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Multi-Output Regularized Feature Projection

Shipeng Yu, Kai Yu, Volker Tresp, and Hans-Peter Kriegel

Abstract—Dimensionality reduction by feature projection is widely used in pattern recognition, information retrieval, and statistics.
When there are some outputs available (e.g., regression values or classification results), it is often beneficial to consider supervised
projection, which is based not only on the inputs, but also on the target values. While this applies to a single-output setting, we are
more interested in applications with multiple outputs, where several tasks need to be learned simultaneously. In this paper, we
introduce a novel projection approach called Multi-Output Regularized feature Projection (MORP), which preserves the information of
input features and, meanwhile, captures the correlations between inputs/outputs and (if applicable) between multiple outputs. This is
done by introducing a latent variable model on the joint input-output space and minimizing the reconstruction errors for both inputs and
outputs. It turns out that the mappings can be found by solving a generalized eigenvalue problem and are ready to extend to nonlinear
mappings. Prediction accuracy can be greatly improved by using the new features since the structure of outputs is explored. We
validate our approach in two applications. In the first setting, we predict users’ preferences for a set of paintings. The second is
concerned with image and text categorization where each image (or document) may belong to multiple categories. The proposed

algorithm produces very encouraging results in both settings.

Index Terms—Dimensionality reduction, supervised projection, feature transformation.

1 INTRODUCTION

CONSIDER the pattern recognition task of predicting an
output quantity y given an input feature vector x. If the
input space is high-dimensional and contains irrelevant
features, the design of an appropriate pattern recognition
system becomes a nontrivial problem. Thus, it is desirable
to employ a preprocessing step in which input features are
first projected into a new feature space that is compact,
noise-free, and highly indicative. Projection methods such
as principal component analysis (PCA) and linear discri-
minant analysis (LDA) (see [1]) have been applied
intensively in various applications, like face recognition
[2] and text retrieval [3], [4].

In contrast to unsupervised approaches, where projec-
tions are calculated based solely on the inputs, we study
supervised projection methods where the feature projections
are calculated based on both inputs and outputs. In
general, this leads to an informed or biased feature
projection, which will be more relevant to the particular
supervised learning problem. In the case where we have
only one output dimension, i.e., a regression or classifica-
tion task, it is ideal to have the projection function
informed by the dependency between inputs and outputs.
More generally, if we have multiple output dimensions,
ie, for an input x the corresponding output is no longer
a scalar but a vector y = [y1,...,yz] , the intracorrelation
between different dimensions of output should also be
taken into account. In this paper, we consider the general
case and call it a multi-output setting, and name the
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corresponding projection algorithm Multi-Output Regular-
ized feature Projection (MORP).

The general multi-output setting is very common in real-
world applications. One working example in this paper is to
predict people’s preferences on a set of paintings, which is a
typical multi-output problem since, for each painting, many
people’s preferences have to be estimated. One may treat
each person separately, but a notable fact is that people’s
tastes are usually correlated. One technology, known as
collaborative filtering [5], explores people’s like-mindedness
to make predictions. Another example is the problem of
multilabel text or image categorization, where each docu-
ment/image is allowed to be associated with more than one
category and where categories often have semantic correla-
tions. For example, a document talking about category car
must also belong to the category wvehicle; an image in
category ski is likely to be associated with category snow.

In this paper, we introduce a very general MORP
algorithm to obtain supervised feature projection functions.
In the algorithm, we try to minimize a supervised cost
function for feature projections which includes both the
intercorrelation between inputs and outputs and the intra-
correlation between different output dimensions if we have
at least two of them. We derive an analytical solution to the
optimization problem, which turns out to be a generalized
eigenvalue problem. A nonlinear projection is also easy to
obtain if we introduce regularization to the optimization
problem. The computational complexity of MORP is similar
to a normal PCA problem, and empirical studies on
preference prediction and multilabel classification verify
the effectiveness of the algorithm.

1.1 Notations
We consider a set of N objects (e.g.,, documents). For
t=1,..., N, each object i is described by an M-dimensional

feature vector x; € X and is associated (in general) with an
L-dimensional output vector y, € ). We denote the input
data as a matrix X =[xy, ... ,XN]T e RVM and the output
dataasY =[y,...,yn]| € RV*Y, where[]" denotes matrix
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transpose. In this paper, we aim to derive a mapping ¥ :
XV that projects the input features into a K-dimensional
latent space V.

In the following, lowercase bold Roman letters denote
column vectors and uppercase ones denote matrices. For a
specific example, v is normally used for eigenvectors and V
denotes the matrix [vy, ..., vk]. Eigenvalues are denoted as
A and it should be clear from the context which matrix they
correspond to. Finally, || - || denotes the Frobenius norm for
matrices and 2-norm for vectors and tr(-) denotes trace for
matrices.

1.2 Paper Organization

The paper is organized as follows: In Section 2, we formulate
the supervised dimensionality reduction problem with a
supervised latent variable model, and provide an analytical
solution to this optimization problem. Then, we formally
introduce the MORP algorithm in Section 3, in which both the
primal form (linear projection) and the dual form (nonlinear
projection) are discussed. In Section 4, we point out its
connections to kernel PCA and some supervised projection
methods and, in Section 5, we report some experimental
results on preference prediction and multilabel classification.
Finally, Section 6 concludes the paper.

2 SUPERVISED LATENT VARIABLE MODEL

The supervised latent variable model is motivated from the
unsupervised latent variable model for PCA, which we
briefly review at first.

2.1 Unsupervised Latent Variable Model

In unsupervised linear projection, we aim at finding a linear
mapping from the input space X to some low-dimensional
latent space V, while most of the structure in the data can be
explained and recovered. In this sense, we can turn this
linear projection problem to an optimization problem,
where we are trying to minimize the reconstruction error:

min | X — VA
AV (1)
subject to: V'V =1,

where V € R"X gives the K-dimensional projections of
objects and A € IR**M is the loading matrix. By constraining
V'V =1, we restrict the K latent variables to be linearly
independent, i.e., to have diagonal covariance matrix in
latent space.

Since matrix product VA has rank K, in (1), we are
indeed seeking a low-rank approximation to the data matrix
X. It can be shown that (1) has strong connections to PCA
and kernel PCA (see Section 4.1).

The derived projection explains the covariance of input
data, while it is not necessarily relevant to the outputs.
Thus, unsupervised feature projections may or may not be
beneficial to supervised learning problems. Generally
speaking, it is more desirable to consider the correlation
between input X and output Y and the intracorrelation
between the L dimensions of Y if L > 1. Therefore, we turn
to supervised projection in the next section, incorporating
both input X and output Y.

