Neural Computation, Vol. 12, pages 2719-2741, 2000

A Bayesian Committee Machine

Volker Tresp
Siemens AG, Corporate Technology
Dept. Information and Communications
Otto-Hahn-Ring 6, 81730 Munich, Germany
Volker.Tresp@mchp.siemens.de

Abstract

The Bayesian committee machine (BCM) is a novel approach to combining esti-
mators which were trained on different data sets. Although the BCM can be applied
to the combination of any kind of estimators the main foci are Gaussian process re-
gression and related systems such as regularization networks and smoothing splines
for which the degrees of freedom increase with the number of training data. Some-
what surprisingly, we find that the performance of the BCM improves if several test
points are queried at the same time and is optimal if the number of test points is
at least as large as the degrees of freedom of the estimator. The BCM also provides
a new solution for online learning with potential applications to data mining. We
apply the BCM to systems with fixed basis functions and discuss its relationship to
Gaussian process regression. Finally, we also show how the ideas behind the BCM
can be applied in a non-Bayesian setting to extend the input dependent combination
of estimators.

1 Introduction

For reasons typically associated with their architectures and their learning algorithms,
some learning systems are limited in their capability to handle large data sets and to
perform online learning. Typical examples are kernel based approaches such as smooth-
ing splines, regularization networks, kriging and Gaussian process regression where it is
necessary to invert matrices of the size of the training data set and where the number of
kernels grows proportionally to the number of training data. All four systems are closely
related and are considered biologically relevant models for information processing (Poggio



and Girosi, 1990). Gaussian process regression is an approach recently introduced into the
machine learning community (Neal, 1996, Rasmussen, 1996, Williams, 1996, 1997, 1998a,
Gibbs and MacKay, 1997, MacKay, 1998) and is considered suitable for applications with
only up to a few hundred training samples. The reason is that the computational cost of
the required matrix inversion scales as O(K?) where K is the number of training data.
In this paper we introduce an approximate solution to regression whose computational
cost only increases linearly with the number of training patterns and which is applicable
in particular to kernel based regression systems but also to other regression models. The
idea is to split up the data set in M data sets and train M systems on the data sets.
We then combine the predictions of the individual systems using a new weighting scheme
in form of a Bayesian committee machine (BCM). This scheme is an extension to the
input dependent averaging of estimators, a procedure which was introduced by Tresp and
Taniguchi, 1995 and Taniguchi and Tresp, 1997. A particular application of our solution
is online learning where data arrive sequentially and training must be performed sequen-
tially as well. We present an implementation of our approach which is capable of online
learning and which requires the storage of only one matrix of the size of the number of
query points.

In Section 2 we develop the BCM in a general setting and in Section 3 we apply the
BCM to kernel regression systems, in particular Gaussian process regression. In Section 4
we apply the BCM to regression with fixed basis functions. We show that in the special
case that we have as least as many query points as there are linearly independent basis
functions we obtain the optimal prediction. In Section 5 we explain the principle behind
the BCM. We show that the the dimension and the effective degrees of freedom PeDf‘}t“
of an estimator are important quantities for determining the optimal number of query
points. In Section 6 we give a frequentist version of the BCM and show how it can be
used to improve the input dependent combination of estimators by Tresp and Taniguchi
(1995). In Section 7 we derive online Kalman filter versions of our approach and show how
predictions at additional query points can be calculated. In Section 8 we demonstrate
the effectiveness of our approach using several data sets. In Section 9 we present our
conclusions.

2 Derivation of the BCM

2.1 Combining Bayesian Estimators

Let’s assume an input variable x and a one dimensional real response variable f(z). We
assume that we can only measure a noisy version of f

g9(x) = f(z) + e()

where ¢(z) is independent Gaussian distributed noise with zero mean and variance o7 ().



Let X™ = {a7",..., 2%} denote the input vectors of the training data set of size K (su-
perscript m for measurement) and let g™ = (g1 ... gx )’ be the vector of the corresponding
target measurements. Let D = {X™, ¢} denote both inputs and targets.

Furthermore, let X9 = {z9, ... ,x?\,Q} denote a set of Ng query or test points (super-
script g for query) and let f9 = (f1,..., fn,) be the vector of the corresponding unknown
response variables.

We assume now a setting where instead of training one estimator using all the data
we split up the data into M data sets D = {D',.... DM} (of typically approximately
same size) and train M estimators separately on each training data set. Gaussian process
regression which will be introduced in the next sections is one example where this pro-
cedure is useful. Correspondingly, we partition inputs X™ = {X7",..., X7} and targets
g ={g" ...,gu}. Let D' = {D' ... D'} denote the data sets with indices smaller or
equal to i with i = 1,... M. Let P(f9D?) be the posterior predictive probability density
at the Ng query points for the ith estimator.! Then we have in general?

P(f1D"1, D) o< P(f)P(D'"!|f1)P(D'[D", f9).
Now we would like to approximate
P(D'[D'Y, f9) = P(D'[f9). (1)

This is not true in general unless f? = f: only conditioned on the complete function f
are targets independent. The approximation might still be reasonable when, first, Ng
is large — since then f? determines f everywhere — and when, second, the correlation
between the targets in D! and D? is small, for example if inputs in those sets are spatially
separated from each other.

Using the approximation and applying Bayes’ formula, we obtain

fIDTHP(f1 D)
P(f9)

such that we can achieve an approximate predictive density

, , P
P(f1|D"*, D") = const x (

: iy P(f1D’
P(f9D) = const x Pl(fq()M|—1 ) (3)

where const is a normalizing constant. The posterior predictive probability densities are
simply multiplied. Note that since we multiply posterior probability densities, we have to
divide by the priors M — 1 times. This general formula can be applied to the combination
of any Bayesian regression estimator.

LAs an example, for an estimator parameterized by a weight vector w, the posterior predictive prob-
ability density is P(f4|D%) = [ P(f?w)P(w|D%)dw (Bernardo and Smith, 1994).

