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Abstract

We present a systematic approach to mean £eld theory (MFT) in a gen-
eral probabilistic setting without assuming a particular model. The mean £eld
equations derived here may serve as alocal and thus very simple method for
approximate inference in probabilistic models such as Boltzmann machines
or Bayesian networks. “Model-independent” means that we do not assume
a particular type of dependencies; in a Bayesian network, for example, we al-
low arbitrary tables to specify conditional dependencies. In general, there are
multiple solutions to the mean £eld equations. We show that improved esti-
mates can be obtained by forming a weighted mixture of the multiple mean
£eld solutions. Simple approximate expressions for the mixture weights are
given. The general formalism derived so far is evaluated for the special case
of Bayesian networks. The bene£ts of taking into account multiple solutions
are demonstrated by using MFT for inference in a small and in a very large
Bayesian network. The results are compared to the exact results.
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1 Introduction

The bene£ts of using a probabilistic setting in many applied £elds where uncer-
tainty plays a prominent role –such as image processing, neural networks and ar-
ti£cial intelligence– have become increasingly apparent [1]. Unfortunately, prob-
abilistic solutions often require involved computation [2] and further progress is
closely related to the development of methods for the ef£cient handling of proba-
bility distributions. The goal of this paper is to extend the concept of using mean
£eld theory (MFT) as a systematic approach for approximating probability dis-
tributions. MFT is widely used in physics, in particular, in statistical mechanics
[3, 4] and has found a number of applications in other areas as well [5, 6, 7, 8]. We
present MFT in a generic way in the context of graphical models, which are a gen-
eral framework for dealing with uncertainty in dependency models [1, 9, 10, 11].
The use of MFT in the context of graphical models was pioneered by Jordan, Saul
and Jaakola [12, 13]. In our paper we develop this approach in two new direc-
tions. First, in contrast to previous work we develop a systematic approach to
MFT without reference to a particular model but instead work in a general prob-
abilistic setting∗. The mean £eld equations based on our rigorous formalism are
new in their general form. They can be applied for example to arbitrary graphical
models, which include Markov random £elds, Boltzmann machines and Bayesian
networks as a special case. The main advantage of our mean £eld equations is that
they providelocal inference rules. No global operations are needed when using
MFT for propagating information in large systems of interacting modules.

The second new contribution of this paper is to address the problem of mul-
tiple solutions of the mean £eld equations. Coping with multiple solutions has
been originally discussed in [14] and simultaneously in [15, 16, 17]. We show that
in the case of multiple solutions, a weighted mixture of these solutions leads to
reasonable estimates of expected values. Approximate and very plausible mixing
parameters are derived. The general formalism is applied to the special case of
Bayesian networks. In this case the mixing parameters can be obtained in a con-
sistent framework, that is, by means of onlylocal computations. The bene£ts of
taking into account multiple solutions of the mean £eld equations are demonstrated
by using MFT for inference in a small illustration network representing a medical
domain. It turns out that every solution of the mean £eld equations in this network

∗In [12, 13] Jordan et al. use ‘sigmoid belief nets’, a network of binary variables with a particular
kind of dependencies. The Boltzmann machines used in [6] are completely connected networks
of binary variables with ‘two-way interactions’. Here, we do not assume any particular kind of
variables or a particular type of dependencies. As a consequence we may run mean £eld inference
in any Bayesian network. At the moment we have implemented an interface to the Hugin net-£le
format.
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can be interpreted as a ‘disease scenario’. Furthermore we run MFT in a very large
network where exact methods are at their limit and we discuss drawbacks of MFT
from a practical point of view.

Finally, we comment on the relevance of MFT for human reasoning. Con-
sistent propagation of information in large networks of interacting modules is in
general a demanding task and requires global operations [1]. MFT, on the other
hand, suggests itself as a local and very simple prescription for communication of
autonomous processors.

