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2 IMPROVING GAUSSIAN MIXTURE DENSITY ESTIMATES

Abstract

We apply the idea of averaging ensembles of estimators to probability density estimation.
In particular we use Gaussian mixture models which are important components in many neural
network applications. One variant of averaging is Breiman’s “bagging”, which recently produced
impressive results in classification tasks. We investigate the performance of averaging using
three data sets. For comparison, we employ two traditional regularization approaches, i.e. a
maximum penalized likelihood approach and a Bayesian approach. In the maximum penalized
likelihood approach we use penalty functions derived from conjugate Bayesian priors such that
an EM algorithm can be used for training. In all experiments, the maximum penalized likelihood
approach and averaging improved performance considerably if compared to a maximum likelihood
approach. In two of the experiments, the maximum penalized likelihood approach outperformed
averaging. In one experiment averaging was clearly superior. Our conclusion is that maximum
penalized likelihood gives good results if the penalty term in the cost function is appropriate
for the particular problem. If this is not the case, averaging is superior since it shows greater
robustness by not relying on any particular prior assumption. The Bayesian approach worked
very well on a low-dimensional toy problem but failed to give good performance in higher-

dimensional problems.
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I. INTRODUCTION

Gaussian mixtures model probability densities by weighted sums of normal distribu-
tions. Gaussian mixture models have found a number of important applications in neural
computation. They are used to train radial basis function classifiers [1] and they are em-
ployed both in learning from patterns with missing features [2], [3] and active learning [4].
Their appeal is based to a high degree on the applicability of the EM (Expectation Maxi-
mization) learning algorithm, which can be implemented as a fast neural network learning
rule [1], [5]. Severe problems arise, however, due to singularities and local maxima in the
log-likelihood function. Particularly in high-dimensional spaces these problems frequently
cause the computed density estimates to possess only relatively limited generalization
capabilities in terms of predicting the densities at new data points.

As a solution to this problem we investigate the benefits of averaging an ensemble of esti-
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ORMONEIT AND TRESP 3

mators to Gaussian mixture models. The idea of averaging has newly been introduced into
the neural network community and was very successful when applied to neural networks
trained as classifiers and regressors. The individual neural networks in the ensemble were
either trained on identical data (simple averaging) and varied only since they converged
into different local minima (an idea introduced by Perrone and Cooper [6]) or were trained
on bootstrap samples of the training data set, a procedure which was coined “bagging”
predictors by Breiman [7]. Alternatively, the individual networks can be trained on dif-
ferent subsets of the training data (subset averaging). In this paper we apply the three
averaging approaches to Gaussian mixture models and demonstrate that averaging can

lead to improved models.

Averaging can be considered as a form of regularization since the effect of “overtrain-
ing” is reduced by averaging the predictions of models which converged into different local
minima. To evaluate the averaging approach we review two more traditional approaches
to regularization, i.e. a maximum penalized likelihood approach and a Bayesian approach.
In the former regularization is achieved by adding a penalty term to the log-likelihood
cost function. The penalty function we use is derived based on a conjugate Bayesian prior
such that we can apply the EM algorithm to find the optimal parameter estimates. In the
Bayesian approach we approximate the predictive distribution by averaging the forecasts
of a sequence of parameter vectors which are selected according to the posterior proba-
bility density of the parameter vectors. Interestingly, the Bayesian approach is related
to both regularization (via the prior) and averaging (by averaging models with different

parameters).

On a historical note, the application of Gaussian mixture models for statistical inference
can be traced back to Pearson [8], who investigated the case of a Gaussian mixture with
two components. Ever since, considerable interest has been focused on various methods to
estimate the mixture parameters. While Pearson originally followed a method of moments
approach, maximum likelihood has later become the method of choice. The theoretical
framework of the EM algorithm was first introduced in a paper by Dempster, Laird, and
Rubin [9], even though the resulting update formulas for the Gaussian mixture parameters

had been used previously (e.g. Hasselblad [10], Day [11], Wolfe [12], Duda and Hart [13]).
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4 IMPROVING GAUSSTIAN MIXTURE DENSITY ESTIMATES

A thorough treatment of this topic can be found in [14].

A detailed illustration of the Bayesian perspective on density estimation using Gaussian
mixtures was recently provided by Roeder and Wasserman [15]. The sampling approach
to Bayesian inference in the context of Gaussian mixture models —in the form used in
this paper— was first described by Diebolt [16]. An interesting extension of Bayesian
sampling to cases where the number of Gaussian components is unknown has recently
been suggested by Richardson and Green [17]. Green [18] was also one of the first authors
who used the EM algorithm for maximum penalized likelihood estimation. The first
application of Gaussian mixture models to neural networks is attributed to Nowlan [1]

who used them for the training of radial basis function networks.

The averaging approach was introduced to the neural network community by Perrone
and Cooper [6] although related approaches had been used by other authors (Wolpert [19],
Drucker, Schapire and Simard [20]). Breiman suggested training the individual predictors
on resamples of the original data set, which led to the “bagging” algorithm [7]. Even
more recent developments include “arcing” [21], [22], where the resampling probabilities
are adapted dynamically to further improve the predictive performance of the averaged

forecast.

The paper is organized as follows. In the following section we introduce the Gaussian
mixture model and the EM algorithm. In section III we discuss the different averaging
approaches and in section IV we introduce the maximum penalized likelihood approach
including the associated EM learning rules. The Bayesian approach is presented in sec-
tion V. In section VI we describe experimental results comparing the three approaches

and in section VII we present conclusions.

II. GAUSSIAN MIXTURES AND THE EM ALGORITHM

Consider the problem of estimating the probability density of a continuous random
vector € R? based on a set z* = {z*|1 < k < m} of i.i.d. realizations of z. As a density
model we choose the class of Gaussian mixtures p(z|0) = ¥, £;N(x|pi, Xi), where the

restrictions k; > 0 and 31, k; = 1 apply. © denotes the parameter vector (&;, p;, 2i)7 ;.