2.2 A Supervised Latent Variable Model

The unsupervised projection (1) explicitly represents the
projections of input data X in matrix V. To consider the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

output information, we can enforce the projections V in (1)
to be sensitive to Y as well. Thus, in supervised projection,
we solve the following optimization problem:

. 2 2
i (1= B)[IX - VA["+5[Y - VB

subject to: V'V =1,

where V € RV*® gives the K-dimensional projections of
objects, for features of both X and Y. A € REM B e
IR~ are the loading matrices. For input X and output Y,
respectively, 0 < 4 <1 is a tuning parameter determining
how much the projections should be biased by the outputs.
As before, V'V =1 restricts the K latent variables to be
linearly independent. Clearly, the cost function is a trade-off
between the reconstruction error of both X and Y. We wish
to find the optimal projections that give the minimum
reconstruction error.

To see the optimization problem more clearly, we rewrite
the cost in (2) as

L N K 2
(1-B)|X - VA|? +ﬂ22((yi>l - vaBkJ) :
=1 i=1 =1

where V; ;, denotes the (i, k)th entry in V. Then, we have the
following observations:

e When L =1, the second part of the cost constrains
that the output Y can be linearly reconstructed from
the latent projection V. Therefore, in the whole
optimization problem, we are minimizing the
correlation between X and Y.

e When L > 1, all of the columns of Y are constrained
to be linearly reconstructable from V. Therefore,
they are not considered independently, but jointly. In
other words, we are minimizing the intracorrelation
between columns of Y.

We would mention here that one can very easily
generalize this cost function to have a different weight g
for the [th output dimension while maintaining a proper
normalization for all 5;s. In this way, one can constrain each
output dimension differently, which leads to a more flexible
cost with, however, more free parameters. In the following,
we stick to the simpler setting since all the learning
algorithms can be easily generalized to cover this case.

Remark 1. When L = 1, finding the mapping from X to Y is
known as a regression problem if y; € IR, or multiclass
classification if y; is chosen from a finite set of integers. In
the general case when L >1, the former is called
multivariate regression, while the latter is called multilabel
classification. Therefore, our notations consider the most
general setting, which we call a multi-output problem.'

1. In this paper, we explicitly distinguish between multiclass classifica-
tion and multilabel classification, both of which classify objects into
multiple categories. In “multiclass classification,” an object can only belong
to one category, while, in “multilabel classification,” one object can belong
to several categories simultaneously. Therefore, the former is a special case
of the latter. In this paper, multiclass classification is viewed as a single-
output problem since we can label the multiple categories as integers and
assign one integer to one object. The more general multilabel classification is
considered a multi-output setting, where each output could be a binary or
multiclass classifier. Our setting covers both cases and is thus very general.
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The following proposition states the interdependency
between A, B, and V at the optimum.

Proposition 2. If V, A and B are the optimal solutions to (2),
and G = (1 — B)XX" + BYY', then:

. A=V'X,B=V'Y.
2. At the optimum, the objective function in (2) is equal
to tr(G) —tr(VIGV).

To improve readability, we put all proofs into the
Appendix. Since tr(G) is fixed, Proposition 2 suggests that
(2) can be considered to be an optimization problem only
with respect to V:

max  tr (VTGV)
velRVF (3)
subject to: V'V =1

Note that an ambiguity arises in (2) and (3): If V is the
solution, then V = VR is also a solution, given an arbitrary
rotation matrix R. The following theorem summarizes the
situation.

Theorem 3. Suppose that [vi,...,vy] are the eigenvectors of
matrix C} and M\ > ... > Ay are the corresponding eigenva-
lues. If V solves (3), then

1. V= [V1,...,Vvk]|R, where R is an arbitrary K x K
orthogonal rotation matrix.
2. The maximum of the objective function (3) is 21 | ;.

The theorem states that the eigenvectors of G form a
solution to (2) and any arbitrary rotation does not change
the optimum. However, to remove the ambiguity, we are
focusing on the solutions given by the eigenvectors of G,
ie, V=|[vy,...,vk]. Therefore, (2) can be equivalently
achieved by solving:*

max v Gv
velR" (4)
subject to: v'v=1.

Setting the Lagrange derivative to be zero, we have the
eigenvalue problem Gv = Av. Let vy,...,vy be the eigen-
vectors of G with the eigenvalues sorted in a nonincreasing
order. Using the first K eigenvectors, we solve (2) as
V=[i...,vgJ, A=V X,and B= V'Y,

3 MuLTI-OUTPUT REGULARIZED FEATURE
PROJECTION

The solution to the supervised latent variable model is
elegant, but only applicable to training data since, for test
data, we do not have any output information. Therefore, to
complete the MORP algorithm, we need to refine the
original problem.

1. Linear Constraint. It is easy to see that solving (4)
only gives the projections for training data with

2. Solving (4) itself only gives the first eigenvector v; of G. The full
optimization problem should be recursively computing v; by maximiz-
ing v Gv with the constraint v'v=1 and v L span{vy,...,v;_;}. Here,
we state the problem as (4) for simplicity and also because its Lagrange
formulism directly leads to the eigenvalue problem.

both features inputs in X and complete outputs in
Y. We wish to construct a mapping ¥ : XV that
is able to handle the input features of any new
objects; thus, we restrict the latent variables as
linear mappings of X:

V =XW.

This is one key step for the proposed supervised
projection algorithm. With this constraint, we
turn the original problem to an optimization
problem with respect to the linear weight matrix
W = [wy,...,wg] € RM*E and, by definition, we
have v, =Xw,, for k=1,...,K. Plugging v =
Xw into (4), we have an optimization problem
with respect to w only:

max w'X'GXw
WE]R,A[ (5)
subject to: w'X'Xw = 1.

2. Regularization. Similarly to other linear systems, the
learned mappings can be unstable when the
span{xj,...,xy} has a lower rank than R due to
the small size of the training set or dependence
between input features. As a result, a disturbance of
w with an arbitrary w* L span{xy,...,xy} does not
change the objective function of optimization since
(w +w*) x; = w'x;, but may dramatically change
the projections of unseen test points which are not in
the spanned space. To improve the stability, we have
to constraint w in some way.