2 Mean Field Theory in a Probabilistic Setting

2.1 The Cross Entropy as a Measure of Distance

In the following, a set ofN variablesX = {X1, . . . , XN} with a £nite num-
ber of discrete statesxi ∈ Hi is assumed.P (X) denotes a probability distribu-
tion on the domainH = H1 ⊗ · · · ⊗ HN . We further assume that any distribu-
tion is strictly positive.P (x) resp.P (xi) is the probability of the eventX = x
resp.Xi = xi. That is,P (xi) is a real number,P (xi) ∈]0, 1[. In many interest-
ing domains,P (X) is computationally intractable. For this reason we introduce
a distributionQ(X) which is de£ned on the same domain of variables and which
incorporates some simplifying constraints. The goal is to determineQ(X) such
that –obeying these constraints– it is ‘as close as possible’ to the given untractable
distributionP (X). As a measure of distance betweenP (X) andQ(X) we use the
cross entropy (Kullback-Leibler distance) [18]

D(Q‖P ) =
∑
x∈H

Q(x) log
Q(x)
P (x)

≡
〈

log
Q(X)
P (X)

〉
Q(X)

. (1)

Note, that this distance is not symmetric inP andQ and that, with even more
justi£cation, we might have used

D(P‖Q) =
∑
x∈H

P (x) log
P (x)
Q(x)

≡
〈

log
P (X)
Q(X)

〉
P (X)

. (2)

as a distance measure. There is at least one strong reasons to prefer (2) as a
measure of distance. This distance measure is convex inQ(X) in contrast to the
measure (1). That means there is only one optimum with respect toQ(X). For this
optimum we haveQ(Ci) = P (Ci) for all cliquesCi of Q (assuming no further
constraints except the cliques structure [11]). In particular,Q(Xi) = P (Xi) for all
variables of the domain. I.e., optimizingQ with respect to (2) means calculating
exact marginals or doing exact inference.
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The reason to use the former measure (1) nevertheless is that the expectation is
with respect to the less complex, approximate distributionQ(X) in contrast to (2),
where the expectation is with respect toP (X). As a consequence, in algorithms
derived from (1) we typically £nd expectations with respect to the less complex
distributionQ(X). On the one hand, this will £nally lead us to the very simple
and local concept of MFT. On the other hand, however, we will have to face the
problem of multiple minima. Note, that though (1) has in general local minima
with respect toQ(X) any of the above two measures of distance is zero only if
Q(X) = P (X).

2.2 The Mean Field Assumption

MFT is a concept from theoretical physics and is used to describe systems of many
interacting particles. Many different facets of MFT can be found in £elds as dif-
ferent as relativistic nuclear physics [19, 20], statistical physics [3, 4, 21], image
processing [7] and neural networks [22, 23, 24, 8]. As a consequence, there exist a
number of ways to derive mean £eld equations. Following the above discussion we
de£ne as mean £eld approximation the distributionQ(X) which is closest toP (X)
using distance measureD(Q‖P ). Furthermore –and this is really the heart of the
mean £eld approximation [3]– we assume that the variables in theQ-distribution
areindependentvariablesXi. In this case we can write

Q(X1, . . . , XN ) =
N∏

i=1

Q(Xi). (3)

At £rst sight this ansatz seems to be much too simple. Nevertheless, one can take
advantage of this approach for approximate propagation of information (evidence),
as we will see later. To the best of our knowledge, Jordan et al. [12, 13] were the
£rst ones to de£ne MFT in a general way as the ansatz (3)togetherwith D(Q‖P )
as a measure of distance.

2.3 General Mean Field Equations

Minimization ofD(Q‖P ) can be done in an iterative way. SupposeQ(Xk), k =
1, . . . , N , are our current estimates of theQ-marginals. Our goal is to obtain an
improved approximation toP (X) by minimizingD(Q‖P ) with respect toQ(Xi)
thereby assuming£xedmarginalsQ(Xj), j 6= i. Let us denote the complement
of Xi by Xi, that isXi ≡ {Xj , j 6= i} ≡ X\Xi. When minimizingD(Q‖P )
with respect toQ(Xi) we have to take into account the normalization constraint∑

xi∈Hi
Q(xi) = 1. This can be done by using a Lagrange parameterλ, i.e., we
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have to solve the equations

∂

∂Q(xi)


D(Q‖P ) − λ


 ∑

xi∈Hi

Q(xi) − 1





 = 0 (4)

with respect to the probabilitiesQ(xi), xi ∈ Hi. First, we split upD(Q‖P ) using
the relationsP (X) = P (Xi)P (Xi|Xi) andQ(X) = Q(Xi)Q(Xi). Inserting
these relations in (1) we obtain

D(Q‖P ) =
〈
log Q(Xi)

〉
Q(Xi)

−
〈
log P (Xi)

〉
Q(Xi)

+ (5)

〈log Q(Xi)〉Q(Xi)
−

〈
log P (Xi|Xi)

〉
Q(X)

. (6)

Only the terms in the last line (6) depend onQ(xi), those in the £rst line (5) do
not. Differentiating the term〈log Q(Xi)〉Q(Xi)

we £nd

∂

∂Q(xi)
〈log Q(Xi)〉Q(Xi)

=
∂

∂Q(xi)

∑
xi∈Hi

Q(xi) log Q(xi)

= log Q(xi) + 1.