DRAFT December 18, 1997



ORMONEIT AND TRESP 5

The N(x|u;, ¥;) are multivariate normal densities:

N (i, ) = (27) 735 2 exp [—1/2(1’ — i)' B (@ — /M)] :

k3

The Gaussian mixture model is well suited to approximate a wide class of continuous
probability densities. Based on the model and given the data z*, we may formulate the

log-likelihood as

1(0) =log [T}, p(z*10)] =37 log 3" kN (a¥|ps, ).

Maximum likelihood parameter estimates 6 may efficiently be computed with the EM
(Expectation Maximization) algorithm [9]. It consists of the iterative application of the
following two steps:

1. In the E-step, based on the current parameter estimates, the posterior probability

k

that unit ¢ is responsible for the generation of pattern z" is estimated as

hk _ KiN($k|Mi7 Zl)
C i kN (2R, B5)

(1)

2. In the M-step, we obtain new parameter estimates (denoted by the prime):

1 m
K = EZ,CZI hf (2)
7 hEgk
o i 3
#2 'ln;l hi ( )
m hE(x® — o kot
Ez/ o Zk_l z(x mlu;L)l(x ;uz) ] (4)
=1 "%

Note that &% is a scalar, whereas p! denotes a d-dimensional vector and ;" is a d x d
maftrix.

It is well known that training neural networks as predictors by maximizing the likelihood
can lead to overfitting. The problem of overfitting is typically even more severe in density
estimation due to singularities in the log-likelihood function: Obviously, the model likeli-
hood becomes infinite in a trivial way if we concentrate all the probability mass on one or
several samples of the training set. This is the case if the center of a Gaussian coincides
with one of the data points and ¥; approaches the null-matrix. Figure 1 compares the true

and the estimated probability density using a toy problem. As can be seen, the contraction
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6 IMPROVING GAUSSTIAN MIXTURE DENSITY ESTIMATES

of the Gaussians results in (possibly infinitely) high peaks in the Gaussian mixture density
estimate. The problem of overfitting is even more severe in high-dimensional spaces. In
the following sections we will compare three methods which can be used to improve the

density estimates.

ITI. AVERAGING GAUSSIAN MIXTURES

In this section we discuss the application of averaging to Gaussian mixture models
with the goal of achieving improved probability density estimates. As mentioned in the
introduction the averaging over neural network ensembles has been applied previously to
regression and classification tasks [6].

Applied to Gaussian mixture models the approach is to predict the density of an un-
known data point z by forming the averaged density estimate P = %Ef\; P;, where
each P, = p(z]0;) is the prediction of a Gaussian mixture density. Without going too
much into the theoretical motivation of averaging (see, e.g. [6], [23], [24], [7], [25]) the

advantage of averaging can be understood by noting that since V(P) = 1 2., V(FP) +
& Yoy 11 Cov(P,, Py), the variance of the averaged density estimate V(P) is smaller
than the average variance of an individual estimator V(F;) unless the predictors are per-
fectly correlated. Perrone ([26], pg. 22) generalized this result and showed, by using the
Cauchy inequality, that even for averaged biased predictors the mean squared error of the
average is always less or equal to the mean squared error of the population average.

In this paper we use three different averaging approaches. In simple averaging, several
different Gaussian mixture models are trained on the complete training data set using EM.
The Gaussian mixture models differ since the optimization procedure typically terminates
in different local minima if different starting points are used. In the other two approaches
the variability is further increased by training each model on a resampled version of the
original data set. If we resample the data without replacement, the size of each training
set is reduced, in our experiments to 70% of the original (subset averaging). Finally, we
resampling with replacement, which has recently been proposed under the name “bagging”
by Breiman [7], who has achieved dramatically improved results in several classification

tasks. Note that some samples will be present more than once in the resampled data

set, while others will be left out completely in “bagging”. Breiman also noted that a

DRAFT December 18, 1997



ORMONEIT AND TRESP 7

considerable improvement of the prediction can only result if the estimation procedure is
relatively unstable in that small changes in the training set could cause large changes in
the resulting predictors. As discussed, this is particularly the case for Gaussian mixture

training. We therefore expect “bagging” to be well suited for our task.

IV. THE MAXIMUM PENALIZED LIKELIHOOD APPROACH

In this section we consider maximum penalized likelihood estimation. Here, a penalty
term is added to the log-likelihood function as a regularizer. The maximum penalized
likelihood approach is equivalent to the maximum a posterior (MAP) parameter estimate
in a Bayesian approach if we interpret the penalty as the logarithm of the prior distribution.

In particular if we chose the logarithm of a conjugate prior as the penalty function we can
derive EM update rules to obtain the optimal parameter estimates.! A conjugate prior of
a single multivariate normal density is a product of a normal density N (u;|v;, n7'Y;) and a
Wishart density Wi(X7" |y, 3;) [28]. A proper conjugate prior for the mixture weightings
k = (K1,...,K,) is a Dirichlet density D(k|y). These densities are defined in appendix I.

Consequently, the prior of the Gaussian mixture is the product

D(sl) T, N (il 0 S)Wi(S7 s, By).
The MAP parameter estimate maximizes the log-posterior
B(O) = 3 log 3 kiplatli, pi, B0) + log D(x])
+> 0 [log N( Mz|l/u772 '50) + log Wi(57 e, 5:)].