Suppose rank(G) = N, then (4) is equivalent to mini-

mizing v' G~ 'v.> We introduce the Tikhonov regularization
[6] into (5) as the following:

min = w' X'G'Xw + | w|?
WEIRM (6)
subject to: w'X'Xw =1,

where |w|* = w'w is a penalty term which has been used
in the ridge regression (see [1]) and v >0 is a tuning
parameter. Setting the derivative of its Lagrange formulism
with respect to w to be zero, we reach a generalized
eigenvector problem:

[(XTG'X +1Iw = AX Xw, (7)

which gives generalized eigenvectors wy,...,wy with
eigenvalues M < ...< Ay Note that we sort eigenvalues
in an nondecreasing order since we take the K eigenvectors
with the smallest eigenvalues to form the mapping.

3. One can also minimize v' (—G)v which is also equivalent, but then we
lose nonnegativity of its eigenvalues, which may cause problems later on in
solving the generalized eigenvalue problem. For the invertibility of G, it is
easy to show that G is at least positive semidefinite since we have u' Gu =
1-AHuXX u+ u"YY u=(1-23))X >+ 8]|Y ul* >0, vuc R".
In case the G is not positive definite, it suffices to use pseudoinverse instead
or makes it so by adding a tiny positive scalar to diagonal elements. In the
dual form in Section 3.2, G is, in most cases, positive definite since G, is
normally positive definite (with, e.g., RBF kernel) and G, is at least positive
semidefinite.



The following theorem shows that the regularization
term ||w]||* removes the ambiguity of mapping functions by
restricting w in the span of x;, i=1,...,N, and, thus,
improves the stability of mapping functions.

Theorem 4. If w is an eigenvector of the generalized eigenvalue
problem (7), then w must be a linear combination of x;,
i=1,...,N, namely,

where a € RY.

3.1 MORP-Primal Form

In (7), we are interested in the eigenvectors with the smallest
eigenvalues, whose computation is, however, the most
unstable part in solving an eigenvalue problem. Thus, we let
A =1/X and turn the problem into an equivalent one as

X"Xw = A[X"G'X +1I]w, (8)

where we are seeking the K eigenvectors with the largest
eigenvalues. To solve this problem, we note that matrix Q =
X'G'X + ~I is symmetric and positive definite, so there
exists a symmetric and positive definite matrix L such that
Q = L?. Then, we can change the problem to an equivalent
one as L™'X"XL'Lw = ALw, in which we can solve an
eigenvalue problem for matrix L' X" XL™! with eigenvec-
tors given as z = Lw. After that, we can recover w as
w = L7'z. Note that the solution satisfies w' Qw = 1. This
leads to an additional scaling factor for the mapping.

As can be seen from the optimization problem in (2),
MORP assumes that the projections of all the data points in
X have I as the covariance matrix. This means all the
scaling factors (i.e., the variance on each projection
direction) are not maintained in the projection values. This
will cause problems since the pairwise distances are
changed. Therefore, we add these scaling factors back after
we find the projection directions, which will recover PCA if
no output information is available.

This primal form of the MORP algorithm is summarized
in Algorithm 1. To only extract the projection dimensions
which represent the intrinsic structure of the data, we
centralize the data before performing the algorithm, i.e.,
subtract the sample mean from each data point.

Algorithm 1 MORP in Primal Form
Require: A set of N data points with M-dimensional input
features X = [x,,...,xy] € RV** and L-dimensional
outputs Y = [y,. .. cyn]T e RVXE,
Require: Projection dimension K >0.0<3<1,v>0.
1: Centralize data: x; < x; — X, y; < y; — ¥ where
X=82i%, Y =§ 20 Y
2: Calculate G = (1 — ) XX +8YY".
3:Set P =X'X and Q = [X"G'X +~I]. Solve the
generalized eigenvalue problem: Pw = AQw, obtain
eigenvectors wy, ..., wg with largest K eigenvalues
A1 > ... > Mg such that wQw = 1.
Output: Projection function for the kth dimension as
hp(x)=wix, k=1,...,K.
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3.2 MORP-Dual Form
So far, we have considered linear mappings that project
inputs x into latent space V. However, Theorem 4 implies
that we can also derive a nonlinear mapping W.

Let a kernel function k, (-, -) be the inner product in X, i.e.,
ke (xi,%;) = (x;,%Xj) = x; x;, then, from Theorem 4,

v=Xw=XX"a=G,a,

where G,
(Ga);j = ralxi, X;).
kernel G,:

is the N x N kernel matrix satisfying
can also be calculated with

2
[w
[w|?=w'w=a"XX"a=a'G,a.

Similarly, we can define a kernel function «,(-,-) for inner
product in Y and obtain a kernel matrix G, = YY'. Then,
we can calculate the matrix G using kernels

—B)G. + Gy (9)

and express the dual formalism of (6) with respect to
coefficients a as

G=(1

a'G,G'Ga+ v G

mm

acR”
subject to :

(10)
a'Gla=1.

The Lagrange solution of this problem leads to a general-
ized eigenvalue problem

[G,G'G, +1G,]a = A\G2a. (11)

We obtain the generalized eigenvectors aj,...,ay, with
A < ... < Ay. The first K eigenvectors are applied to form
the mappings. The kth mapping function, k=1,..., K, is
given by

N
";b/c Z ak) Ry X?a
=1
As before, we define A =1/\ and change (11) to the
following equivalent form:

Gla=A[G,G'G, +7G,]a (12)

and, hence, we can choose the K eigenvectors with the
largest eigenvalues.

The algorithm is ready to deal with nonlinear map-
pings. For this, we consider a nonlinear mapping
¢:x € X—¢d(x) € F, which maps x into a high-dimen-
sional or even infinite-dimensional feature space F and
changes X to be [6(x1),...,6(xx)]". Then, the kernel
function is accordingly defined as

(0(xi), 6(x)),

where we still have G, = XX . Therefore, we can directly
work with kernels, e.g., RBF kernel

K (X, Xj) =

R (xi, %) = exp(—|lx; —x*/20%),

without knowing ¢(-) explicitly.
Similarly, we can define a nonlinear mapping for ) and
directly work on the corresponding kernel matrix G,.
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Fig. 1. The first projection directions of MORP (black thick line) and PCA (gray dashed line) for three toy data sets with different output types:
(a) Binary classification (+1 for triangles and —1 for squares), (b) regression values (—1 to +1 from top-left to bottom-right, shown with different gray
scales), and (c) multilabel classification. In (c), the first classifier has label +1 for points in the the bottom-left cluster and the top cluster, and —1 for
points in the bottom-right cluster; the second classifier has label +1 for squares (the bottom-right cluster and the top cluster) and —1 for triangles (the
bottom-left cluster). Note that (c) is not a multiclass problem. For all three data sets, 3 is set to 0.5 for MORP.