2In this paper we assume that inputs are given and an expression such as P(D|f?) denotes the
probability density of only the targets ¢"* conditioned both on f? and inputs X™.



2.2 The BCM

In case that the predictive densities are Gaussian (or can be approximately reasonably
well by a Gaussian) Equation 2 takes on an especially simple form. Let’s assume that
the a priori predictive density at the Ny query points is a Gaussian with zero mean and
covariance 9 and the posterior predictive density for each module is a Gaussian with
mean E(f9|D") and covariance cov(f4|D?). In this case we achieve (see Appendix 10.1, E
and cov are caclulated w.r.t. the approximate density ﬁ)

E(fD)=C" Zcov(fq|Di)_1E(fq|Di) (4)
with
€ = @ f1D) = ~(M ~ (S 4+ 3 eon( 11D )

We recognize that the prediction of each module 7 is weighted by the inverse covariance
of its prediction. But note that we do not compute the covariance between the modules
but the covariance between the Ng query points! We have named this way of combining
the predictions of the modules the Bayesian committee machine (BCM). Modules which
are uncertain about their predictions are automatically weighted less than modules which
are certain about their prediction.

In the next sections we will apply the BCM to two important special cases with
Gaussian posterior predictive densities, first to Gaussian process regression and second to
systems with fixed basis functions.

3 Gaussian Process Regression and the BCM

An important application of the BCM is kernel based regression in the form of regulariza-
tion networks, smoothing splines, kriging and Gaussian processes regression. The reason
is that first, the degrees of freedom in such systems increase with the number of training
data points such that it is not suitable to update posterior parameter probabilities and
that second, the approaches require the inversion of matrices of the dimension of the num-
ber of data points which is clearly unsuitable for large data sets. Since it is well known
that all four approaches can give equivalent solutions we will focus on only one of them,
namely the Gaussian process regression framework. In the next section we briefly review
Gaussian process regression and in the following section we discuss the BCM in context
with Gaussian process regression.



3.1 A Short Review of Gaussian Process Regression

In contrast to the ususal parameterized approach to regression, in Gaussian process re-
gression we specify the prior model directly in function space. In particular we assume
that a priori f(x) is Gaussian distributed (in fact it would be an infinite-dimensional
Gaussian) with zero mean and a covariance cov(f(x1), f(z2)) = 04y 2,- As before, we
assume that we can only measure a noisy version of f

g(x) = f(z) + €(x)

where €(z) is independent Gaussian distributed noise with zero mean and variance o7 ().
Let (X™™);; = 04y om be the covariance matrix of the measurements, W™ = o ()]
be the noise-variance matrix, (3%);; = Oud be the covariance matrix of the query points
and (X9M);; = Ol am be the covariance matrix between training data and query data. [
is the K-dimensional unit matrix.
Under these assumptions the conditional density of the response variables at the query
points is Gaussian distributed with mean

E(f1|D) = xam(@mm 4 ymm)=tgm, (6)
and covariance
cov(f1|D) = B9 — 4™ (Y 4 pmm) T (5 (7)

Note, that for the i—th query point we obtain
K

E(flq‘D> = Z O-ac:.l,:c;." vj (8>
j=1

where v; is the j—th component of the vector (U™ 4 ¥™™)~1g™ The last equation
describes the weighted superposition of kernel functions b;(z}) = ol which are defined
for each training data point and is equivalent to some solutions obtained for kriging,
regularization networks and smoothing splines (Wahba, 1990, Poggio and Girosi, 1990,
Williams, 1996, MacKay, 1998, Hastie and Tibshirani, 1990). A common assumptions
is that g, ., = Aexp(—1/(27%)||z; — x;||*) with A,~ > 0 such that we obtain Gaussian
basis functions.

3.2 The BCM for Gaussian Process Regression

Since the computational cost of the matrix inversion in Equation 6 scales as O(K?) where
K is the number of training data, the cost becomes prohibitive if K is large. There
have been a few attempts at finding more efficient approximate solutions. Gibbs and
MacKay (1997) have applied an algorithm developed by Skilling to Gaussian process



regression (Skilling, 1993). This iterative algorithm scales as O(K?). In the regression-
filter algorithm by Zhu and Rohwer (1996) and Zhu et al. (1998), the functional space is
projected into a lower-dimensional basis-function space where the Kalman filter algorithm
can be used for training the coefficients of the basis functions. The latter approach scales
as O(KN?) where N is the number of basis functions.

The big advantage of the application of the BCM (Equation 4) to Gaussian process
regression (Equations 6 and 7) is that now instead of having to invert a K-dimensional
matrix we only have to invert approximately (K /M )-dimensional and Ng-dimensional
matrices. If we set M = K/a where « is a constant, the BCM scales linearly in K. We
found that M = K/Ng is a good choice to optimize the number of computations since
then all matrices which have to be inverted have the same size. In this case the number
of elements in each module is identical to Ng, the number of query points. In Section 7
we will describe online versions of the algorithm which are well suited for data mining
applications.

If Ng is large it can be more efficient to work with another formulation of the BCM
which is described in Appendix 10.2.

4 The BCM and Regression with Fixed Basis Func-
tions

4.1 Regression with Fixed Basis Functions

In the previous section the BCM was applied to a kernel based system, i.e. Gaussian
process regression. For kernel based systems the BCM can be very useful for online
learning and when the training data set is large. For regression with fixed basis functions,
on the other hand, sufficient statistics exist such that large data sets and online learning
is not problematic. Still there are two good reasons why we want to study the BCM in
the context of systems with fixed basis functions. First, the system under consideration
might have a large number —or even an infinite number— of basis functions such that
working with posterior weight densities is infeasible and second, the study of these systems
provides insights into kernel based systems.

Consider the same situation as in Section 2, only that f(z) is a superposition of N
fixed basis functions, i.e.