After differentiating both the second term
〈
log P (Xi|Xi)

〉
Q(X)

of line (6) and the

constraint of Eq. (4) we obtain

Q(xi) =
1

exp(1 − λ)
exp

〈
log P

(
xi|Xi

)〉
Q(Xi)

. (7)

The Lagrange parameterλ or normalizing constantexp(1 − λ) can be calculated
easily,

exp(1 − λ) =
∑

xi∈Hi

exp
〈
log P

(
xi|Xi

)〉
Q(Xi)

. (8)

This sum involves only|Hi| terms, i.e., for binary variables only two terms.
The result (7) is the unique solution to Eq. (4). It corresponds to a global min-

imum of D(Q‖P ) with respect toQ(Xi) given our current estimates ofQ(Xj),
j 6= i. That means, updatingQ(Xi) according to (7) decreasesD(Q‖P ). Subse-
quently, we choose another variable out ofXi and solve the mean £eld equations
for this variable. Thus iterating repeatedly over all variablesXi we stepwise de-
scend inD(Q‖P ). The cross entropyD(Q‖P ) is always positive, and, hence, this
iteration ends up in a local minimum ofD(Q‖P ).

The equations (7) may be viewed as mean £eld equations in their most general
form since no model assumptions were made. As a special case we now assume
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thatP (X) is the Boltzmann distribution of a system of spinsxi ∈ {±1} de£ned by
the HamiltonianH(x) = −(1/2)xT Jx with a symmetric interaction matrixJ and
diagonal elementsJii = 0. For this system the conditional distributionP (xi|xi)
readsP (xi|xi) ∝ exp (βxiJi · xi) , whereJi is theith row of the interaction ma-
trix J andβ is the inverse temperature. Hence, for the mean £eld equations (7) we
obtain

Q(xi) ∝ exp
(

βxiJi ·
〈
Xi

〉
Q(Xi)

)
. (9)

For binary variables the mean values〈Xi〉 completely determine the marginals
Q(Xi). In our casexi ∈ {±1} we haveQ(xi) = (1/2)(1 + xi 〈Xi〉). Using this
fact it can be shown easily that Eq. (9) leads to

〈Xi〉Q(Xi)
= tanh

(
βJi ·

〈
Xi

〉
Q(Xi)

)
, (10)

which is the well-known mean £eld equation for a system of interacting spins [3],
whereby the expected values〈Xi〉Q(Xi)

are usually denoted as magnetizationsmi.

2.4 Locality of Mean Field Theory

The most appealing point of MFT is that only local operations are needed for it-
eration of the mean £eld equation (7). Given the Markov boundary† Mi of the
variableXi the mean £eld equation (7) may be simpli£ed to

Q(xi) ∝ exp 〈log P (xi|Mi)〉Q(Mi)
. (11)

Iterating these mean £eld equations means recursively estimating marginalsQ(Xi)
based on the current marginalsQ(Xj) of only the ‘neighboring’variablesXj ∈
Mi until the system relaxes into a consistent state. For updatingQ(Xi) we only
need the conditional distributionP (Xi|Mi), which can be stored ‘locally at node
i’, and the current estimates of the marginalsQ(Xj), Xj ∈ Mi, which can be
stored at the corresponding ‘neighboring nodes’ of nodei. All information which
is needed for the renewed estimation ofQ(Xi) in equation (11) is thus available
from nodei and the neighboring nodes of nodei (the Markov boundaryMi of
nodei).