Although this paper mainly considers the linear kernel to
explore the linear correlation of multivariate outputs, the
formulism implies that the method can generally handle
more complex outputs by using some other suitable kernels.

For centering of the data, we can achieve this in the
new feature space F without knowing the explicit

mapping ¢(-) ([7]):
1
+W1N1X,G1N1}7 (13)

where 1y denotes the all one column vector [1,...,1]" of
length N. For the kernel vector k(X, x) given test data x, it
can also be centered by

1 1

1 1 1
k< k—NlNlﬁk -5 Gy +W1N1}G1N.

The final dual form of the algorithm is summarized in
Algorithm 2.

(14)

Algorithm 2 MORP in Dual Form

Require: A set of N data points with M-dimensional input
features X = [x,...,xy]' € RV*M and L-dimensional
outputs Y = [y,. .. cyn]T e RV*E,

Require: Kernel functions «,(-,-) and k(- -) for input space
X and output space ). Projection dimension K > 0.
0<p<ly=0.

1: Calculate two N x N matrices (G,),
(Gu)“ = Ky (¥i,¥,)-

2: Centralize the kernel matrices G, and G, using (13).

3: Calculate G = (1 — 3)G, + 8G,,.

4: Set P = Gi and Q = G,G G, ++G,. Solve the
generalized eigenvalue problem: Pa = AQq, obtain
eigenvectors ay,. .., ax with largest eigenvalues
Al > ... > Mg such that o' Qa = 1.

Output: Projection function for the kth dimension as

Yr(x) = _’(X,X)Tak, k=1,...,K, where
K(X,X) := [k(x1,X), . .., ke (xn,%)] " and centralized
via (14).

i Iiz(Xi, Xj)r

3.3 Discussions

In Fig. 1, we show the projection directions of MORP and
PCA for three toy data. Fig. 1a shows binary classification,

Fig. 1b shows regression values, and Fig. 1c shows multi-
label classification, respectively. In all the cases, MORP can
find the most informative directions for the specific
supervised learning problems and deviates from the PCA
directions dramatically. This means various outputs can
significantly bias the extracted features. PCA just finds the
direction which has the largest data variance in all the cases.

MORP defines a general solution for supervised projec-
tion, i.e., minimization of an output-regularized cost function. In
general, one can go beyond the Frobenius norm and
consider a more general cost for X and Y:

(1 =P8 F(X, V) +Pg(Y, V),

where f and g define the input-specific cost and output-specific
cost, respectively, with respect to the observation (X or Y)
and the projection V. There may be some parameters
involved (like A and B in the Frobenius norm case) and, in
general, there is no analytical solution to this optimization
problem. For instance, f could be matrix 1-norm (like the
case for sparse PCA [8]) and g could be hinge-lose for the
binary classification problem [9]. For simplicity and tract-
ability, we stick to the Frobenius norm in this paper.

As a natural extension of (2), we can have another output
set, say Z, associated with all input data and add the
reconstruction error of Z to the cost function. Then, the cost
function looks like

(1B — B)|IX — VA|? + 51|[Y — VB| + ]| Z — VC|?

and, potentially, Z could have different intracorrelations
compared to Y. Both of these two output sets can be
incorporated into MORP by defining possibly different
kernels for Y and Z and including them into the matrix G.
Therefore, MORP introduces an elegant way to take into
account various supervised information and allows great
flexibility and generalization ability.

MORP solves a generalized eigenvalue problem for M x
M matrices in the primal form and for N x N matrices in
the dual form, which, in computational complexity, is
similar to unsupervised projection PCA and kernel PCA
(see [10] for details of generalized eigenvalue problems).
The time complexity of the primal and dual solutions is,
respectively, O(mM?K) and O(mN?K) if we use the power
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method to solve the eigenvalue problem, where m is the
number of iterations. For implementation, it is very easy
and just takes several lines with Matlab. The calculations of
kernels and matrix multiplications are the most time-
consuming parts of the algorithm, as well as the matrix
inversion in kernel form.

4 CONNECTIONS TO RELATED WORKS

The proposed algorithm MORP is a supervised projection
from the input space to the latent space and aims at
minimizing the reconstruction errors of both input data X
and output data Y. The algorithm is naturally generalizable
to nonlinear mappings and can explore the intracorrelation
of multiple outputs.

In the literature, there are some other well-known
unsupervised and supervised projection methods, such as
principal components analysis (PCA) ([11], [12]), linear
discriminant analysis (LDA) ([1], [13]), canonical correlation
analysis (CCA) ([14], [15]), partial least squares (PLS) ([16],
[17]), and kernel dependency estimation (KDE) [18]. In this
section, we briefly review these methods and point out the
substantial differences as well as possible connections
between MORP and these methods. Other recent works
include kernel dimensionality reduction [19], multitask
learning ([20], [21], [22]) and will also be briefly discussed.

4.1 Kernel Principal Component Analysis

(Kernel PCA)
PCA is shown to be a robust unsupervised method for
linear projection and has been intensively applied to
regression and classification applications [11]. Kernel PCA
releases the linear limitation of PCA and is actually
performing a linear PCA in a kernel induced feature space,
i.e., a reproducing kernel Hilbert space ([7], [12], also see the
discussions in [23]). Let ¢ :x € X—¢(x) € F denote the
nonlinear mapping and let G denote the corresponding
kernel matrix, i.e., G;; = (¢(x;),d(x;)) z. It turns out that
kernel PCA is readily performed by solving the following
eigenvalue problem:

Ga = .

After the eigenvectors aj,...,ax with largest eigenva-
lues Ay > ... > Ag are obtained, the nonlinear mappings
Vi(x) = SN (a)),k(xi,x), j=1,...,K, project the input
data x to a K-dimensional latent space, where kernel
function k(x;,x) = (¢(x;), (X)) £

The proposed method MORP is motivated from (2) and
is also performing an unsupervised projection when 3 = 0,
which is identical to (1). In this case, we have G = XX,
which is just the kernel matrix G, for X in dual form, as
revealed by (9). Then, from Theorem 3 and remarks after
(4), it is clear that, when 3 =0, MORP is also solving the
eigenvalue problem for G, and, thus, is identical to kernel
PCA. This also clarifies the connection between kernel PCA
and (1): The optimal solution V to (1) corresponds to, up to
a rotation factor, the K nonlinear principal components of
kernel PCA in columns.

