cases.



F0 Weibull Exponential Log-Logistic Log-Normal

p-value 3.7e-4 ≤2.2e-16 ≤2.2e-16 0.064

Table 2: Two-sided Kolmogorov-Smirnov Tests of the distribution of the residual under the
H0 of variable distributions F0.

Please note that in an RNN model, the input-to-hidden weight matrix becomes over-
parameterized if the input feature turns out to be highly sparse and/or to consist of high
proportion of redundant information. In earlier works, this challenge is tackled using an
explicit embedding layer that transforms the raw feature into a more compact input vector
to the RNNs. The TT-RNNs, on the other hand, provide an alternative solution that
directly tackles the over-parameterization in the weight matrix, in that the full-sized weight
matrix is constructed using a much smaller number of ’meta’ weights, i.e., the core tensors
in the Tensor-Train model.

Secondly, comparing different TT-settings, it is trivial that a higher TT-rank requires
more parameters and longer training time. Compared with the CP-factorization of 196 =
7× 28, the real TT-factorization of 196 = 4× 7× 7 of the weight matrix leads to a smaller
number of parameters, but the difference in training time is less extreme. This can be
explained with Eq. (5), which demonstrates that the number of core tensors also influences
the computation complexity. More specifically, the multiplication among core tensors is
strictly successive in k = 1, 2, ..., d and cannot be parallelized in CPUs or GPUs. In other
words, a chain of multiplication of small core tensors might, in extreme cases, take even
longer to compute than the multiplication of two large matrices.

In order to verify the Log-Normal distribution assumption, we conduct Kolmogorov-
Smirnov-Tests as in R Core Team (2016) on the modeling residuals. We report in Tab.
2 the p-values corresponding to alternative distribution assumptions. The hypothesis of
Weibull-, Exponential and Log-Logistic-distribution can be therefore rejected with rather
high significance. Since we cannot reject the Log-Normal distribution assumption even
with the largest common significant level of 5%, our assumption of Zi to be Log-Normal
distributed in Eq. (1) can be verified.

5.3 Estimation of Individual Survival and Hazard Functions

Beside the PFS time, the AFT model also allows us to calculate individual survival and
hazard functions for each patient case. The individual survival and hazard function can be
derived from Eq. (8) and takes the form of:

S(Zi = z|ηi) = 1− Φ

(
log(z)− ηTi β

σi

)
, (9)

λ(Zi = z|ηi) = − ∂

∂z
Si(z|ηi) =

φ(
log(z)−ηT

i β
σi

)(
1− Φ

(
log(z)−ηT

i β
σi

))
zσi

, (10)

where Φ and φ are the cumulative distribution function and probability density function of
a standard normal distribution, respectively. Here σi can be estimated using

σi ≈ σ̂i = Vi∗∼datatrain
(
log(Zi∗)− ηTi∗β

) 1
2 , (11)



Figure 1: A prototype App for patient data querying and PFS prediction, implemented with R
Shiny Chang et al. (2015), illustrated with information of a patient from our test set.

under the conditional i.i.d. assumption in Eq. (1). In a realistic application scenario in
clinics, providing the individual hazard function is as important as providing physicians
with a prediction of the PFS time. For the clinic we have developed a prototype interface
(Fig. 1 ) to predict the PFS time and individual hazard function as well as to query patient
information. For illustrative purposes, we calculate hazard function for a patient from test
set so that, for comparison, we also mark the ground truth PFS.

6. Conclusion and Future Works

We have first applied tensorized RNNs to handle high dimensional sequential inputs in
form of medical history data; Second, we showed that one can join deep/Representation
Learning with GRM-like models in a Encoder-Decoder fashion (Sutskever et al., 2014),
where the RNN encoder produces better representative input for the GRM-like decoder.
Our empirical results demonstrate that the tensorized RNNs greatly reduce the number
of parameters and the training time of the model, while retaining –if not improving– the
prediction quality compared to the state-of-the-art embedding technique. We also showed
that when applying an AFT model on top of RNNs, one could calculate the PFS time
as well as provide physicians with individual survival and hazard functions, improving
the usability of our model in realistic scenarios. In the future we would like to integrate
attention mechanisms as Choi et al. (2016) into the TT-RNNs, in order to improve the
model’s interpretability. This would enables the physician to trace back to event(s) that have
contributed most to the prediction. In this work we implicitly reshape our multi-hot input
solely for computational convenience. We find it therefore necessary to explore possibilities
to perform the reshaping in accordance with the actual input structure. Furthermore it
seems also appealing to include other distribution assumptions for the AFT model.
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Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014.

Edward Choi, Mohammad Taha Bahadori, and Jimeng Sun. Doctor ai: Predicting clinical
events via recurrent neural networks. arXiv preprint arXiv:1511.05942, 2015.

Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, and
Walter Stewart. Retain: An interpretable predictive model for healthcare using reverse
time attention mechanism. In Advances in Neural Information Processing Systems, pages
3504–3512, 2016.

François Chollet. Keras: Deep learning library for theano and tensorflow. https://github.
com/fchollet/keras, 2015.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.
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