†The Markov boundaryMi of a variableXi is the minimal set of variablesMi ⊂ X which
makesXi independent of the ‘rest’ givenMi, i.e., P (Xi|Mi, rest) = P (Xi|Mi). In the above
physical example the Markov boundary ofXi is the set of variablesXj with Jij 6= 0.
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3 Mixing Mean Field Solutions

The iteration of the mean £eld equations (11) converges to one of typically many
local minima ofD(Q‖P ). In many physical model systems, these local solutions
are of particular interest since they explain phase transitions and the phenomenon
of spontaneous symmetry breaking [3]. The mean £eld dynamics in a Hop£eld net-
work converges to a local minimum of the ‘free energy landscape’ and thus restores
oneof many stored patterns. However, if we want to have a good approximation
of a global distributionP (X) and in particular if we are interested in expected
values with respect toP (X) we have to care about all solutions of the mean £eld
equations (7). In the following we pursue the idea that instead of selectingone
particular mean £eld solution, it might be more advantageous to form a weighted
average (a mixture) of several mean £eld solutions. The mixture weights are de-
rived in a principled way and are shown to be optimal under certain assumption.
An additional bene£t is that we can relax the assumption of independent units since
a mixture distribution can approximate a much larger class of distributions than the
components of the mixture.

We enumerate the different mean £eld solutions by a ‘hidden variable’a. That
is, Q(X|a) now denotes a different mean £eld solutions for a differenta. By
assigning mixture weightsQ(a) to every solution we form the mixture distribution

Q(X) =
∑
a

Q(X|a)Q(a). (12)

Again, the goal now is to determine theQ(a) under the constraint
∑

a Q(a) = 1,
such thatD(Q‖P ) is minimized. It is an easy exercise to perform this optimization
via a Lagrange parameterλ analogous to the previous derivation. In a few lines we
obtain for alla

〈log Q(X)〉Q(X|a) = 〈log P (X)〉Q(X|a) − 1 + λ. (13)

We have to solve Eq. (13) forQ(a), which implicitly enters the above expression
via Q(X) and Eq. (12). However, the above Eq. (13) cannot be solved in a straight-
forward way forQ(a). With the aim of a simple expression we therefore use an
additional approximation. The left hand side of (13) may be expressed as

〈log Q(X)〉Q(X|a) =

〈
log


Q(a)Q(X|a) +

∑
a′ 6=a

Q(a′)Q(X|a′)

〉

Q(X|a)

≈ log Q(a) + 〈 log Q(X|a)〉Q(X|a), (14)

where we have neglected the termsQ(a′)Q(X|a′) for a′ 6= a in the argument of the
logarithm. We may do so ifQ(x|a)Q(x|a′) ≈ 0 for all a 6= a′, that is, if there is
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no or suf£ciently small overlap between different mean £eld solutions. By means
of this ‘small-overlap’ approximation in (13) we obtain for the mixture weights

Q(a) ∝ exp

[
−

〈
log

Q(X|a)
P (X)

〉
Q(X|a)

]

∝ exp
[
−D(Q (X|a) ‖P (X) )

]
. (15)

This means, different mean £eld solutionsQ(X|a) contribute to the global distri-
bution Q(X) according to their distanceD (Q(X|a)‖P (X)) to P (X). That is a
plausible result which we might have guessed. Note, however, that this nice result
relies on the small-overlap approximation, i.e., on the assumption that different
minima ofD(Q‖P ) are not ‘close’ to one another.

4 Mean Field Theory for Bayesian Networks

So far we did not make any assumptions aboutP (X), and, hence, our results (the
mean £eld equations (11) and the mixture weights (15)) are very general. We will
now focus on a particular parameterization of a probability distribution, namely, on
Bayesian networks [1, 25]. A Bayesian network has an expansion of the form

P (X) =
∏
i

P (Xi|X1, . . . Xi−1) =
∏
i

P (Xi|Πi), (16)

where in a typical Bayesian network every variableXi has only a small set of
‘parents’Πi ⊆ {X1, . . . Xi−1}. The £rst equality is valid in general; it is just
the chain rule of probability. ForΠi ⊂ {X1, . . . Xi−1} in Eq. (16) the second
equality corresponds to the assertion of some conditional independencies. Usually
the structure of a Bayesian network is depicted as an acyclic graph where arcs
point from all parentΠi to their corresponding childrenXi (see Fig. 1 later in the
text as an example). The ‘tables’P (Xi|Πi) associated with the nodesXi are the
parameters of a Bayesian network.