When g =0, the equivalence of MORP and kernel PCA
can also be shown from (10), which changes to
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min (1+9)a'G,a

aelR‘\
subject to : aTGia =1,

since G = G, holds. Under this situation, the regularization
term controlled by +y is just a rescaling of the cost function and
therefore does not change the cost function at all. Hence, 7 is
just a nuisance parameter. On the other hand, if we let
v — 00, the regularization term in (10) dominates the cost
function and MORP tends to be kernel PCA, whatever (3 is.
When § > 0, MORP actually performs output reqularized
kernel PCA or supervised kernel PCA since it can be viewed
as directly modifying the kernel matrix G with output
information. With moderate 3, the mapping takes into
account the kernel of Y, but is meanwhile restricted to the
input space X. No information on y is required for
calculating MORP projection of a new data point x.

4.2 Linear Discriminant Analysis (LDA)

LDA or Fisher Discriminant Analysis (FDA) is a canonical
supervised projection for input data X and conceptually
can only handle binary classification problems (see [1],
[24]). It chooses a projection direction w that maximizes the
interdistance of projected means and, meanwhile, minimizes
the intravariances of both classes. Therefore, it focuses on the
single classification problem where the output is one-
dimensional, while, in contrast, MORP considers predic-
tions with multivariate outputs and is thus more general.

A recently proposed approach, Kernel Dimensionality
Reduction (KDR) [19], is also a supervised method and aims
to find a low-dimensional effective subspace that retains the
statistical relationship between input data and output data.
However, it has similar limitations and can only handle
one-dimensional output.

4.3 Canonical Correlation Analysis (CCA) and
Partial Least Squares (PLS)

CCA has a long history in the statistics community (back to

[14]) and aims at discovering the correlations between two

representatives of the same objects (e.g., inputs X and

outputs Y in our setting). The optimization problem solving

CCA can be written as:

max  Corr(v,,v,)
N h
v,,;,vJ,GIR
subject to: v, = Xw,,v, = Yw,,

which is equivalent to minimization of ||v, fvyHZ when
both v, and v, have norm 1 (see a recent discussion in [15]).
In this sense, CCA is a certain kind of supervised projection,
but it does not require the projections v, and v, to
guarantee a low-reconstruction error of X and Y. Therefore,
CCA only considers the intercorrelation between v, and v,,
but ignores the intracorrelation of either (especially y).
Instead, MORP takes into account all the inter- and
intradependencies since the projections minimize the
reconstruction error of inputs and outputs simultaneously.
Another related approach is PLS, which was originally
developed for regression problems in chemometrics ([16],
[25]). PLS aims at finding orthogonal projection directions
for inputs X, each of which maximizes the covariance
between the outputs Y and a linear combination of X:
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max

N
v.elR

subject to :

Cov(v,,Y)

v, = XWI,W;WI =1.

PLS can be seen as a penalized CCA since covariance is
simply correlation weighted by the square root of variance.
Tikhonov and Arsenin [6] pointed out that PLS cannot find
a space of larger dimensionality than that of Y; thus, its
generalization performance on new dimensions of outputs
is restricted. Instead, our method can find, in principle,
N orthogonal dimensions (if G, is positive definite).

4.4 Kernel Dependency Estimation (KDE)
MOREP is also related to kernel dependency estimation, a
two-stage method for discovering dependency between
possibly nonlinear mappings of inputs and outputs [18]. In
the first step, KDE performs kernel PCA on output Y and
obtains some principal components v,; then, a regression
model with kernels (kernel ridge regression in [18]) is
applied to X for projections of Y to each v,. No explicit
mappings for X are available and a certain cost function has
to be defined and minimized to find the output for a text
point the (so-called “pre-image” problem).

If applied to regression, MORP has similar behavior if
B = 1: We are looking for a projection of X that seems to be
enforced to entirely explain the dependency of outputs, as
can be seen from (2). However, it turns out to be not true if
we introduce the regularization to prevent overfitting since
the Lagrange formalism of minimizing the regularizer
a'G,a, under the constraint o' G2a = 1, tends to a kernel
PCA of input features. To see it more clearly, recall that
v = G,a and, thus, we can write the cost function in (10)
equivalently as
(15)

max

-1
velR" v (G’Il + ’YG‘;’l) v
where G =G, holds when =1 and we change the
minimization to maximization by adding inversion to the
matrix sum. Geometrically, (15) forces v to be close to the
eigenvector of G, as well as that of G, both with the largest
eigenvalue. Therefore, in this special case, MORP is
performing input regularized kernel PCA for output Y, while
finally obtaining a mapping for X explicitly. Compared to
the two-step approach taken by KDE, MORP can be a feature
mapping step for regression models and provides a more
elegant and direct way for multi-output regression.

4.5 Multitask Learning

The work is also related to the recent research on multitask
learning (e.g., [20], [21], [22]), which learns many related
predictive tasks together by exploring their dependency.
We can first use the proposed algorithm to map the input
features into a new space and then treat each task
independently using the new representatives as input
features. This two-stage solution can more easily deal with
new tasks, while multitask learning has to retrain all the
tasks once new tasks need to be handled.

5 EMPIRICAL STUDY

In this section, we evaluate the proposed MORP algorithm
based on two settings. The first is prediction of user
preferences, in which we predict users’ preferences on some
data based on both the content features and rankings of
other users. If we take each user as one output for all the
data, we can think of this setting as a natural multi-output
problem, where common interests of users stand for the
intracorrelation among outputs. The second is to perform
multilabel classification on the projected space, taking MORP
as a preprocessing or feature transformation step. In this
setting, we allow one data object to belong to multiple
categories and, therefore, different classification problems
could have correlations between each other. This informa-
tion will be utilized in MORP for deriving the mapping.

5.1 Prediction of User Preferences

Our first experiment is performed on a painting database
which contains 642 paintings from 47 artists. A Web-based
online survey is built to gather user ratings. For all the
paintings, we extract and combine color histogram
(216-dim.), correlagram (256-dim.), first and second color
moments (9-dim.), and Pyramid wavelet texture (10-dim.) to
form 491-dimensional input features to represent the
images. All the features are then centralized and standar-
dized with deviation 1. For the online survey, each user
gave ratings, i.e., “like” or “dislike,” to a randomly selected
subset of paintings. Finally, we obtained a total of L =190
users’ ratings encoded as +1 and —1. On average, each user
has rated 89 paintings, and each painting was rated by 30
users.