N
fz) = widi(x)

i=1
where w = (wy,...,wy)" is the N—dimensional weight vector with a Gaussian weight
prior with mean 0 and covariance ¥,,. Let (®)r; = ¢;(z]') be the design matrix, i.e. the
matrix of the activations of the basis functions at the training data. Furthermore, let



(®%);; = ¢i(x}) be the corresponding matrix for the query points. We obtain for the
posterior weights a Gaussian density with mean

E(w|D) = (S," + &/(¥™)'8) " &'/(wmm)gn 9)
and covariance

cov(w|D) = (S, + @'(T")'3)

The posterior density of the query point is then also Gaussian with mean

B(f1|D) = $'E(w|D) = &7 (£, + &/ (¥™™)~'0) " &/(wmm)gn (10)
and covariance

cou(f1ID) = @7 (S, + (T D) ().

By substituting these expressions into Equations 4 and 5 we obtain the BCM solution.
Note, that here ¥ = ®%,,(P9). As a special case consider that ®? is a nonsingular
square matrix, i.e. there are as many query points as there are parameters N. Then we
obtain after some manipulations

E(f|D) = E(f'|D)

i.e. the BCM approximation is identical to the solution we would have obtained if we had
done Bayesian parameter updates. Assuming the model assumptions are correct this is
the Bayes optimal prediction! This of course should be no surprise since N appropriate
data points uniquely define the weights w and therefore also f is uniquely defined and the
approximation of Equation 1 becomes an equality.> We can see this also from Equation 10.
If 7 is a square matrix with full rank, the optimal weight vector can be recovered from
the expected value of f? by matrix inversion.

4.2 Fixed Basis Functions and Gaussian Process Regression

Note that by using basic matrix manipulations we can write the expectation in Equa-
tion 10 also as

E(f!D) = ®1%,® (I + &%,d') g™ (11)
and equivalently

cov(f1|D) = I8, (1) — $IL, P (™™ 4+ &R, d') " X! (D7)

3For nonlinear systems we can replace the design matrix ® by the matrix of first derivatives of the
map at the inputs w.r.t. the weights (Tresp and Taniguchi, 1995). The equations in this section are then
valid within the linearized approximation.




This is mathematically equivalent to Equation 6 and 7 if we substitute
ym = 0%, d LI =iy, ¢ XU =iy, (9I). (12)

This means that the solution we have obtained for fixed basis functions is identical to the
solution for Gaussian process regression with kernel functions

by(a?) = 0y 4 = D) S (e (13)

where ¢(x) = (¢1(x),...,¢n(x)) is the activation of the fixed basis functions at x. From
this it is obvious that the kernel functions are simply linear combinations of the fixed
basis functions and “live in” the same functional space. The maximum dimension of
this space is equal to the number of fixed basis functions (assuming these are linearly
independent).? In the context of smoothing splines the relationship between fixed basis
functions and kernel regression is explored by Wahba (1990) and in the context of a
Bayesian setting by Neal (1996, 1997), Williams (1996, 1997, 1998a, 1998b) and MacKay
(1998).

Note that according to Equation 13, the covariance function of the response variables
and therefore also the kernel function is defined by inner products in feature space. In
the work on support vector machines (Vapnik, 1995) this relationship is also explored.
There the question is posed, given the kernel function b;(x), is there a fixed basis function
expansion which corresponds to these kernel functions. One answer is given by Mercer’s
theorem which states that for symmetric and positive definite kernels a corresponding set
of fixed basis function exists. Note also that if the kernel is known and if the number of
basis functions is much larger than the number of training data points, the calculations
in Equation 10 are much more expensive than the calculations in Equation 11, resp. 6.

The relationship between the support vector machine, kernel based regression and and
basis function approaches was recently explored in papers by Poggio and Girosi (1998),
Girosi (1998) and Smola, Schélkopf and Miiller (1998). Note, that we can define the priors
either in weight space with covariance ¥, or in function space with covariance >™". This
duality is also explored in Moody and Rognvaldsson (1997) and in the regression-filter
algorithm by Zhu and Rohwer (1996).

5 Why the BCM Works

The central question is under which conditions Equation 1 is a good approximation. One
case is when the data sets are unconditionally independent, i.e. P(D!|D"" ') ~ P(D").

4An interesting case is when the number of fixed basis functions is infinite. Consider the case that we
have an infinite number of uniformly distributed fixed radial Gaussian basis functions ¢;(z) = G(x;;,0?)
and ¥, = I where I is the unit matrix. Then b;(z{) = [ G(z];z,0%)G (2] 2,0%)dx < G(x]; 27", 207)
which is a Gaussian with twice the variance. We will use Gaussian kernel functions in the experiments.
G(z;¢,X) is our notation for a normal density function with mean ¢ and covariance 3 evaluated at x.



This might be achieved by first clustering the data and by then assigning the data of each
cluster to a separate module. A second case where the approximation is valid, is if the
data sets are independent conditioned on f9. In the previous section we have already seen
an example where we even have the equality P(D'|D*"!, f9) = P(D'|f?). We have shown
that for a system with NV fixed basis functions, N query points are sufficient such that
the BCM provides the Bayes optimal prediction. Most kernel based systems, although,
have infinite degrees of freedom which would require an infinite number of query points to
make the previous equality valid. We have seen one exception in the previous section, i.e.
a (degenerate) Gaussian process regression system which has the same number of degrees
of freedom as the equivalent system with fixed basis functions.

In this section we will show that even for Gaussian process regression with infinte
degrees of freedom, in typical cases only a limited number of degrees of freedom are really
used such that even with a small number of query points, the BCM approximation is
reasonable.