For updating nodeXi according to Eq. (11) we need to know the Markov
boundaryMi of Xi and the conditional distributionP (Xi|Mi). For a Bayesian
network the Markov boundary of a node is given by its parents, its children and
all ‘coparents’, that is, all parents of all children [1]. LetCi be the index set of all
children of nodeXi. For the conditional distributionP (Xi|Mi) we have

P (Xi|Mi) ∝ P (Xi|Πi)
∏
k∈Ci

P (Xk|Πk) (17)
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which can be easily derived from (16). Using this result in (11) we obtain

Q(xi) ∝ exp


〈log P (xi|Πi)〉Q +

∑
k∈Ci

〈log P (Xk|Πk)〉Q

 . (18)

On the right hand side any instantiation ofXi is £xed toXi = xi, and the ex-
pected values are evaluated over the remaining variables. If compared to Eq. (11)
this result greatly economizes the mean £eld updating rule. For evaluation of the
expectation in (11) we have to perform a sum over the state space of the Markov
boundaryMi. In (18) we have to calculate different expectations which, however,
are less expensive to evaluate for they only involve the tableP (xi|Πi) and the
tablesP (Xk|Πk), k ∈ Ci.

Furthermore, note that givenany tableP (xi|Πi) we can exactly evaluate the
expectation〈log P (xi|Πi)〉Q by just performing the corresponding sum over the
state space ofΠi. Thus we may run mean £eld inference inanyBayesian network
without further approximations. For nodesXi with a large number of parentsΠi,
however, the evaluation of the expectation〈log P (xi|Πi)〉Q is expensive. In prac-
tice large tables very often have a simple structure, e.g., by assuming a noisy-OR
gate. Only rarely all degrees of freedom of a large table are needed. One should
of course try to exploit the structure of a large table to calculate the expectation
〈log P (xi|Πi)〉Q more ef£ciently. As an example see the second illustration of
mean £eld inference in the next section, where we exploit a tree-like structure of
the tables. In [12] Saul et al. use an additional approximation to evaluate corre-
sponding terms in their case of a sigmoid belief network.

It remains to be shown that in the case of a Bayesian network even the mixture
weights (15) can be calculated in an ef£cient way by means ofonly local compu-
tations. If we use the expansion (16) we obtain

D (Q(X|a)‖P (X)) =
∑

i

〈
log

Q(Xi|a)
P (Xi|Πi)

〉
Q(Xi,Πi|a)

. (19)

Every term in the sum on the right hand side requires only local information, i.e.,
only the conditional distributionP (Xi|Πi) and the distributionQ(Xi,Πi|a) =
Q(Xi|a)Q(Πi|a). P (Xi|Πi) andQ(Xi|a) are properties ofXi, i.e. , they can
be stored locally at nodei. Q(Xj |a), Xj ∈ Πi, describes neighboring nodes of
nodeXi.

Thus, for Bayesian networks, for instance, we £nd a very simple computa-
tional scheme. In many other cases it might be computationally more expensive
to perform the expectation in the updating rule (11) and to compute the distance
D (Q(X|a)‖P (X)) in (15) to obtain the mixture weightsQ(a). Mean £eld infer-
ence as formulated in this section directly refers to the parameters of a Bayesian
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no

scarlet
yesyes

chickenpox
no

yesno

red tongue

no

measles
yes

yesno yesno

red eyeseczema fever
no low high no weak

sore throat
strong

Figure 1: Our Bayesian network example for illustration of mean £eld inference.
The network is modeling three children’s diseases (chickenpox, measles and scar-
let). The arcs are pointing from diseases to symptoms (eczema, red eyes, fever,
sore throat and red tongue), that is, from cause to effect. Arces point from the
positiv £nding of a desease to that state of a symptom which is typically present
given the desease [26]. Note, that the variables are not just binary. Plausible values
for the conditional probabilities of that network have been estimated by consulting
a text book on children’s diseases.

network (namely to the tablesP (Xi|Πi); see the update equation (18) and the
distance (19)). There is no intermediate redundant representation of the Bayesian
network, such as a junction tree [25].

5 Illustration of Mean Field Inference

5.1 A Small Network Example

Quite a bit of theory has been presented so far. It is now time to show how things
work in practice. In particular, we want to demonstrate the bene£ts of mixing
multiple mean £eld solutions. A simple Bayesian network for illustration purposes
is depicted in Fig. 1. The goal of this network is to support medical diagnosis.
In our simple example we just want to discern between measles, chickenpox and
scarlet fever.