5.1.1 Experimental Settings

In the experiment, a set of users are selected as test users,
and 10-fold cross-validation is performed for each test user
with one fold training and nine folds testing. An SVM using
RBF kernel with all 491 image features can be trained for
each test user, and this is denoted as ORIGINAL FEATURES
and serves as the baseline. We will basically compare three
projection methods. KERNEL PCA performs unsupervised
projection and maps the input data into a low-dimensional
space. The two supervised methods, MORP and KERNEL
CCA, additionally make use of the rating information of the
other users. All three of the competing methods use the
same RBF kernel as in ORIGINAL FEATURES and same
dimensionality. The new features given by these methods
are then fed into a linear SVM for classification.

We choose all the parameters for these algorithms as
follows: The RBF kernel width is o =25, which gives
ORIGINAL FEATURES the best performance and is then
fixed for all the projection methods. Different values for
dimensionality K yield similar comparison results between
these projection methods and, for simplicity, we fix K = 50.
In MORP, g is simply chosen as 0.5 to give equivalent
weights to G, and G,, after we scale G, and G, to ensure
they have equal traces for balance. v is insensitive to the
result and is simply fixed as 1. For KERNEL CCA, we tune
the regularization parameter for best performance and set it
to be 0.9.
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Fig. 2. Comparison of algorithms for predicting user preferences. (a), (c) show the mean and standard deviation of prediction accuracy at different
top number of returned images, and (b), (d) show the corresponding ROC curve, i.e., Sensitivity versus 1-Specificity. The upper row compares four
methods: MORP (5 = 0.5, v = 1), KERNEL PCA, KERNEL CCA (regularization parameter 0.9), and ORIGINAL FEATURES (with SVM). The RBF kernel
is used with o = 25 for all kernel methods. All the projection methods use latent space with K = 50. The lower row compares MORP algorithms with
different 3 values, where we have scaled G, and G, to ensure they have equal traces for balance. v and K are chosen the same as in the upper row.

5.1.2 Comparison Metrics

These algorithms are evaluated using two metrics. One is
Top-N accuracy, i.e., the proportion of truly liked paintings
among the N top-ranked paintings. Since normal users only
care about the quality of first returned items, this quantity
reflects the subjective quality of an information filtering
system. The other is the ROC (receiver operating character-
istics) curve, which plots sensitivity versus 1-specificity.
Sensitivity is defined as the probability that a good painting
is recommended by the system, and specificity is the
probability that a disliked painting is rejected by the system.
By changing the cut point (e.g., return top 10 or 20 paint-
ings), a curve can be plotted. The area under the curve
(AUC) measures the objective quality of ranking. A higher
AUC indicates a better ranking.

5.1.3 Results

The performances of the four algorithms are shown in
Fig. 2a and 2b, which clearly indicate that MORP
significantly outperforms the rest in terms of both Top-N
accuracy and ROC curve. The unsupervised methods
ORIGINAL FEATURES and KERNEL PCA give unsatisfying
results due to their ignorance of the correlation between
user ratings. ORIGINAL FEATURES performs better than
KERNEL PCA because it considers all the features for
paintings. The other supervised method, KERNEL CCA, is
unsuccessful in this setting, but obtains slightly better
results than unsupervised methods in terms of ROC curve.

Our method can be seen as a way to combine content-
based filters and collaborative filters. The two-stage treat-
ment first learns a feature mapping based on many users’
ratings and then uses the new features to feed content-
based filters. The parameter ( controls the trade-off
between the content-based kernel G, and the preference
kernel G,. In the second experiment, we study the impact
of @ in the performance of preference prediction, as shown
in Fig. 2c and Fig. 2d (as before, we scale G, and G, to
ensure they have equal traces for balance). With =0,
MOREP is indeed kernel PCA and making an unsupervised
projection, which gives a bad performance. As 3 increases
gradually, the performance improves significantly, as
shown here when (= 0.05. This clearly shows that the
quality of projection has been improved by exploring the
correlation among users. = 0.5 gives the best results,
corresponding to an even balance between the eigenspaces
of the two matrices. When ( increases further, the
performance drops down and overfitting occurs if no
information of input is considered.

5.1.4 Visualization

In the last experiment, we visualize the projections of
paintings in the first two dimensions and see if we observe
interesting distributions. As shown in Fig. 3, we visualize
four artists’ paintings, Dali, Van Gogh, Monet, and Asian
(an anonymous Asian painter). We denote points with
different shapes and colors for paintings of different
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(b)

Fig. 3. Visualization of paintings in the first two projected dimensions for (a) KERNEL PCA and (b) MORP. Four painters are compared and several
images are shown with annotations. (“D” for Dali, “V” for Van Gogh, “M” for Monet, and “A” for the Asian painter. Numbers show indices for each

painter.) Parameter settings are the same as in Fig. 2a.

painters and illustrate some images for clear explanation.
The annotation beside each image clarifies the correspond-
ing painter. For KERNEL PCA (Fig. 3a), projections are built
based on the low-level features of images, and paintings of
different painters are somehow separted from each other
(e.g., Dali’s on the right and the Asian’s on the left). This
recovers the unsupervised characteristic of KERNEL PCA.
However, for the specific task of user preferences predic-
tion, this is not sufficient. It is more interesting to
investigate the patterns found by MORP (Fig. 3b), which
forces the projection to reflect user correlations. Let’s take a
close look at the differences between Fig. 3a and Fig. 3b.
Roughly speaking, there are three groups, left, middle, and
right, in Fig. 3b. First of all, it appears that the paintings of
Van Gogh and Monet frequently stay close (in the left
group), indicating that people often have similar prefer-
ences for these two artists” works, i.e., a user either likes
both or dislikes both. Second, Van Gogh’s self-portraits
(annotated as V1, V2, and V3) stay very close to users’
preferences (middle group), but it is interesting that they
seem to be outliers in his paintings, and people’s prefer-
ences for them are more correlated to the opinions of Dali’s
works. Furthermore, Dali’s paintings in the early years (e.g.,
the two marked out as D1 and D2, painted in 1922)
substantially differ from the majority of his works in style.
Instead, D1 and D2 stay close to the Asian’s paintings,
which are mainly about houses and buildings in the
countryside. Though a rigorous interpretation of the
visualized distribution is lacking, we can still conclude that
MORP maps paintings into a very meaningful space which
will be beneficial for predicting interests for new users.

5.2 Multilabel Classification

The experiment in this section is based on two text and one
image data sets. The first text data is taken from Reuters-
21578, which contains all the documents with multiple
categories. Eliminating those minor categories that contain
less than 50 documents, we have 47 categories to work with.
Picking up all the words that occur at least in five documents,
we finally obtain 1,600 documents with 6,076 words. On
average, each document is assigned to 2.48 categories and
each category has 85 positive documents.