5.1 The Dimension and the effective Degrees of Freedom

In Gaussian process regression, the regression function lives in the space spanned by the
kernel functions (Equations 6 and 8). Since the number of kernel functions is equal to the
number of data points, the dimension of the subspace spanned by the kernel functions is
upper bounded by the number of data points K. For two reasons, the dimension might
be smaller than K. The first reason is that the data points are degenerate, for example if
some input training data points appear several times in the data set. The second reason
is that the kernel functions themselves are degenerate such that even for an arbitrary
selection of input data, the dimension of the functional space represented by the kernel
functions is upper bounded by dim™**. An example was given in section 4 where we gave
an example of a finite dim™**: for the system of fixed basis functions and the equivalent
Gaussian process regression system we have dim™* = N.

In addition to the dimension, we can also define the effective degrees of freedom kernel
regression (Hastie and Tibshirani, 1990). A reasonable definition for Gaussian process
regression is
PR = trace (8™ (0™ + ymmy~h

e

which measures how many degrees of freedom are used by the given data. This is analogous
to the definition of the effective number of parameters by Wahba (1983), Hastie and
Tibshirani (1990), Moody (1992) and MacKay (1992).5 Let {), ... Ax} be the eigenvalues

®Note, that ™™ (¥™m + ¥m™m) =1 maps training targets into predictions at the same locations. This

expression is therefore equivalent to the so called hat matrix in linear regression. There analogously, the
trace of the hat matrix is defined as the effective number of parameters.




of XY™™ Then we obtain

Poge=y
;.
€ i=1 )\’L + U’l[)

The effective degrees of freedom are therefore approximately equal to the number of
eigenvalues which are greater than the noise variance. If ai is small, the system uses
all degrees of freedom to fit the data. For a large o3, P%* — 0 and the data barely
influence the solution (see Figure 1).

We can therefore conclude that only Pj}‘}m query points are necessary to fix the relevant
degrees of freedom of the system. We have to select the query points such that they fix
these degrees of freedom.%

Independently, Ferrari-Trecate, Williams and Opper (1999) made similar observation.
They found that for small amounts of data the coefficients of the eigenfunctions with small

eigenvalues are not well determined by the data, and thus can effectively be ignored.

5.2 Dependency Graph

Another way of looking at the issue is to use a dependency graph which will provide
us with a more general view on the BCM. Consider again the case that a set of past
observations D is partitioned into M smaller data sets D = {D*,..., DM}, In a typical
statistical model the data sets are independent given all the parameters in a model w.
Furthermore a future prediction f* is independent of the training data sets given the
parameters. The corresponding dependency graph is shown in Figure 2 (left). Let’s
assume that there is another (typically vectorial) variable f? which is independent of f*
and the data sets given w. In the previous discussion we always assumed that f* € f49
but in Section 7 we will also be interested in the case that this is not the case. If we now
consider a probabilistic model without w, i.e. if we marginalize out the parameters w,
then f*, f? and all the data sets will in general become fully dependent. On the other
hand, if we can assume that w is almost uniquely determined by f¢ the approximation
that given f? the data sets and f* are all mutually independent might still be reasonable
(Figure 2, right).
Explicitly, we assume that, first,

P(D'|f* f*,D\ D') = P(D'|f)

which means that if f? is fixed, the different data sets are mutually independent and also
independent of f*. One case where this is true is if w is deterministically determined
function by f?. Secondly we assume that

P(f*ID, f*) = P(f*|f*).
6 An impractical solution would be to include all training data in the set of query data, i.e. f™ C f9.

Although this would guarantee the conditional independence of the measurements, the set of query points
would obviously be too large.”

10



gamma = 0.01 gamma = 0.03 gamma = 0.1
100 100 100

0 0
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
K K K

Figure 1: Shown are the effective degrees of freedom P54 (continuous) and the rank of

Y™ (dashed) as a function of the number of training data K. The rank of ¥"™ is a lower
bound of the dimension of the space spanned by the kernel functions. The rank is here
calculated as the number of singular values that are larger than tol = K xnorm(¥™™)xeps
where eps = 2.2204 x 10716 and norm(X™™) is the largest singular value of ™™ (default
matlab settings). As in the experiments in Section 8, for two locations in input space
z; and x;, we set 0y, . = exp(—1/(2v®)||z; — ;||*) where ~ is a positive constant. The
locations of the input training data were chosen randomly in the interval [0, 1]. For the
noise variance we have o, = 0.1. Note that Pe%%t“ is always smaller than K, especially for
large K. ch‘}t“ also decreases when we assume a strong correlation (i.e. a large 7). The
rank is larger than pech}m but also smaller than K in particular for large v and K. For
this particular covariance structure dim™* is theoretically infinite. As the plots show —
if the input data are drawn always from the same distribution — for practical purposes

dim™** might be considered to be finite if v is large.

11



Figure 2: On the left we show the dependency structure of parameterized Bayesian learn-

ing. On the right we show the approximate dependency structure we assume for the
BCM.

This says that given f?, D does not provide you with additional information about f*.
This is guaranteed for example if f* € f¢ as in Section 2 or if —as before— w is deter-
ministically determined by f9.”7 Under these two assumptions

PID) = PUN TP o s LLPUID) (1)
and
P(f1D) = [ P(FI)P(fD) df*. (15)

Equation 14 is the basis for the BCM (compare Equation 3). Equation 15 shows how
a new prediction of f* can be derived from P(f?|D). The dependency structure can
experimentally be determined for Gaussian process regression by analyzing the inverse
covariance structure (Appendix 10.3).

6 The Idea Behind the BCM Applied to a Frequen-
tist Setting

So far we have developed the BCM in a Bayesian setting. In this section we apply the
basic idea behind the BCM to a frequentist setting. The basic difference is that here we
have to form expectations over data rather than parameters.

In Tresp and Taniguchi (1995) and Taniguchi and Tresp (1997) an input dependent
weighting scheme was introduced which takes into account the input dependent certainty

"In Section 7.1 on online learning we will also consider the case where f* ¢ f9.