Suppose a patient complains about an eczema and a weakly sore throat. We
enter that piece of knowledge into the corresponding nodes. Our goal is to obtain
probabilities for the remaining nodes, in particular, for the disease nodes. For
that reason we use the discussed mean £eld ansatz for the remaining nodes, i.e. ,
we iterate the mean £eld equations for the remaining nodes. For our illustration
network we £nd two different solutions of the mean £eld equations. These two
solutions, the corresponding mixture distribution and the exact probabilities are
compared in table 1.
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The £rst solution may be termed as ‘measles scenario’ the other solution is the
‘scarlet scenario’‡. Thus, mean £eld mixture model supplies us not only with be-
liefs for the unknown nodes; we obtain additional information about the character
of the exact distributionP (X|evidence) as well, namely that the joint distribution
is approximately a composition of two modes. Based on these two modes we may
easily calculate approximate joint probabilities for any set of nodes; see for exam-
ple table 2. The two modes mainly differ in the belief for the node ‘red eyes’. To
obtain a unique diagnosis a natural question therefore is: ‘Does the patient have red
eyes?’ Suppose his eyes are red. Propagating that evidence by iterating the mean
£eld equations for all still unknown nodes we £nd that there is only one solution
left, the measles scenario. Our £nal belief for measles is 0.99, that for chickenpox
is 0.03.

£rst MF-solution
‘measles scenario’
Q(a) = 0.68

second MF-solution
‘scarlet scenario’
Q(a) = 0.32

marginals of
the MF-mixture
distribution

marginals of
the exact
distribution

measles 0.996 0.008 0.679 0.641

scarlet 0.008 0.985 0.322 0.301

chickenpox 0.030 0.031 0.030 0.054

red eyes 0.903 0.052 0.630 0.598

red tongue 0.031 0.695 0.244 0.240

low fever 0.257 0.257 0.257 0.258

high fever 0.551 0.547 0.550 0.527

Table 1: Marginal probabilities of MFT as compared to the exact results. The £rst
two columns show that any single mean £eld solution on its own results in a very
poor approximation of the exact marginals.

5.2 A Large Network Example

One of the main motivations for using mean £eld inference instead of exact infer-
ence is that mean £eld inference can handle networks which are too large for exact
inference. For this second experiment we chose a network size which can still
be handled by the exact inference algorithms of the commercial inference engine
HUGIN, but which is close to the limits. This way we can still compare the results.

Our network (which also is for illustration purposes rather than a real world
application) is depicted in Fig. 2. The network is a simple model for the temporal

‡You can compare these two solutions with the two solutions ‘all spins up’ and ‘all spins down’
in a ferro magnet below the Curie temperature.
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scarlet

no yes

no
P : 0.067
Q: 0.008

P : 0.292
Q: 0.313measles

yes
P : 0.623
Q: 0.671

P : 0.017
Q: 0.008

Table 2: Joint probability table of the mean £eld mixture distribution (Q) as com-
pared to the exact results (P ). Plain MFT is based on the assumption of inde-
pendent variables (3) and, hence, cannot easily explain joint tables. This example
shows, however, that the mixture distributionQ may give reasonable approxima-
tions to joint tables as well.

development of the state of, let’s say, a telecomunication network. We assume that
there areN switches connected to each other to route the calls between different
users. Our Bayesian network model consists of time slices, one slice for every time
stept = 1, 2, . . .. In every time slice there is a node for every switch describing
the state of that switch at timet. At every time step any switch may beok, slow
or down. In principal, the devices of the network should work in a deterministic
way. However, this is at best true at a very detailed level of description. Our coarse
description of the state of every switch makes modelling much easier, however
necessarily involves the concept of probability. On this level of description (and in
our simple demo network) the dynamics of the network is governed by a sequence
of some ‘probabilistic rules’. Verbally they may be formulated as follows:

• If switch i is ok

– and all other switches are also working properly switchi may spon-
taneously becomeslow or even godown in the next time step with a
small probability.

– and any of the other switches is alreadydownor slow there is an in-
creased probability that switchi will also becomeslowor even godown
in the next time step.

• If switch i is slow there is a good chance that it will recover or, on the other
hand, completely go down in the next time step.

• If switch i is down it will be down in the next time step with a probability
close to one.
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Based on these rules the conditional probability table for every switch given the
state of the system one time step ago can be most ef£ciently represented as a tree
with only a small number of leaves.

ok downslow
switch_1(t)

ok downslow ok downslow
switch_2(t) switch_N(t)

ok downslow ok downslow ok downslow
switch_1(t+1) switch_2(t+1) switch_N(t+1)

. . . . 