As in the unregularized case, we may use the EM-algorithm to find a local maximum

of [,(©) (for a derivation, see appendix I.). The E-step is identical to (1). The M-step

becomes

mo Rk —1
R )

i=1 Vi n
_ Py hfl‘k + nv; (6)

i 1= hi + 1
s Ximg bt — ) (= )"+ (g — v (i = vi)' + 25, -
=11 Q;

YA family F of probability distributions on © is said to be conjugate if, for every p € F, the posterior p(0|z*)
also belongs to F (see [27]).
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8 IMPROVING GAUSSTIAN MIXTURE DENSITY ESTIMATES

We found that the described EM procedure leads to convergence after few hundred
iterations in our experiments. Consequently, we chose to restrict the training time to
500 update steps. To determine appropriate values for the hyper-parameters oy, 5;, Vi,
n;, and v; we formulate our beliefs about the data generation process in terms of a prior
distribution. For conjugate priors, the hyper-parameters may be interpreted as sufficient
statistics of an additional set of artificial data points. In the following experiments we
define three “equivalent sample sizes” w,, w, and ws, denoting the size of the artificial
data set associated with each parameter.?

Consider the case where an additional data set y* of size m’ is generated by a Gaussian
mixture of n components. Let y* denote the subset of y* generated by Gaussian ¢. In the
absence of additional information,® © is after the observation of y* distributed according

to

k3 k3

v i +d m; g
kK~ Dmy+1,..,m, + 1), g~ N(yf,m's,), E.—lNWZ(um >’

2 72
where m; = [z, 7F = ¥

vey; T i = ErEyf‘(‘r —vi)(z — )", and S; = m%SZ Comparing

this distribution to the definition of the conjugate prior (9) to (11) in appendix I we see

that we can make the following identifications:

wg—l-d
2

wy, ~

, Bi= 252', Vi =we + 1, ni=w,, Vi:ﬁ, fore=1,...,n.

o; =

This definition implies that each Gaussian generated an equal number of samples in the
artificial data set, representing our prior belief that each Gaussian is equally likely to have
generated a new data point. What remains to be done is to choose concrete values for the
statistics y7 and S;. For our experiments, we chose y¥ = 0 and S; = I¥*¢. This encodes
our prior believe that centers are zero and that the covariance matrix is the unit matrix.
The degree of regularization is now determined by simply varying the equivalent sample
sizes wy, w, and wy. In our experiments we will set w, = w, = 0 and only vary wy, i.e.

we only put a prior weight on X.

2The term “equivalent sample size” is taken from Heckerman and Geiger [29], who apply a similar approach to

learning in Bayesian networks.

®i.e. assuming an (improper) non-informative uniform (hyper-) prior distribution. We employ the uniform prior

in place of the more commonly used Jeffereys prior in order to obtain the EM update rules for maximum likelihood
estimation (2) to (4) as the special case of the maximum penalized likelihood update rules (5) to (7) in which w,

w, and wy, are equal to zero.
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ORMONEIT AND TRESP 9

Figure 2 shows the predictive density for two values of wy. If wy is chosen rather small
(figure 2, left), overfitting still occurs. As wy increases the density estimate becomes
smoother and the covariance matrices of the Gaussians approach the prespecified matrix
S; (figure 2, right). Typically, the optimal value for wy is not known a priori. In the
following experiments we report results for various values of wy. If a validation set is
available, one may choose that value which leads to the best performance, analogous to
the determination of the optimal weight decay parameter in neural network training. As

is apparent from the update equations (5) to (7), only a few additional computations are

required for optimizing the maximum penalized likelihood as compared to standard EM.

V. A BAYESIAN APPROACH

In contrast to the maximum penalized likelihood approach, in a Bayesian approach we

derive the predictive distribution

plele?) = [ plal®)p(O]z")d6.

By using a conjugate prior p(©) we can obtain an analytically closed formulation of p(z|z*).

m+1 terms and therefore is typically approximated. We

Unfortunately, p(z|z*) is a sum of n
use a stochastic approximation to p(z|z*) by employing the “data augmentation” method
[16]. Data augmentation is an instantiation of Gibbs sampling, where one exploits the
hierarchical structure of mixture models to generate a Markov chain (0); with stationary
distribution p(©|z*). More specifically, one generates samples from the posterior of the
parameters by the iterative application of the following two steps:
1. Generate a set of indicator variables z* ~ p(z*|z*, ©),
where z* = {2*|1 <k < m} and zF € {z € {0,1}"| ", z; = 1}. 2* is interpreted
as an indicator variable with zf = 1 exactly if z* was generated by Gaussian i and
zF = 0 otherwise. To generate z* we first compute k¥ according to (1), using the most
recent sample of parameter values. Then, we generate z* according to a multinomial
distribution with P(zf = 1) = A},
2. Generate O’ ~ p(O|z*, z*):
z*, as generated in step 1, defines a unique partitioning p = (p1, ..., p,) with partitions

pi = {k € {l,....,m}|zf =1} of the data set z*. Using this notation, p(©]z*, 2*) may
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10 IMPROVING GAUSSTIAN MIXTURE DENSITY ESTIMATES

be written as
p(®lz*,2%) = D(kly") [T, N(uilvf,nf™ S)Wi(S7 af, 7). (8)

af 87, nl vl as well as a derivation of p(0|z*, 2*) are found in appendix II. Using the
conditional independencies which are implied by (8), the new parameter values may

be generated according to

k'~ D(»"), E;I/NW@'(O/), Br), ,u;-NN(l/;,nf_lﬂg) fori=1,...,n.

7

Note the strong similarity between these steps and the E- and the M-step of the EM al-
gorithm. As shown in [16], the Markov chain (0); resulting from this procedure is ergodic
and the distribution of ©; converges uniformly geometrically towards p(©|z*). The values
of the hyper-parameters may be chosen in the same way as it was proposed in section IV.
Note that when starting from arbitrary initial values, one might have to let the algorithm
run for some time before it approaches its stationary distribution. In our experiments, we
ignored the first 50 samples and used the subsequent 500 samples to approximate the pre-
dictive distribution. The latter number was chosen rather high because a random process
generated by Gibbs sampling typically produces serially dependent samples. This means
that the generated sequence initially only covers a small portion of the parameter space.
Since (0©); is ergodic, the series will eventually switch from one mode of the posterior
to the next, but it might take a long time until all modes have been discovered. In our
experiments we could not observe improvements after a few hundred iterations, such that

the mentioned 500 samples should suffice to approximate p(x|zT).