12



of an estimator. This approach is now extended to include the ideas developed in this
paper. In contrast to the previous work, we allow that estimates at other query points can
be used for improving the estimate at a given point x. As before, we use N query points.
Let there be M estimators and let ﬁ(z) denote the estimate of the i—th estimator at input
z. Let f7 = (fi(z?),... ,fl-(a:'fVQ))’ denote the vector of responses of the i—th estimator to

all query points and let f2 = ((f7),...,(f%)) denote the vector of all responses of all
estimators. We assume that all estimators are unbiased. Then our goal is to form a linear
combination of the predictions at the query points

Fa b:qu

com

where A is a Ng x (NoM ) matrix of unknown coefficients such that the expected error
E[(t* — Af1) (1 — Af)

is minimum where t9 is the (unknown) vector of true expectations at the query points.
Using the bias-variance decomposition for linearly combined systems we obtain®

E[(t1— Af7)(t* — Af9)]
_B [(E(qu) — A1) (B(Af?) - qu)} L E [(E(qu) — ) (B(Af7) - tq)}
— trace(AQA") + (AE[f9] — t9) (AE[f9] — t9).

The term in the trace is the covariance of the combined estimator and the second term is
the bias of the combined estimator and

Q)5 = cov ((f9), (f7);)

Note, that at this point we include the case that different estimators are correlated. We
want to enforce the constraint that the combined system is unbiased. This can be enforced
if we require that

AT = [Ne
where IV is a Ng—dimensional unit matrix and Z = (I, ..., INQ)’ concatenates M unit
matrices. Under these constraints it can easily be shown that E(fZ ) = AE[f9] = t%.

Using Lagrange multipliers to enforce the constraint, we obtain for the optimal coefficients
A= ') ‘7ot

This is the most general result allowing for both correlations between estimators and
between query points. In our case we assume that the individual estimators were trained

8In his section expectations are taken w.r.t. different data sets.

13



on different data sets which means that their respective prediction errors are uncorrelated.
In this case

cov{ 0 ... 0
0_ 0 covd® ... 0
0 0 ... covi}

where covi? is the covariance matrix of the query points for the i—th estimator. Then

1= (Z@qu)—l) (z<cov3qr1f5> . (16)

j=1 i=1

Note, the similarity to Equation 4 if (¥%)~! — 0, i.e. if we have a very “weak” prior.
Note again that the covariance matrices are w.r.t. responses in the same estimator and not
between estimators. For linear systems with fixed basis functions, cov{? can be calculated
using well known formulas from linear regression (Sen and Srivastava, 1990). In Tresp
and Taniguchi, 1995 and Taniguchi and Tresp, 1997 it is described how the covariance of
the prediction of estimators can be calculated for nonlinear systems.

7 Extensions

7.1 Online BCM

In this section we derive an online version of the BCM. We assume that data arrive
continuously in time. Let D* denote the data points collected between time t(k) and
t(k — 1) and let D¥ = {D*,..., D¥} denote the set of all data collected up to time t(k).

We can derive an algorithm which directly adapts the posterior probabilities of f<.
The iterations are based on the Kalman filter and yields for £k = 1,2, ...

Ay = A1+ Ki(E(f9DY) — Ayy)
K, = Sk,1(5k71 + COU(fq‘Dk))il
Sk = Sk,1 — Kk(Sk,1 + COU(fq’Dk))K];

with Sy = X% and Ay = (0,...,0)". At any time
. 1 1
E(f7DF) = PR - Sk) LAy

Note that only one matrix and one vector of the size of the number of query points need
to be stored which makes this online version of the BCM applicable for data mining
applications. If Ny is large, the Kalman filter described in Appendix 10.2 might be more
suitable.

14



7.2 Varying Query Points

In some cases, particularly in online learning, we might be interested in the responses at
additional query points. The goal is then to infer from the estimated density at the query
points f? the density at other query points f*. Using the approximation in Section 5,
P(f*|D) is Gaussian distributed with

E(f*|D) = £"() " E(f1D). (17)

Note, that this equation describes the superposition of basis functions defined for every
query point f? and evaluated at f* with weights (3499)~1E(f4D¥). Note also, that these
operations are relatively inexpensive. Furthermore the covariance becomes

cov(f*|D) = £ — £H(XM)7H(EM) + B(S) 7 cou(f7]D) (8517

The covariance of the prediction is small if the covariance cov(f?|D) has small elements
and if f* can be well determined from f9.

8 Experiments

In the experiments we set for two locations in input space z; and z;: 04, ,, = Aexp(—1/(2v%)||z;—
z;||*) where A, ~ are positive constants. In the first experiments we used an artificial data

set. The input space is Dim = 5—dimensional and the inputs were randomly chosen in

r € [—1,1]P"™  Targets were generated by adding independent Gaussian noise with a
standard deviation of 0.1 to a map defined by 5 normalized Gaussian basis functions (see
Appendix 10.4).

The width parameter v and the ‘noise to prior’ - factor O’?l} /A were optimized using
a validation set of size 100 and were then left fixed for all experiments. Alternative
approaches to estimate (or to integrate out) these hyperparameters are described by
Gibbs and MacKay (1997), Neal (1996) and Williams and Rasmussen (1996).

Figure 3 (left) shows the CPU-time for the different algorithms as a function of the
number of training samples. Clearly, the CPU-time for Gaussian process regression scales
as K3. The two versions of the BCM schemes scale linearly. Also note that for K/M =
100 = K/Ng (in the experiment, Ny = 128) we obtain the least computational cost.

Figures 3 (right) shows the mean squared query-set error for simple Gaussian process
regression and for the BCM. As can be seen, the BCM is not significantly worse than the
Gaussian process regression system with only one module. Note, that the average error
of the individual modules is considerably worse than the BCM solution and that simple
averaging of the predictions of the modules is a reasonable approach but considerably
worse than the BCM.