. . . . 

. . . . 

observed_messages_1(t)
no_messinternal_err

no_messinternal_err

no_messinternal_err

observed_messages_2(t)

observed_messages_N(t)

no_response

no_response

no_response

Figure 2: A Bayesian network time slice model describing the temporal develop-
ment of a system ofN communicating switches. The state of switchi at timet+1
(switch i(t + 1)) dependes on the state of all other switches at timet. The nodes
to the right are the messages which the operator observes from every switch. See
text for a detailed description.

Due to the dynamics of the network error messages typically occur in form of
‘bursts’. If the network operator observes such a ¤ood of messages his task is to
localize the ‘root cause’, that is, the switch which failed £rst. The evidence which
the network operator has for every switch is:

• no messagefrom that switch,

• the switch is reportinginternal errors

• or it is reporting that there isno responsefrom another switch.
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A similar set of probabilistic rules describes the process of the emission of mes-
sages from the system.

Building the junction tree for the described network is possible up toN = 8
switches. In this case the largest cliques (containing all the switches of two succes-
sive time slices) have16 nodes resulting in4.3 ∗ 107 numbers for the potentials of
these cliques. Running the junction tree algorithm forN = 9 fails on a512MByte
machine. Running MFT is in principal possible up toN = 15. However, in this
case the tables associated with each node are also of the size4.3 ∗ 107, and cal-
culating the expected values in (18) is much too expensive to be of any practical
relevance. However, using a table representation of the conditional dependencies
means dealing with an enormous amount of redundant parameters. As mentioned
above an adequate representation is, e.g., a tree. This structure can be easily ex-
ploited to very ef£ciently evaluate the expected values in (18). Running MFT is
then possible even in networks withN > 15.

To get an impression of the results we compare MFT with exact methods in a
network of sizeN = 7 and four succesive time slices. We draw random samples
form the joint distribution and accordingly selected the state of the ‘observable’
nodes (the nodes ‘observedmessagesxxx’ in Fig. 2). Then searching for mean
£eld solutions by starting the iteration at 30 different points typically resulted in
about 10 different solutions whereby according to the mixture weights typically
only two or three of all solutions are dominant.

Table 3 shows a typical result, which is quite uesful for root cause analysis.
Occasionally we found less accurate results like that in table 4. The reason for the
the difference is that in this cases we have failed to £nd all relevant solutions of
the mean £eld equations. More extensive search for solutions (e.g. by starting the
iteration process for 100 times) makes results like that of table 4 a very rare case.
However, this is at the expense of an increased computational load. In general,
it is very helpful to have a good heuristic idear for a particular domain where to
start the mean £eld iteration so that the most relevant mean £eld solutions can be
found very fast. For example, in diagnostic domains it is in general good strategy
to start the iteration in all states where only one cause or desease has a very high
probability.

Concerning the ‘small overlap’ asumption our experience is that only in very
rare case we £nd two solutions which are close together. In particular in very large
networks the mean £eld solutions typically have nearly zero overlap. In case there
are two nearly identical solutions the mixture distribution will not depend crucially
on the relative weighting of these two solutions. Hence, when testing wether the
most recently computed solution is (within numeric bounds) identical to a solution
found previously (in which case it is considered only once in the mixing procedure)
we reject the new solution even if it is not identical but close to a previous solution.
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mean £eld
results

exact
results

switch 3,t=0 slow 0.135 0.104

down 0.840 0.866

switch 5,t=0 slow 0.135 0.104

down 0.840 0.866

switch 3,t=1 slow 0.020 0.019

down 0.979 0.980

switch 5,t=1 slow 0.020 0.019

down 0.979 0.980

switch 6,t=2 slow 0.935 0.878

down 0.000013 0.000001

switch 6,t=3 slow 0.375 0.360

down 0.285 0.272

Table 3: Results of a typical run of MFT with a random sample of evidence for
the observable nodes in our demonstration network of Fig. 2. We have listed some
switches with high failure probability. The mean £eld results are compared to
exact results obtained by using HUGIN (right column). The switches 3 and 5 are
probablydownalready att = 0 or at least att = 1. Switch 6 is probablyslowat
t = 2 and may be even dowm att = 3.