VI. EXPERIMENTS AND RESULTS

To assess the practical advantage resulting from averaging and regularization, we used
the density estimates to construct classifiers and compared the resulting prediction ac-
curacies using two toy problems and one real-world problem. The reason is that the
generalization error of density estimates in terms of the likelihood based on the test data
is rather unintuitive, whereas performance on a classification problem provides a good

impression of the degree of improvement. Gaussian mixtures have previously been applied
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ORMONEIT AND TRESP 11

for discriminant analysis by Hastie and Tibshirani [30] as well as Kambhatla and Leen
[31].

Assume we have a set of m labeled data z* = {(z*,1*)|k = 1,....m}, where [* € T =
{1,...,C} denotes the class label of each input z*. A classifier of new inputs z is yielded
by choosing the class [ with the maximum posterior class-probability p({|z). The posterior
probabilities may be derived from the class-conditional data likelihood p(z|l) via Bayes
theorem: p(l|z) = p(z|l)p(1)/p(x) o p(z|l)p(l). The resulting partitions of the input space
are optimal for the true p({|x). A viable way to approximate the posterior p({|z) is to
estimate p(z|l) and p(l) from the sample data. In the following problems we have C' = 2,
so that we have to train two density estimators to approximate p(z|1) and p(z|2). The

percentage of samples in z* belonging to class [ may be used as an estimate of p({).

A. Toy Problem I

In the first toy problem, the task is to classify the two sets of circularly arranged data
shown in figure 3. As is apparent from the figure, the two distributions are distinguished
by having different centers. The precise algorithm to generate these data sets is described
in appendix III. We generated 200 data points per class and subdivided them into two sets
of 100 data points. The first was used for training, the second to test the generalization
performance. Prior to the training, the centers of the Gaussians were initialized randomly.
The mixture weightings and the covariance matrices were set to fixed values to reduce
the tendency of the learning algorithms to converge to “extreme” solutions. As a network
architecture we chose a Gaussian mixture with 20 units. We found that the number of
mixture components is not critical in our application. A thorough discussion of model
selection techniques which may be applied in this context is given by Cheeseman et al.
[32].

Table 1T summarizes the results. Row 1 shows the results of the maximum likelihood
approach, and rows 2-4 show the performance of the averaging approaches. Each of the
averaging forecasts is the average of a population of 50 individually trained networks. We
chose to do 50 replications because this is the value which Breiman used successfully in
his “bagging” experiments. Row 2 shows the results without resampling (“simple averag-

ing”). The following rows show the results of resampling by drawing 70% subsamples from
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12 IMPROVING GAUSSTIAN MIXTURE DENSITY ESTIMATES

the original data set without replacement (“subset averaging”) and resampling with re-
placement (“bagging”). For the maximum penalized likelihood approach (rows 5-13) and
the Bayesian approach (rows 14-21), we report results for various choices of the hyper-
parameter wy. The performances on the training set and the test set are measured in
terms of the model log-likelihood such that larger values indicate a better performance.
We report separate log-likelihoods for the Gaussian mixture models for class A and B,
as well as the classification accuracy on the test set. The indicated numbers are average
results from 20 simulations, for each of which we generated new training and test data sets.
The numbers in brackets denote the standard deviations o of the results. Assuming that
the 20 results for each experiment are selected from a normal population, their mean times
o /+/20 is distributed according to a ¢ distribution with 19 degrees of freedom. Multiplying
o with t(1_95%)/2/\/% = 0.4680 thus yields 95% confidence intervals. The best result in

each category is underlined.

The results in table I demonstrate the considerable improvement which can be achieved
with averaging, the maximum penalized likelihood approach, and the Bayesian approach.
The best averaging approach is “bagging”, which improved the classification performance
on the generalization data set by 2.17 percentage points in comparison to the maximum
likelihood approach. In comparison, the improvement achieved by averaging density esti-
mators trained on identical data (“simple averaging”) is only 1.4 percentage points. This
indicates that the different density estimators tend to be correlated if trained on identical
data. The resampling approach without replacement (“subset averaging”) shows an im-
provement of 1.7 percentage points in the classification. This indicates that an important
element in making averaging work is the variation of the data that each density estimator
is trained on. For maximum penalized likelihood and the Bayesian approach, the perfor-
mance depends entirely on the appropriate choice of the regularization parameter wy. For
the optimal value of wy, (between 0.1 and 0.2), both outperform averaging, with respective
improvements of 3.25 and 3.67 percentage points over maximum likelihood. This is in
accordance with the work of Taniguchi and Tresp [24], who showed, for an ensemble of
neural networks, that averaging improves the performance of unregularized neural net-

works but averaged unregularized neural networks cannot achieve quite the performance
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of optimally regularized neural networks.

B. Toy Problem II

In our second toy experiment, we used a data generation mechanism similar to that used
in the previous section to generate two classes of ten-dimensional observations. The 400
samples that were generated for each of the two classes A and B are distributed in the
form of two ten-dimensional hyper-spheres with different centers. A precise description of
the data-generating mechanism is provided in appendix III. Half of the data in each class
were used to train a Gaussian mixture consisting of 20 units; the rest served as a test set.

The training of the individual estimators was done as described in the previous section.