The second text data is a subset of the RCV1-v2 data set,
provided by Reuters and corrected by Lewis et al. [26].
Since it is common that one document is assigned to
multiple topics, this is an ideal data set for multilabel
classification. After the same preprocessing, we finally
obtain 3,588 documents with 5,496 words and have 79
topics left. On average, each topic contains 180 positive
documents, and each document belongs to 3.96 topics.
Standard TFIDF features are then computed for these two
text data sets.

Our last data is a subset of the Corel image database,
which contains 1,021 images. We manually labeled them
into 37 categories. On average, each image belongs to
3.6 categories and each category contains 98 images. As in
the previous painting case, we extract the same 491-
dimensional features as the input features for images and
centralize them.

In the following, we denote “Reuters,” “RCV1,” and
“Corel” for these data sets, respectively.

5.2.1 Experimental Settings

In the first setting (I), we randomly pick up 70 percent of the
categories for classification and employ 5-fold cross-valida-
tion with one fold training and four folds testing. This is a
standard classification setting, and our goal is to evaluate
whether the feature mappings are generalizable to new data
points. We will test the four algorithms described in the
previous section, i.e.,, ORIGINAL FEATURES, KERNEL PCA,
MORP, and KERNEL CCA. ORIGINAL FEATURES still serves
as the baseline, KERNEL PCA defines unsupervised map-
pings, and the latter two give supervised mappings. Note
that this setting is actually a batch version of many single-
output binary classification tasks, where the performance is
averaged over all tasks.

We also have a second setting (II), which aims to test the
generalization ability of the projection methods on new
categorization tasks. For this, we consider the classification
problems for the remaining 30 percent of categories. To
make a fair comparison, we perform 5-fold cross-validation
on previous unseen data, using the feature mappings
derived from setting (I). We will also compare all four
methods in this setting.
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Fig. 4. Classification performance on Reuters. (a), (b) show results with setting (I), and (c), (d) show results with setting (II).

We use the RBF kernel with width ¢ = 25 for the Corel
data (which gives ORIGINAL FEATURES the best perfor-
mance) and use linear kernels for the text data sets. For
MORP, we set the parameter (3 to 0.5 after rescaling G, and
G, and fix v as 0. The regularization parameter for KERNEL
CCA is tuned for each data set and set to 0.9, 0.3, and 0.3 for
Reuters, RCV1, and Corel, respectively. For both settings,
we repeat the experiments 10 times with randomization,
and the performance versus dimensionality of projection is
shown with means and standard deviations in Fig. 4, Fig. 5,
Fig. 6 for Reuters, RCV1, and Corel, respectively.

5.2.2 Comparison Metrics

The classification performance is compared using
F} measure and AUC score. The F; measure defines a
trade-off between precision and recall and is known to be a
good metric for classification evaluation. Alternatively, the
AUC score measures the quality of ranking for specific
classification problems. Both of these scores are averaged
over all the output dimensions. We also tried classification
accuracy, but didn’t get the informative comparison
because most of the classification problems are very
unbalanced (more than 90 percent of data are negative
examples).

5.2.3 Results

The first observation from these figures is that MORP
outperforms KERNEL PCA in almost all the cases. This
indicates that the mapping functions in MORP are general-
izable to new test data for setting (I) and also generalizable
to new related prediction tasks, as seen in setting (II). The
difference is especially big for setting (I), where the
predictions are made for the known categories. By

incorporating the output information for the training data,
MORP can obtain more informative mappings for these
specific tasks.

KERNEL CCA also performs a supervised projection and,
in general, it obtains worse but comparable results as
MOREP in setting (I). However, the performance is quite bad
for setting (II) and, in most cases, it is even worse than
KERNEL PCA. This indicates that KERNEL CCA suffers
from overfitting and is not generalizable to new prediction
tasks. It can also be seen that KERNEL CCA approaches a
constant performance after a small number of dimensions.
The reason is that KERNEL CCA could only extract pairs of
mappings (one for X and the other for Y) and, thus, could
not obtain more dimensions than the number of outputs for
training. This is very limited when we want the mappings
generalizable to new outputs. In contrast, MORP does not
have this problem and in general could extract /V directions.

Another observation from these figures is that projected
data can lead to better classification performance than
ORIGINAL FEATURES that simply uses all the original
features. This is especially the case in setting (II), where a
large gap can be observed for all projection methods, even
for the unsupervised method KERNEL PCA. This suggests
that projecting input data into a low-dimensional space can
not only accelerate the classification tasks, but also improve
the performance. Therefore, it is of great importance to
derive a good projection method for supervised learning.
MOREP is seen to outperform all the other methods in setting
(I) and, thus, is a very good choice.

5.2.4 Parameter Sensitivity

MORP has two tunable parameters, 5 and +, that control the
kernel combination weights and the strength of regulariza-



YU ET AL.: MULTI-OUTPUT REGULARIZED FEATURE PROJECTION

0.45, T T T T T
0.4 1
0.35] 1
0.3 1
T 025
0.2 1
0.15] 4
— MORP
ot | Kernel PCA Il
: Kernel CCA
---- Original Features
0.05
20 0 6 100
Dimensionality of projection
(@)
0.45
0.4 1
0.35 q
0.3 1
T 0.25 1
0.2 1
0.15] 4
; — MORP
01 ---- Kernel PCA ll
I » Kernel CCA
---- Original Features
0.05 . . "
20 40 60 80 100
Dimensionality of projection

(©)

07

0.681

R
e

— MORP

=== Kernel PCA
Kernel CCA

---- Original Features

20 100

0 6
Dimensionality of projection

(b)
0.72
071
0.68r
0.66f
0.64F
S 062}
<
0.6r
-
0.581
0.56 — MORP
I --=+ Kernel PCA
0.54- Kernel CCA
---- Original Features
052 v - v
20 40 60 80 100
Dimensionality of projection

(d)

Fig. 5. Classification performance on RCV1. (a), (b) show results with setting (I), and (c), (d) show results with setting (Il).