Figure 4 (left) shows the mean squared query-set error of the BCM as a function
of the query set size Ny. As confirmed by the theory, for small Ng, the performance
deteriorates. We obtain better results when we query more at the same time!

15



300 0.05
250}
0.04f
Ezoo— 5
0 50.03t
= 1501 $
2 =
a $0.02"
100t G
0.01F

(64
[=)
T

200 400 K 600 800 1000

Figure 3: Left: CPU-time in seconds as a function of the training set size K for M =1
(Gaussian process regression, continuous) and the BCM with module size K/M = 10
(dash-dotted) and module size K/M = 100 (dashed). In these experiments the number
of query points was Ng = 128.

Right: The mean squared query-set error as a function of the number of training data.
The continuous line shows the performance of the simple Gaussian process regression
system with only one module. For the other experiments the training data set is divided
into /100 modules of size 100. Shown are the average errors of the individual modules
(dash-dotted), the error achieved by averaging the predictions of the modules (dotted),
and the error of the BCM (dashed). Note that the error of the BCM is not significantly
worse than the error of simple Gaussian process regression.

16



0.035 \ ‘ : ; ‘ 0.06

0.05}

I

I

5 0.03- 50.04}

o ©] |

3 $0.03

= > |

5] g |

> T K
T0.025¢ 0.02

0.01f

. | | | | . 0 . . . . .
0 0%0 40 60 N 80 100 120 0 1 2 % 4 5 6
4

Q
Figure 4: Left: The mean squared query-set error as a function of the number of query
points Ng for a module size K/M = 100 and with K = 1000. Note that for small Ng,
the performance deteriorates.
Right: The test of the online learning algorithms of Section 7.1 using the artificial data
set. The continuous line is the mean squared query-set error for Ny = 1000 and a
module size of K/M = 1000 as a function of the number of training data K. The width
parameter v and the ‘noise to prior’ - factor 01211 /A were optimized for the large data set
(K = 60000). The dash dotted line shows the error of Gaussian process regression (M=1)
with K' = 1000, approximately the largest training data size suitable for Gaussian process
regression. Here, the width parameter v and the ‘noise to prior’ - factor ai /A were
optimized using a validation set of size K = 1000. Note the great improvement with the
BCM which can employ the larger data sets. The dashed line is the performance of the
BCM with Ng = 100. Note, that the full benefit of the larger data set is only exploited
by the larger Ng. For K = 60000 Gaussian process regression would need an estimated
one year of CPU-time using a typical workstation, whereas the BCM with Ng = 100 only
required a few minutes and with Ng = 1000 a few hours.

17



In the second set of experiments we tested the performance using a number of real
and artificial data sets. Here we found it more useful to normalize the error. The relative
error is defined as mse® = (mse®—mse’) /mse/ where mse® is the mean squared query-set
error of algorithm a and msef is the mean squared query-set error of Gaussian process
regression (M = 1).

Table 1 and Table 2 summarize the results. Well demonstrated is the excellent perfor-
mance of the BCM. The results show that Pe%‘ct“ is indeed a good indication of how many
query points are required: if the number of query points is larger than Pf}gﬁt“, the perfor-
mance of the BCM solution is hardly distinguishable from the performance of Gaussian
process regression with only one module.

For the real world data (Table 1) we obtain excellent performance for the BUPA and
the DIABETES data sets with a Pe%‘ct“ of 16 and 64, respectively, and slightly worse
performance for the WAVEFORM and the HOUSING data with a Peijém of 223 and 138,
respectively. A possible explanation for the slightly worse performance for the Boston
housing data set might be the well known heteroscedasticity (unequal target noise vari-
ance) exhibited by this data set.

For the artificial data set (Table 2) it can be seen that a large Pg‘}m is obtained for
a data set with no noise and a high dimensional data set with 50 inputs. In contrast a
small Pf}‘}m is obtained for a noisy data set and for a low dimensional data set.

In our third experiment (Figure 4, right) we tested the online BCM described in
Section 7.1. Note, that the BCM with K = 60000 achieves results unobtainable with
Gaussian process regression which is limited to a training data set of approximately K =
1000. Considering the excellent results obtained by the BCM for K = 60000 as displayed
in the figure one might ask how close the BCM solution comes to a simple Gaussian
process regression system for such a large data set. We expect that the latter should give
better results since the width parameter v can be optimized for the large training data
set of size K = 60000. Typically, the optimal v decreases with K (Hastie and Tibshirani,
1990). For the BCM, ~ is chosen such that the effective degrees of freedom approximately
matches the number of query points Ng so the optimal v should be more or less be
independent of K. Experimentally, we found that scaling v down with K also improves
performance for the BCM but that v cannot be scaled down as much as in case of the
simple Gaussian regression model. But recall that for K = 60000, the simple Gaussian
process regression system would require one year of CPU-time.

9 Conclusions

We have introduced the BCM and have applied it to Gaussian process regression and
to systems with fixed basis functions. We found experimentally that the BCM provides
excellent predictions on several data sets. The CPU-time of the BCM scales linearly in
the number of training data and the BMC can therefore be used in applications with

18



Table 1: The table shows results from real world data. These data sets can be retrieved
from the UCI data base at http://www.ics.uci.edu/ mlearn/MLRepository.html. All data
sets were normalized to a mean of zero and a standard deviation of one. Shown is the
input dimension Dim, the number of training data used K, and the mean square query-set
error of various algorithms. Shown are averages over 20 experiments from which error bars
could be derived. In each experiment, data were assigned into training and query data
randomly. The width parameter v and the ‘noise to prior’ - factor afp /A were optimized
using a validation set of size 100. The first result (GPR) shows the mean squared query-
set error of Gaussian process regression (M=1). The other rows show relative errors (see
main text). BCM(i, j) shows the relative error with module size K/M = i and query-set
size Ng = j. Also shown is the rank of ¥™" (calculated as described in Figure 1) and the
effective number of parameters.