The results are reported in table II. Also in the high-dimensional environment averag-
ing and maximum penalized likelihood lead to significant improvements if compared to
maximum likelihood estimation. The best averaging approach is again bagging with an
improvement of 4.06 percentage points. Note that this time the difference between bagging
and averaging without resampling is smaller than in the previous experiment. Maximum
penalized likelihood decisively outperforms averaging, with an improvement of 9.11 per-
centage points relative to maximum likelihood estimation. It is interesting to observe that
the Bayesian approach produced even worse results than maximum likelihood this time.
One possible reason for the poor performance of the Bayesian approach lies in numerical
difficulties that are involved in the data augmentation approach. Naturally, there arise
situations where in step 1 of the sampling algorithm of section V individual Gaussians
are not assigned any samples in z*. Sampling from the posterior of such a Gaussian thus
reduces to sampling from its prior, which (for the choice w, = 0) is improper at least with
regard to the centers y;. Such situations lead to numerical difficulties and a distortion
of the stationary distribution. A discussion of non-informative prior distributions which
can be applied to avoid this problem can be found in [15]. Our experiments indicate that
the problem is more urgent in high-dimensional environments, where the Gaussians are

distributed more sparsely among the data points.
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14 IMPROVING GAUSSTIAN MIXTURE DENSITY ESTIMATES

C. BUPA Liver Disorder Dala

As a third task, we applied our methods to a real-world problem from medicine. The
objective is to detect liver disorders which might arise from excessive alcohol consumption.
Available information consists of five blood tests and a measure of the patients’ daily
alcohol consumption. We subdivided the 345 available samples into a training set of 200
samples and a test set of 145 samples. The results of our experiments, using a Gaussian
mixture of 12 units, are shown in table III. The setup is the same as in the previous
sections. A resample is created by randomly splitting the original data set (of one class)
into disjoint training and test sets. The results of the density estimation for each class (A:

no disorder, B: disorder) are reported separately.

All averaging approaches show dramatic improvements on this data set, both with re-
spect to the maximum likelihood approach and with respect to the maximum penalized
likelihood approach. The maximum penalized likelihood approach with the optimal choice
wy = 0.05 shows a moderate improvement of 3.13 percentage points in the classification
accuracy with respect to the maximum likelihood estimate. All averaging approaches show
an improvement of about 10 percentage points in comparison to the maximum likelihood
approach. The most remarkable result, however, is that bagging outperforms all other
methods consistently under all performance measures. In particular, the bagging results
are better than the results for simple averaging, which indicates that the increased diver-
sity of the individual forecasts due to the resampling is also beneficial for the estimation
in this case. The relatively poor performance of the Bayesian approach supports our hy-
pothesis that the numerical limitations of data augmentation are particularly troublesome

in high-dimensional environments.

This is an example where averaging clearly outperforms the maximum penalized likeli-
hood approach. We suspect that this is a consequence of the prior assumption which is
implicit in the penalty term, i.e. that the covariance matrix of each Gaussian equals the
unity matrix. This assumption might not be appropriate here, which would also be another
reason for the poor performance of the Bayesian approach. Of course, the “true” prior is
unknown in this real-world example. Averaging is independent of any prior assumption

and is therefore more robust, a clear advantage of this method.
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VII. CONCLUSION

In this paper we applied the idea of averaging to Gaussian mixture models. In addition,
we reviewed two alternative approaches to regularization: a maximum penalized likelihood
approach and a Bayesian approach. Averaging and the maximum penalized likelihood
approach always performed better than the maximum likelihood approach. The Bayesian
approach gave good performance on a low-dimensional toy data set but failed on the
two higher-dimensional problems with ten respectively six dimensions. We explain the
poor performance here with instabilities in the sampling approach in high dimensions
(note that, to our knowledge, these are the first experimental results with the Bayesian
sampling approach where the dimension of the input space is larger than two; in [16],
only experiments with very simple one-dimensional problems are reported). In the two
toy data sets the optimally regularized Gaussian mixture model performs better than
the averaged Gaussian mixture models. This is in accordance with the results reported
by Taniguchi and Tresp with respect to averaging neural networks. They showed that
averaging unregularized estimators leads to a great improvement in performance with
respect to the unregularized estimators. On the other hand the averaged unregularized

estimator is typically worse than an optimally regularized estimator.

The BUPA data seem to be an exception to the rule: here averaging clearly outperforms
the maximum penalized likelihood approach. Our explanation is that the prior assump-
tion which is represented by the penalty term might be inappropriate here. Although
the maximum penalized likelihood approach still outperforms the maximum likelihood
approach it is inferior to averaging. Since averaging makes fewer assumptions than the
maximum penalized likelihood approach it appears to be more robust. If one compares
the different averaging approaches we conclude that either all three (simple averaging,
subset averaging, bagging) perform approximately equally well (as in the ten-dimensional
toy problem) or bagging is significantly better (as in the two-dimensional toy-problem and
the BUPA data set). This is in accordance with the results of Taniguchi and Tresp for
neural networks [25]. It appears that in the ten-dimensional toy problem the variation
achieved by the local minima in the error surface is sufficient and subsampling does not

add significantly to the variation. Finally, we remark that averaging is computationally
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16 IMPROVING GAUSSTIAN MIXTURE DENSITY ESTIMATES

expensive: we need to train N (in our examples 50) neural networks instead of only one.
The maximum penalized likelihood and the Bayesian approaches are inexpensive in com-
parison to averaging but require a search for the optimal regularization parameters. Also
this requires the training of a considerable number of networks, in particular if more than

one hyper-parameter is unknown.
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APPENDIX
I. A VARIANT OF THE EM ALGORITHM TO COMPUTE MAP ESTIMATES

In the maximum penalized likelihood approach, we find the parameters which maximize
[(0,2*) =log p(0,z*) = log p(x*|0) + log p(O) with respect to O, where the first term is
the log-likelihood and the second term is the logarithm of the prior parameter distribution.
As mentioned in section IV, we choose the prior from the conjugate prior distribution
family of the likelihood to yield a tractable posterior distribution. The prior distribution
is a product of a Dirichlet-, a Normal- and a Wishart-distribution:

p(©) = D(x|y) Hp (pi, 24), with p(pi, Bi) = N(pslvini ) Wi(E7 e, B2),
where D(k |’y) = b(y) szl k)TN with k; > 0 and Y k=1 (9)

=1
- 4, _ - i -
Nulveon 'S0 = @) dn S e [ G =0 S (= )] (10)

Wi(ST i, B) = ela, B[S 2 exp [—ir(BET)] (11)

where a > (d—1)/2. b(~y) and ¢(ay, 3;) are normalizing factors. {r(.) is the trace operator.
In the E-step of the EM algorithm, we determine the expected complete-data posterior
(the unprimed parameters are the current estimates, the primed parameters are the new

estimates):

Q(010) = >3 hf [log s} + log N(a*|uf, ¥1)] + log D(x'|y)

k=11i=1
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n

+ > [log N(pl|vi, 'S + log Wi(E7" |as, 8:)].

i=1
h¥ is the posterior probability that z* was generated by Gaussian 7 and is computed
according to (1).