6 Discussion

In this article we have discussed MFT in a model-independent way as a method to
approximate a given probability distribution. Furthermore, we have extended the
standard mean £eld approach by the idea of mixing different mean £eld solutions.
Our approach is model-independent in so far as you may use the resulting mean
£eld equation (7) in arbitrary probabilistic domains. The only restriction is that the
variables have to be descrete. (See Frey and Hinton [27] for an example of mean
£eld theory in the case of continuous hidden variables.)

As illustrated in our experiments, our approach can be used for approximate
propagation of evidence (inference). Thereby, £rst, evidence is entered into the
model,then the mean £eld approximationP (X|evidence) ≈ Q(X|evidence) =∏

i Q(Xi|evidence) is calculated. The results clearly demonstrated that reasonable
probabilistic approximations can only be achieved if we take into account multi-
ple solutions of the mean £eld equations. In doing so, we may even obtain easy
interpretable information about the joint distribution of several variables.

The presented procedure (£nding solutions of the mean £eld equations (7) and
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mean £eld
results

exact
results

switch 6,t=0 slow 0.504 0.373

down 0.000030 0.000068

switch 4,t=1 slow 0.517 0.362

down 0.223 0.359

switch 5,t=1 slow 0.134 0.302

down 0.0 0.0

switch 6,t=1 slow 0.818 0.744

down 0.000001 0.000007

switch 7,t=1 slow 0.087 0.298

down 0.0008 0.0067

Table 4: The ‘worst’ result which we found when running MFT in the network of
Fig. 2. Results like this may be found in particular if one misses to £nd all relevant
solutions of the mean £eld equations.

mixing them) does not optimize the parametersQ(a) andQ(X|a) of the approxi-
mating distributionQ(X) simultaneously since the different solutionsQ(X|a) of
the mean £eld equations (7) for differenta are determined independently and prior
to determining the mixture weightsQ(a). It might be possible to derive a more
re£ned simultaneous optimization of the parametersQ(a) andQ(X|a). However,
the resulting equations will not be as simple as (11) and (15). Their simplicity and
locality (!) justi£es the above step by step procedure and the introduced small-
overlap approximation. When used for inference in graphical models, MFT ex-
ploits the structure of a graphical model even in non tree-like graphs since, as dis-
cussed previously, only ‘neighboring nodes’ have to communicate. This locality
is the appealing point of MFT. There is no necessity to compile the original graph
to a tree-like cover model as it is done by the junction tree algorithm by means
of moralization and triangulation [9, 10]. Loops in the original graph may lead
to an exponential complexity for exact inference methods (as, e.g., in our illustra-
tion in section 5.2), however, are of minor relevance for MFT. In particular in the
case of Bayesian networks, mean £eld inference exhibits further simpli£cations.
An additional advantage is that in many cases the existence of several mean £eld
solutions sheds a light on the structure of the exact distribution In our example the
exact distribution could be interpreted as being composed of two ‘scenarios’.

Thus, in many domains MFT represents an interesting complement to other
inference methods. However, as the last example may suggests, in some other
domains mean £eld theory may not be appropriate. The weak point of mean £eld
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inference is that a good result depends in particular on £nding all relevant solutions
of the mean £eld equations or the best minima of the cross entropy (1). Though
the mean £eld iteration descendes to the next minimum of the cross entropy very
fast there may in some domains exist many solutions. Our experience is that mean
£eld theory can be used in domains where

• there are not too many deterministic or nearly deterministic dependencies
among the variables of a domain, which makes the cross entropy (1) a very
rough landscape with many local minima.

• there is much evidence available which rules out many of the local minima.

• you have a good heuristic idea where to start iterating the mean £eld equa-
tions.

Finally, a few words on human reasoning are appropriate. In his book ”Prob-
abilistic Reasoning in Intelligent Systems” Pearl argues that ‘... any viable model
of human reasoning should be able to perform this task(consistent propagation
of information)with a self-activated propagation mechanism, i.e., with an array
of simple autonomous processors, communication locally via the links provided
by the network itself. The impact of each new piece of evidence is viewed as a
perturbation that propagates through the network via message-passing between
neighbouring variables, with a minimal external supervision.’ Mean £eld infer-
ence exactly meets these demands. As a consequence mean £eld inference permits
a signi£cant amount unsupervized parallelism, which is ascribed to the human way
of information processing. Furthermore, arguing in terms of ‘scenarios’ is much
closer to the human way of reasoning then global probabilistic calculations. Mean
£eld inference even re¤ects this way of arguing.
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