| [ BUPA [ DIABETES [ WAVEFORM | HOUSING
Dim 6 8 21 13
K (train. size) | 200 600 600 400
GPR 0.828 % 0.028 0.681+0.032 | 0.379£0.019 | 0.1075 = 0.0065
BCM(10, 50) | (—2.6 £ 1.8) x 107* | 0.0095 £ 0.0030 | 0.0566 = 0.0243 | 0.338 % 0.132
BCM(100, 50) | (1.6 £1.8) x 10" | —0.0027 £ 0.0023 | 0.0295 £ 0.0213 | 0.117 % 0.038
BCM(10, 100) | (0.1£0.2) x 10* | —0.0001 £ 0.0015 | 0.0037 £ 0.0095 | 0.196 % 0.053
BCM(100,100) | (0.0=£0.1) x 10* | —0.0011 £ 0.0010 | 0.0163 £ 0.0086 | 0.1138 £ 0.0568
rank 159 600 600 400
PDsta 16 43 223 138

Table 2: Same as in Table 1 but with artificial data. The data are generated as described
in the beginning of Section 8. As before, the width parameter v and the ‘noise to prior’
- factor 0'5} /A were optimized using a validation set of size 100. In columns from left to
right, the experiments are characterized as: no noise oy = 0 , large noise o, = 0.5, high
input dimension Dim = 50 and low input dimension Dim = 2. The large relative error
for the ‘no noise’ experiment must be seen in connection with the small absolute error.

| | ART (0, =0) | ART (0 =.5) | ART (04, =0.1) [ART (0, =0.1) |

(
BCM(100, 50)
BCM(10, 100)
BCM(100, 100)

0.3066 £ 0.0282
0.1574 £ 0.0135
0.0595 £ 0.0114

0.0011 £ 0.0012
0.0001 £ 0.0000
0.0000 £ 0.0000

Dim 5 ) 20 2

K 600 600 600 600

GPR 0.0185 £ 0.0009 | 0.0529 £ 0.0026 | 0.0360 £ 0.0017 | 0.0022 = 0.00012
BCM(10, 50) 0.3848 £ 0.0442 | 0.0021 £ 0.0013 | 0.4135 = 0.0860 0.0809 £ 0.0221

0.0994 £+ 0.0541
—0.0923 £ 0.0181
—0.0527 £ 0.0166

rank 600 600 600 242
PDaia 121 22 600 49

0.0928 £ 0.0157
—0.0007 £ 0.0008
0.0002 £ 0.0011

19



large data sets as in data mining and in applications requiring online learning. May be
the most surprising result is that the quality of the prediction of the BCM improves if
several query points are calculated at the same time.

Acknowledgements

Fruitful discussions with Harald Steck, Michael Haft, Reimar Hofmann and Thomas
Briegel and the comments of two anonymous reviewers are greatfully acknowledged.

10 Appendix

10.1 Product and Quotient of Gaussian Densities

For the product of two Gaussian densities we obtain

G(z;c1,%1)G (x5 c0, X9) x Gz (21—1 + 50 (S e + 25 ), (B + 22_1)_1>
and for the quotient of two Gaussian densities we obtain
G(z;01,%1)/G(x;¢9,39) x G (x; (Ct =2 NS e = 25 te), (B — 22’1)’1) :

G(z;¢,X) is our notation for a normal density function with mean ¢ and covariance %
evaluated at x.
Substituting Gaussian densities in Equation 3 we obtain

P(f9|D) = const x

G0 sl J[qu (J91D"), cov (2| D°)

1
= const X X

G[f90, 359/ (M — 1)]

-1

2 (f:lcoquwi)—l) (Z (D) LY. (fj o f1| DY) )]

=1

B M

= const x G/ f%; (—(M—l) (299) +Zcov f4DY" ) (Z (9| DY) 1E(fqyp))

-1

(—(M 1)(29)~! + Zaw F9) DY~ ) |
such that Equations 4 and 5 follow.

20



10.2 Another Formulation of the BCM

Based on our Gaussian assumptions we can also calculate the probability density of mea-
surements given the query points P(¢g™|f?). This density is also Gaussian with mean

E(g™|f7) = (27) (%)~ f, (18)
and covariance
cov(g™|f1) = UM 4 R (B4m)(R99) I nem, (19)
Now, the BCM approximation can also be written as

P(f7|D) oc P(f9) EP(g?\fq)-

Then we obtain with A; = (3X9m™)/(3%499)~1

E(f1|D) = ZA/COU MY (20)
with
C =cov(f1D) " = (29)~1 + ZA/CO’U " A (21)

=1

9™ is the the covariance matrix between training data for the i-th module and the
query points. An online version can be obtained using the Kalman filter which yields the
iterative set of equations, k =1,2,...

E(f1D*) = E(f|D*") + Ki(gy" — Arf?)
Ky, = (Sp—14}) (ArSk—14}, + cov(g? | f9)
Sk = Sk—1 — Ki(ApSk—1A4} + cov(gi| ) K},

with Sy = X%. In the iterations, no matrix of size Ng needs to be inverted.

21



50

100

150

200

250

30 300

35

350

400 400

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Figure 5: Left: Absolute values of the covariance matrix. White pixels are entries larger

than 0.8. Right: Absolute values of the inverse covariance matrix. White pixels are larger
than 1.

10.3 Independencies in the Inverse Covariance Matrix

Figure 5 (left) shows the absolute values of the covariance matrix for K = 300 training
data points (indices 1 to 300) and Ng = 100 query points (indices 301 to 400). The
covariance matrix is calculated as

Emm+\ljmm (Eqm)/
Mam Maq ’

It is apparent that there are strong correlations in all dimensions. Figure 5 (right) shows
the absolute values of the inverse covariance matrix. Here, white pixels indicate strong
dependencies. Apparent are the strong dependencies among the query points. Also ap-
parent is the fact that there are strong dependencies between the training data and the
query data but not in between the training data (given the query data) confirming that
the approximation in Equation 1 is reasonable.