In the M-step, we maximize Q(0'|0) with respect to ©'. This task may be decomposed
into the following two optimization problems:

/4;’ = argmaxZthlog/ﬁ—I—logD(lih/) (12)

k=1 1=1

(ui,X7) = argmax ) hflog N(*|p:, Ti)
Hosde p—14=1

Mg N (pilo, 17 S5) + log Wi(S: s, ). (13)

=1
Both are solved analytically by setting the derivatives with respect to the parameters to
zero. In equation (12), we have to consider the constraint that Y-, x; = 1, which is done
using Lagrange multipliers. This yields the Lagrange function
L(&',X) = > hflog k! + log D(&'|y) — A [Z Kl — 1] .
=1 =1

We thus have to solve

d $ -1 -1

—L=> hix i— DT =X =0
%logD(ﬁ’h)
a n

—L=- P — = 0.
== [Z
Substituting and resolving for &/ yields (5).

To solve (13), we first have to compute the derivatives of the involved terms with respect
to the elements of ! and ¥, We will denote the corresponding gradients as V. and

\% Setting these to zero yields

—17.
Pyt
2

STRESI @t — ) ST () = 0

k=1

-1
Vi Yog N (uilvim; £7)

S RE[S = (o — o) — )]+

k=1

DO | =
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18 IMPROVING GAUSSTIAN MIXTURE DENSITY ESTIMATES

L[S = i — ) — )] i — (A4 1)/ — 5, = 0.

2
|auﬁz)

v log Wi(%!

— -1
V-1 log N(u!lvin ' £1) =]
2

To determine the gradients of log N (|, ;7' %1) and log Wi(X:™"|ay, 8;), one has to com-
pute the derivatives of several matrix operators, one of which is the logarithm of a deter-

minant. It is helpful to know that

(aa log |A|) =A™ for symmetric matrices A € R¥*<.
2%}

1<i<d,1<j<d

After some algebra, one gets the update equations (6) and (7) in section IV.

II. THE POSTERIOR PROBABILITY DISTRIBUTION

In this section we present a formal derivation of the posterior distribution p(©|z*) used
in section V. The likelihood p(z*|®) may be written as

p(a*10) = TIp(*10) = IT 3w N (e* |, 52)

k=1 1:=1

k=
= [H:;l /il'piq cp(af X)) - p(2P g, B (14)

pEP
p* denotes the set of all possible partitionings p = (p1,...,p,) of theset {1,...,m} inton
disjunct subsets p1,...,p, with U™, p; = {1,...,m}. Furthermore, let z* = {z* € z*|k €

pi}. p(xP|pi, X;) is the likelihood of p;, ¥, given 2 and under the assumption that all the
data-points in 27" were actually generated by Gaussian .
If the prior distribution is given, we determine the posterior distribution via Bayes

theorem:

O)p
(Ijﬁ 2 D(xly’) - pla; Zalz®) - oo plptn, Eula?”).

pEP*

p(Ofz7) =

To see this, we use the fact that p(z*) = p(z”) - ... - p(x”*) for any p. ~* is defined as
v* = (14 |p1ly -y + |pn]). The overall posterior is thus a sum of products of posteriors
for the individual Gaussians p(yu;, ¥;|z?*). To derive a closed formulation of the latter, we

first write down the likelihood for the individual Gaussians:

L 2) = (27)7

o i 1
pla’ % exp | 2w,y @ ) - Sr(si)

2
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where T; = ﬁ Y ke zF and S, = ZkEpi(xk — 7)) (2" =) = Y ke 2k k! — | pilz 7t
In the next step, we multiply with the prior p(u, %:) = N(pi|vi, n7 S Wi(X; 1|ai,ﬁi)
to get the joint density p(z?, pi, ¥;):

(psl+1)-d 1 lpil+1

o - Ueiltl)d 2 — |P2| _ n; _
ple™, pi, %) = (2m) ER/ ) ] exp[ 7( T — i)' S (T /lz)—j( vi — i)' ST (v — )

oo, 1) |27 P[ tr((B: + 5557 1)]

-1
= Cl(aiaﬁianiapi)'N(:ui|yip’nzp ZZ)I/VZ(EZ_”CY;),[))ZP),

where
af = a'+|pi|
7 ? 2
1 771|P2| - =\t
Bl = ﬂz+—z+— (vi —Z)(vi — T5)
2ni + |pil ) ‘
nf = ni+|pil
1
vi = ————(mvi+ |pi[T).
77i+|Pi|( )

(e, Biymiy pi) is some term independent of y; and ¥; which summarizes suitable nor-
malizing factors. From the density property of N(u;|v/, nf_lzi)Wi(E;waf, A7), it follows
that p(z”) = (e, Bi, ni, pi), such that

s, Sile”) = N(ui|ve,nf” SOWi(S7af, 57)
and

p(0lz*) = 3 D(x|4") H N(uilvfnt” SOWi(STaf, 80).

pEP*

For a given z*, and thus for a given p, we obtain formula (8) in section V.

III. THE TOY DATA GENERATION

In this section we describe the algorithm that was used to generate the two artificial data
sets in sections VI-A and VI-B. To obtain samples with the circular structure illustrated
in figure 3, we first generate samples z*" on the unit circle. The computationally simplest
way to do this is by generating samples z*" according to a multivariate normal distribution

and subsequently projecting them onto the unit circle:

Pyl

x ~ N(z[0,1%),

;Ek// _ wk////ka///

[l2-
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20 IMPROVING GAUSSTIAN MIXTURE DENSITY ESTIMATES

Each data point is then multiplied with another normally distributed random number to

obtain the dispersion of the data around the unit circle:

et~ N(z|0,0?),

F = (1—|—€k);z;k”.