05 T T T T T
0.45f
0.4f
I 0.35-
0.3
/ — MORP
0.25- ! -==-- Kernel PCA
I “““ Kernel CCA
02 ---- Original Features
: 20 40 60 80 100
Dimensionality of projection
(@)
055

05

0.45

0.4

F1

0.35

0.3r
— MORP
0.25¢ ===+ Kernel PCA
Kernel CCA
---- Original Features
02 20 40 60 80 100
Dimensionality of projection

(©)

0.
0.66
0.64 s i
062r + 7
o B
=}
<
06
0.58
— MORP
0561 -==- Kernel PCA
Kernel CCA
---- Original Features
0.54 v - v
20 40 60 80 100
Dimensionality of projection
(b)
074
0.72
071
068 Brobeegag
S s St |
o 066
2
0.641 T T. T T T. I T
T I s S S T 1
062
081 — MORP
Kernel PCA
0581 Kernel CCA
N ---- Original Features
056 20 40 60 80 100
Dimensionality of projection
()

Fig. 6. Classification performance on Corel. (a), (b) show results with setting (), and (c), (d) show results with setting (II).

tion, respectively. For previous figures, it is assumed fixed
and, in this last experiment, we study the classification
performance when they are varied. Since we can see similar
results for the three data sets, we only show in Fig. 7 the
illustrations for Reuters with AUC scores. Figures for ( are

shown with dimensionality K fixed as 50 since it is
insensitive to the results.

A first impression from Fig. 7 is that the curves are rather
smooth (except when (3 approaches 1 in setting (II)). This
indicates that the performance is not very sensitive to small
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Fig. 7. AUC performance of MORP with respect to 3 (upper row) and v (lower row) for the Reuters data set. (a), (c) show results with setting (I) and
(b), (d) show results with setting (I1). All the 3 values are chosen after we scale G, and G, to have equal traces.

changes of 3 value. When [ increases from 0 to 1, it is seen
that all the curves first increase and then decrease,
indicating that a good trade-off should be identified for
best performance. When 3 approaches 0, MLSI tends to be
LSI and, thus, unsupervised. Outputs are ignored in this
case and poor performance is observed for both settings. On
the other hand, when 3 approaches 1, the mappings tend to
solely explain outputs Y, ignoring the intrinsic structure of
inputs X. This also leads to poor performance, especially for
setting (II), because the mappings are not good to generalize
to new outputs. Overfitting occurs in this case, where a
sharp decrease can be observed with even a much worse
performance than LSI (8 = 0). Finally, § = 0.5 is seen to be a
good trade-off for both settings. From our experience, a
slightly larger (5 (e.g., 0.6) is better for setting (I) and a
slightly smaller (5 (e.g., 0.4) is more stable for setting (II).
For ~, we have the observation that small ~+ leads to
better performance for setting (I), while an appropriately
chosen v is necessary for setting (II). This reflects its
regularization effect since, for setting (II), new categories are
considered and setting v = 0 will lead to overfitting.

6 SuMMARY AND CONCLUSIONS

In this paper, we propose a novel feature mapping
algorithm MORP for multi-output regularized feature
projection. The projections are supervised and retain the
statistical information of not only input features but also the
(possibly multivariate) outputs. We present both the primal
and the dual formalisms for the linear mappings such that
nonlinear mappings can be derived by using reproducing

kernels. The final solution ends up as a simple generalized
eigenvalue problem that can be easily solved. The algorithm
is applied for user preference prediction and multilabel
classification, both with very encouraging results. Cur-
rently, we are mainly exploiting linear dependency of
outputs. In the near future, we plan to apply other types of
kernels to explore richer structured outputs.

APPENDIX A

PROOF OF PROPOSITION 2

Let J(A,B,V):=(1-5)|X — VA|’+8|Y — VB|]’. Set-
ting the derivative of J with respect to A and B to be zero
and applying ||C||> = tr(CC") for any matrix C, we obtain

g—i =21-B)(VIX-VIVA)=0=A=V'X,

g—]‘; =28(V'Y-V'VB)=0=B=V'Y,
which proves conclusion 1. Then, we use the results 1 to
replace A and B in J and obtain conclusion 2. ]
APPENDIX B

PROOF OF THEOREM 3

Denote V = [¥y,...,Vx]. The Lagrange formalism of (3) is

K K
LIV,A) =Y v Kv = > (% - 1) =23 X 9] v,
=1 =1

i>]
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where ([\)7] = )\, is a symmetric matrix if we define \; ; =

Aji for i < j. Setting its derivative with respect to v; to be
zero, we obtain

oL K B
8{,7_:2Kx7i—2ZAi,jvj:0, i=1,...,K,

J=1

which can be rewritten as KV = VA. Since A is a symmetric
matrix, we have A= RTAR, where A is a diagonal matrix
and R € R"*" is an orthogonal rotation matrix satisfying
RR' =R'R =L Then,

KV=VR'AR = KVR' =VR'A.

Since A is diagonal, it is easy to see that the columns of
V = VR are the eigenvectors of K. Thus, the optimal V is
formed by an arbitrary rotation of K's eigenvectors, i.e.,
V = VR. Inserting V back into the objective function, we
have the value of the objective function as tr(A), i.e., sum of
the K corresponding eigenvalues of K. It is easy to see that
the maximal tr(A) is the sum of the K largest eigenvalues,
which proves conclusion 2. In this case, V is an arbitrary
rotation of the K largest eigenvectors, thus conclusion 1
holds. ]

APPENDIX C
PROOF OF THEOREM 4

Let J(w) denote the cost function in (6), i.e.,
J(w) :=w' X K 'Xw + ~||wl|.

Obviously, J(w) achieves the minimum at the first
eigenvector w of the generalized eigenvalue problem (7).
Denote w as the projection of w on the subspace

span{xi,...,Xn},

then we can write w = w| + w, where w is orthogonal to
the subspace. Compare J(w|) with J(w). We have

T T T T
WX = WX + W, X; =W)X,

so Xw| = Xw, which means J(w)) and J(w) agree on the
first term. Since |[wl* = ||wy[* + [wi|[* > [|wy[? J(w) >
J(wy) holds. However, this must be an equation since .J(w)
achieves the minimum. Therefore, we have ||w | =0 and,
hence w; =0, which means w is actually a linear
combination of x;, i =1,..., N.

So far, we have proved the theorem for the first
eigenvector (with the smallest eigenvalue). Given eigenvec-
tors wj, j = 1,...,n — 1, it is known that the nth eigenvector
is obtained by first deflating the matrix K' with K! =
K- 27;11 )\ijjijXT and then solving the following
problem:

min - w' X KXw + o wi
we

subject to: w'X'Xw = 1.

Following the same procedure as before, we can prove that
the eigenvector w,, also lies in the span of x;, i =1,...,N. O
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