Readers not familiar with the relationship between the inverse covariance matrix and
independencies are referred to the book by Whittaker (1990).

10.4 Artificial Data

Explicitly, the response is calculated as

5 ||z—center;||?
2 i1 i €XP (_ 202

fla) = —=; (— Lecgnter )

i=1¢XP 202

22



In most experiments
0, =0.36 a=(1.16,0.63,0.08,0.35, —0.70)/

and center; is generated randomly according to a uniform density in the Dim-dimensional
unit hypercube.

References

Bernardo, J., M., and Smith, A. F. M. (1994). Bayesian Theory. Wiley.

Ferrari-Trecate, G., Williams, C. K. I and Opper, M. (1999). Finite-dimensional approx-
imation of Gaussian processes, in M. S. Kearns, S. A. Solla, D. A. Cohn, eds., Advances
in Neural Information Processing Systems 11, MIT Press, Cambridge MA.

Gibbs, M. and MacKay, D. J. C. (1997). Efficient implementation of Gaussian processes.
Available from http://wol.ra.phy.cam.ac.uk/mackay/homepage.html.

Girosi, F. (1998). An equivalence between sparse approximation and support vector
machines. Neural Computation, vol. 10, No. 6.

Hastie, T. and Tibshirani R. J. (1990). Generalized additive models. Chapman & Hall.

MacKay, D. J. C. (1992). Bayesian model comparison and backprop nets. In J. E. Moody,
S. J. Hanson, and R. P. Lippmann (Eds.), Advances in neural information processing
systems, 4. Morgan Kaufmann, San Mateo.

MacKay, D. J. C. (1998). Introduction to Gaussian processes. In Bishop, C., M., (Ed.),
Neural Networks and Machine Learning, NATO Asi Series. Series F, Computer and
Systems Sciences, Vol 168.

Moody, J. E. (1992). The effective number of parameters: an analysis of generalization
and regularization in nonlinear learning systems. In J. E. Moody, S. J. Hanson, and
R. P. Lippmann (Eds.), Advances in neural information processing systems, 4. Morgan
Kaufmann, San Mateo, pp. 847-854.

Moody, J. E., and Régnvaldsson, T. S. (1997). Smoothing regularizers for projective basis
function networks. In M. C. Mozer, M. 1. Jordan, and T. Petsche (Eds.), Advances in
neural information processing systems, 9. MIT Press, Cambridge MA.

Neal, R. M. (1996) Bayesian learning for neural networks. New York: Springer Verlag.

Neal, R. M. (1997) Monte Carlo implementation of Gaussian process models for Bayesian
regression and classification. Tech. Rep. No. 9702, Department of Statistics, University
of Toronto.

Poggio, T., and Girosi, F. (1990). Networks for approximation and learning. Proceedings
of the IEEE, 78, pp. 1481-1497.

23



Poggio, T., and Girosi, F. (1998). A sparse representation for function approximation.
Neural Computation, vol. 10, No. 6.

Rasmussen, C. E. (1996). Evaluation of Gaussian processes and other methods for non-
linear regression. Unpublished Ph.D. dissertation, Department of Computer Science,
University of Toronto. Available from http:// www.cs.utoronto.ca/ carl/.

Skilling, J. (1993). Bayesian numerical analysis. In Physics and Probability, W. T. Grandy
and P. Milonni., eds., C. U. P.

Smola, A. J., Schélkopf, B. and Miiller, K.-R. (1998). The connection between regular-
ization operators and support vector kernels. Neural Networks, Vol. 11, pp. 637-649.

Sen, A. and Srivastava, M. (1990). Regression Analysis. Springer Verlag, New York.

Taniguchi, M. and Tresp, V. (1997). Averaging regularized estimators, Neural Computa-
tion, Vol. 9, Nr. 5.

Tresp, V. and Taniguchi, M. (1995). Combining estimators using non-constant weighting
functions, in G. Tesauro, D. S. Touretzky and T. K. Leen, eds., Advances in Neural
Information Processing Systems 7, MIT Press, Cambridge MA. pp. 419-426.

Vapnik, V. N. (1995). The nature of statistical learning theory. Springer, New York.

Wahba, G. (1983). Bayesian “confidence intervals” for the cross-validated smoothing
spline. J. Roy. Stat. Soc. Ser. B, Vol. 10, pp. 133-150.

Wahba, G. (1990). Spline models for observational data. Philadelphia: Society for Indus-
trial and Applied Mathematics.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley.

Williams, C. K. I. and Rasmussen, C. E. (1996). Gaussian processes for regression. In D.
S: Touretzki, M. C. Mozer, and M. E. Hasselmo (Eds.), Advances in Neural Processing
systems, 8. Cambridge, MA: MIT Press, pp. 514-520.

Williams, C. K. I. (1997). Computing with infinite networks. In M. C. Mozer, M. 1.
Jordan, and T. Petsche (Eds.), Advances in neural information processing systems, 9.
Cambridge, MA: MIT Press.

Williams, C. K. I. (1998a). Computing with infinite neural networks. Neural Computa-
tion, 10, pp. 1203-1216.

Williams, C. K. I. (1998b). Prediction with Gaussian processes: from linear regression
to linear prediction and beyond. In Learning in Graphical Models, Jordan, M. 1., editor,
Kluwer Academic, pp. 599-621.

Zhu, H., and Rohwer (1996). Bayesian regression filters and the issue of priors. Neural
Comp. Appl, 4, 3, pp. 130-142.

Zhu, H., Williams, C. K. I., Rohwer, R., and Morciniec, M. (1998). Gaussian regression

24



and optimal finite dimensional linear models. In Bishop, C., M., (Ed.), Neural Networks
and Machine Learning, NATO Asi Series. Series F, Computer and Systems Sciences, Vol
168.

25