Finally, we add a (class-dependent) translation constant to the first component of the

random vector:

;L"fl + offset if1=1

—
Z z otherwise.
The values of the parameters involved are:
« Toy problem I: 0 = 0.2, offset = £0.5.
o Toy problem II: ¢ = 0.2, offset = +0.3.
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Fig. 1. The true probability density (left) and the unregularized density estimate (right). We used a Gaus-
stan muzture with 40 units and determined marimum likelthood parameters with the EM algorithm.

The training set consisted of 100 observations.

Fig. 2. Regularized density estimates based on a Gaussian mirture with 40 units (left: wy, = 0.05, right:

wys, = 0.1). The training set consisted of 100 observations.

] O Class A
AClass B

Fig. 3. Distribution of features in the toy classification task (representative sample, 200 observations per

class).
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Algorithm Log-Likelihood

Training Test Accuracy

A B A B
Maz. Likelihood -42.0 ( 48.5) -12.2 (64.0)  -255.8 (44.7) -245.1(21.6) | 79.03% ( 2.6)
Averaging
Simple Averaging 4204 (168.4)  771.1(221.1) -203.9(135) -2056(13.9) | 8043 % (2)
Subset Averaging 667.5 (268.0) 994.0 (217.6) -192.8(9.7) -193.4(10.4) | 80.73 % ( 1.8)
Bagging 1697.5 (1332.1) 1894.3 (153.7) -194.6(9.0) -197.9(10.8) | 81.2% (1.4)
Penalized Likelihood
wy, = 0.02 -138.3 (110.3) -1382(9.1) -1864(11.4) -187.0(11.3) | 82.28% (1.4)
wy, = 0.05 -144.4 (19.1) -145.1 (19.3) 1776 (76)  -177.3(7.9) | 81.88% (1.7)
wy = 0.1 -151.0 ( 9.7) -152.6 ( 8.7) -173.6 (6.9) -172.1(6.5) | 82.28% (1.9)
wy = 0.2 -157.4 (7.1) -158.9 (6.2) 1717 (45)  -171.3(4.2) | 822% (2.2)
wy =05 -169.9 (11.4) -175.5 (10.1)  -181.3 (14.1) -184.0(15.9) | 793 % (4.3)
wy = 1.0 -185.9 ( 6.9) -189.0 (5.4)  -196.0 (12.1) -198.0 (11.1) | 73.15 % ( 5.8)
wy = 2.0 -197.9 (5.6 ) -196.9 (4.2) -207.4 (7.2) -206.0(83) | 68.2% (4.6)
wy = 5.0 -208.4 (6.1) -207.2 (4.1) -216.0 (2.9) -2149(25) | 643% (1.7)
wy, = 10.0 -218.0 (1.5) 2178 (1.3) -220.0 (2.6) -219.7(24) | 63.28% (1.5)
Bayesian
wy, = 0.02 -171.8 (22.0) -181.5 (21.5) -241.3 (24.5) -243.6 (25.5) 75.95 % (3)
wy, = 0.05 -155.4 (14.3) -166.3 (19.8) -204.2 (8.5) -208.0 (12.9) 80.83 % (2.1)
wy = 0.1 -179.8 (16.8) -179.6 (13.8) -203.7 (8.8) -200.9 (5.5) 82.7% (1.3)
wy = 0.5 -234.5 (9.9) -242.2 (10.7) -240.8 (8.4) -247.4 (10.5) 775 % (2.9)
wy = 1.0 -268.8 (15.2) -264.5 (15.7) -272.7 (14.9) -268.3 (15.1) 70.75 % (3.7)
wy = 2.0 -280.3 (13.1) -279.4 (15.2) -282.9 (12.7) -281.8 (15.2) 66.0 % (4.6)
wy = 5.0 -281.1 (10.7) -277.8 (11.5) -282.3 (11.0) -279.2 (11.4) 65.98 % (3.7)
wy, = 10.0 -273.8 (6.4) -273.6 (6.5) -274.8 (6.5) -274.6 (6.6) 64.55 % (2.1)
TABLE 1
PERFORMANCES IN THE TOY CLASSIFICATION PROBLEM 1.
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Algorithm Log-Likelihood
Training Test Accuracy
A B A B
Maz. Likelihood -224.8 (33.9) -214.1 (44.6) -1020.5 (78.2)  -1010.6 (72.5) | 72.59 % (0.2)
Averaging
Simple Averaging -15.7 (36.6) -10.5 (45.9) -772.1 (39.8) -761.2 (49.3) | 76.55 % (0.2)
Subset Averaging -17.8 (40.2) -3.4 (52.9) -771.7 (40.3) -761.3 (48.9) | 76.39 % (0.2)
Bagging -13.8 (37.4) -5.4 (46.8) -768.9 (41.2) -761.6 (47.3) | 76.65 % (0.2)
Penalized Likelihood
wy = 0.01 -230.6 (28.2) -226.2 (38.3) -968.0 (63.6) -964.1 (62.5) | 72.32 % (0.3)
wy = 0.1 -344.6 (26.4) -336.4 (40.2) -760.9 (37.9) -750.7 (37.8) | 75.24 % (0.2)
wy = 0.2 -453.4 (26.0) -447.6 (39.1) -676.4 (33.2) -663.3 (33.8) 77.44 % (0.2)
wy = 0.5 -548.0 (22.1) -546.7 (30.1) -613.4 (32.2) -600.3 (28.1) | 80.18 % (0.2)
wy = 1.0 -571.2 (24.1) -575.0 (30.6) -595.5 (32.0) -578.4 (29.4) | 81.41 % (0.2)
wy = 2.0 -574.1 (23.9) -578.3 (31.1) -596.4 (30.3) -579.8 (28.0) | 81.53 % (0.2)
wy, = 5.0 -588.2 (23.3) -592.2 (30.3) -607.5 (26.7) -593.0 (24.5) | 81.55 % (0.2)
wy, = 10.0 -624.5 (21.8) -628.3 (28.4) -640.4 (22.7) -628.3 (20.7) | 81.56 % (0.2)
wy, = 100.0 -1186.1 (9.4) -1187.8 (12.2) -1191.1 (8.2) -1186.9 (7.5) | 81.70 % (0.2)
Bayesian
wy = 0.01 -1365.3 (205.0) -1448.7 (237.9) -2104.4 (116.8) -2150.9 (142.7) | 59.99 % (0.5)
wy = 0.1 -1342.6 (435.0) -1110.7 (326.7) -1720.2 (297.0) -1567.7 (204.1) | 64.76 % (0.9)
wy = 0.2 -1659.0 (428.1) -1853.8 (491.7) -1831.1 (364.9) -1983.0 (408.8) | 59.16 % (0.9)
wy = 0.5 -2753.1 (691.8) -2773.0 (575.9) -2780.0 (673.3) -2795.5 (551.8) | 55.81 % (0.8)
wy = 1.0 -3470.1 (502.6) -3489.6 (566.4) -3475.1 (504.2) -3497.4 (558.9) | 50.86 % (0.1)
wy = 2.0 -3069.3 (473.7) -2980.6 (495.7) -3078.8 (471.9) -2991.2 (497.6) | 52.22 % (0.5)
wy = 5.0 -2380.4 (307.5) -2482.0 (347.6) -2385.2 (308.5) -2482.6 (348.3) | 54.37 % (0.7)
TABLE 11
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Algorithm Log-Likelihood
Training Test Accuracy
A B A B
Maz. Likelihood -490.4 (185.4) -724.3 (102.8)  -307.3 (75.9)  -468.6 (60.1) | 64.02 % (5.9)
Averaging
Simple Averaging 867.1 (340.9) 54.4 (264.0) -46.1 (66.2)  -228.9 (144.2) | 74.16 % (3.1)
Subset Averaging 1148.5 (252.6)  460.9 (272.1) -61.4 (64.2)  -316.3 (100.7) | 73.13 % (4.3)
Bagging 2166.1 (289.0)  1409.2 (408.3) 54.3 (79.6) -120.1 (132.8) | 77.85 % (3.3)
Penalized Likelihood
wy = 0.05 -502.6 (12.3) -713.2 (29.1) -338.1 (31.4)  -468.8 (43.2) | 67.15 % (3.1)
wy = 0.1 -515.2 (13.7) -722.3 (20.3) -320.4 (23.0)  -469.1 (43.1) | 67.06 % (4.6)
wy = 0.2 -532.0 (13.2) -732.0 (23.9) -315.7 (19.7)  -463.1 (44.6) | 66.12 % (4.1)
wy =05 -563.8 (15.3) -758.5 (21.6) -313.8 (18.6)  -453.8 (36.6) | 62.06 % (4.0)
wy = 1.0 -591.8 (10.4) -789.6 (22.3) -310.7 (14.4)  -450.7 (34.5) | 61.68 % (3.0)
wy = 2.0 -618.6 (10.8) -826.2 (21.2) -309.0 (11.4)  -443.8 (31.2) | 59.95 % (2.4)
wy =5.0 -652.6 (9.1) -868.0 (20.1) -311.5 (10.6)  -448.0 (30.5) | 57.43 % (3.1)
wy = 10.0 -676.4 (9.9) -897.6 (22.9) -318.9 (8.2) -452.2 (29.7) | 57.8 % (2.9)
wy, = 20.0 -692.5 (8.4) -930.5 (22.2) -325.8 (7.1) -458.8 (28.1) | 58.74 % (2.6)
wy, = 50.0 -714.8 (6.3) -963.9 (20.5) -337.5 (6.7) -471.5 (27.2) | 58.08 % (3.1)
Bayesian
wy, = 0.02 -927.6 (125.5) -1312.7 (192.9) -526.1 (51.5)  -705.5 (85.3) | 62.1 % (9.6)
wy, = 0.05 -816.9 (85.5)  -1286.7 (133.2) -474.2 (35.8) -710.8 (77.5) | 59.91 % (8.1)
wy = 0.1 -757.6 (68.2)  -1160.2 (113.5) -442.3 (24.9)  -639.7 (52.3) | 66.78 % (6.9)
wy = 0.2 -813.6 (60.7)  -1141.4 (100.2) -446.1 (29.1) -612.8 (45.8) | 61.31 % (8.1)
wy = 0.5 -894.4 (72.0)  -1190.7 (132.7)  -446.0 (27.8)  -603.2 (53.6) | 59.72 % (5.8)
wy = 1.0 -993.6 (87.2)  -1306.7 (216.1) -472.7 (632.8) -632.8 (49.4) | 57.38 % (7.1)
wy = 2.0 -1012.4 (90.8) -1316.2 (145.1) -472.9 (34.4)  -626.2 (54.5) | 54.72 % (6.2)
wy = 5.0 -944.5 (51.3)  -1322.7 (101.0)  -435.5(22.0) -613.1 (43.9) | 54.49 % (8.2)
wy, = 10.0 -948.5 (70.5)  -1238.7 (82.6)  -432.7 (30.6)  -577.3 (36.0) | 56.03 % (5.6)
wy = 20 -894.6 (31.5)  -1211.9 (67.1)  -407.1 (13.9)  -565.4 (28.0) | 55.28 % (6.8)
wy, = 50.0 -843.9 (17.3)  -1163.3 (40.9) -385.1 (8.3) -543.1 (24.3) | 53.83 % (4.7)
TABLE 111
PERFORMANCES IN THE LIVER DISORDER CLASSIFICATION PROBLEM.
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