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1. Introduction

Relational learning (Dzeroski & Lavrac, 2001; Fried-
man et al., 1999; Raedt & Kersting, 2003) is an area
of growing interest in machine learning. Xu et al.
(2006) introduced the infinite hidden relational model
(IHRM) which views relational learning in context of
the entity-relationship database model with entities,
attributes and relations (compare also (Kemp et al.,
2006)). In the IHRM, for each entity an auxiliary la-
tent variable is introduced. The latent variable is the
only parent of attributes of the entity and is a parent
of attributes of relations the entity participates. The
number of hidden states is entity class specific. There-
fore it is sensible to work with Dirichlet process (DP)
mixture models in which each entity class can optimize
its own representational complexity in a self-organized
way. For our discussion it is sufficient to say that we
integrate a DP mixture model into the IHRM by sim-
ply letting the number of hidden states for each entity
class approach infinity. Thus, a natural outcome of the
IHRM is clustering effect providing interesting insight
into the structure of the domain.

Figure 1 left shows an IHRM on a movie recommen-
dation system. In the system, there are entity classes
User, Movie and relationship class Like. In addition
there are User Attributes, Movie Attributes and Re-
lationship Attributes R with various parameters and
hyperparameters. In the IHRM, for each entity an
infinite-dimensional latent variable is introduced (Zu

and Zm). They can be thought of as unknown at-
tributes of users and movies, and are the parents of
user attributes, movie attributes and relationship at-
tributes. The underlying assumption is that if the la-
tent variable was known, these attributes can be well
predicted. The most important result of introduc-
ing the latent variables is that information can prop-
agate through the ground network (Figure 1 right)

via inter-connected latent variables. Let us consider
the prediction of relationship attribute R for user i
and movie j. If both user i and movie j have strong
known attributes Au

i and Am
j , these will determine

the state of latent variables Zu
i and Zm

j , and pre-
diction for R is mostly based on Au

i and Am
j . In

terms of a recommender system we would obtain a
content-based recommendation system. Conversely, if
the known attributes Au

i are weak, the states of Zu
i

for user i might be determined by its relations with
other movies and the states of those movies’ latent
variables. This also applies for the movie j. Again
in terms of a recommender system we would obtain a
collaborative-filtering system. So with the help of the
latent variables, information can distribute globally in
the ground network defined by the relationship struc-
ture. This reduces the need for extensive structural
learning, which is particularly difficult in relational
models due to the huge number of potential parents.

As in other approaches to relational learning, inference
is executed in a large interconnected ground network.
Thus being able to perform efficient inference is critical
for the success of the IHRM. The main contribution in
this paper is the analysis of four inference methods:
blocked Gibbs sampler with truncated stick-breaking
(TSB), blocked GS with the Dirichlet-multinomial al-
location (DMA) and the corresponding mean field so-
lutions. These methods are evaluated in two domains:
movie recommendation and gene function prediction.

2. Inference based on Gibbs Sampling

Inference in (Xu et al., 2006) is based on the Chinese
restaurant process (CRP), which is a collapsed ver-
sion of Pólya urn sampling. The sampler updates la-
tent variables one at a time which potentially slows
down the method. Blocked sampling (Ishwaran &
James, 2001) typically shows better mixing. Thus we
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Figure 1. Left: An IHRM for movie recommendation with
the DAPER representation. Right: The ground network.

extend the efficient blocked sampler with truncated
stick-breaking (TSB) or Dirichlet-Multinomial alloca-
tion (DMA) to the IHRM.

We now introduce some notations. Let the number of
entity classes be C, and let Gc

0 and αc
0 be the base dis-

tribution and concentration parameter of entity class
c. In an entity class c, there are N c entities ec

i in-
dexed by i, and Kc mixture components θc

k indexed
by k. θc

k are the parameters of distributions of the en-
tity attributes Ac. The number of relationship classes
is B and Gb

0 is the base distribution for a relationship
attribute Rb. For a relationship class b between two
entity classes ci and cj , there are Kci×Kcj correlation
mixture components φb

k,` indexed by hidden states k

for ci and ` for cj . φb
k,` are the parameters of distribu-

tions of relationship attributes. Here we assume that
the entity and relationship attributes are drawn from
exponential family distributions. Gc

0 and Gb
0 are the

conjugate priors with the hyperparameters βc and βb.

Gibbs Sampling with TSB In the method, the pos-
teriors of parameters θc

k and φb
k,` are explicitly sampled

in the form of truncated stick breaking representa-
tion (TSB). The advantage is that given the posterior,
we can independently sample the latent variables in a
block, which highly accelerates the computation. The
Markov chain is thus defined not only on the latent
variables Zc

i , but also the parameters: πc, θc and φb.
Note, that there are additional parameters Kc in block
GS, which specify the positions to truncate the DPs.
In practice, we set Kc as the number of entities of class
c, Kc will be automatically reduced to a suitable value
based on the complexity of the data in the sampling
process. Taking some initial values for Z, πc, θc and

φb, the following steps are repeated until convergence:
1. For each entity class c,

(a) Update hidden variable Zc
i for each entity i in-

dependently:

P (Z
c
i = k|Dc

i , Z−i, π
c
, θ

c
, {φ

b′}B′
b′=1) ∝

π
c
kP (A

c
i |θ

c
k)

∏
b′

∏
j′

P (R
b′
i,j′ |Z

c
i = k, Z

c
j′

j′ , φ
b′

). (1)

Where Dc
i denotes all information of the en-

tity i, i.e. its attributes Ac
i and relations Rb′

i,j′ .
(b) Update πc as follows:

i. Sample vc
k from Beta(λc

k,1, λ
c
k,2) for k =

{1, . . . ,Kc − 1} with

λ
c
k,1 = 1 +

Nc∑
i=1

δk(Z
c
i ), (2)

λ
c
k,2 = α

c
0 +

Kc∑
k′=k+1

Nc∑
i=1

δk′ (Z
c
i ), (3)

and set vc
Kc = 1. Where δk(Zc

i ) equals to
1 if Zc

i = k and 0 otherwise.
ii. Compute πc

1 = vc
1, πc

k = vc
k

∏k−1
k′=1(1 −

vc
k′), k > 1.

2. Update the parameters from their posteriors given
the sampled Z: θc

k ∼ P (·|Ac, Zc, Gc
0) and φb

k,` ∼
P (·|Rb, Z, Gb

0).

Gibbs Sampling with DMA The Dirichlet-
Multinomial allocation (DMA) approximation to DP
(Green & Richardson, 2000; Yu et al., 2005) has a simi-
lar truncation form as TSB, but differs in that the prior
P (πc|αc

0) now takes an exchangeable Kc-dimensional
Dirichlet distribution Dir(αc

0/Kc, . . . , αc
0/Kc), not

a stick-breaking prior as in TSB. Therefore, the
blocked sampling with DMA is the same as that
with TSB except in step 1.b, where we directly
sample the mixing weight πc from the posterior
Dir

(
αc

0
Kc +

∑Nc

i=1 δ1(Zc
i ), . . . , αc

0
Kc +

∑Nc

i=1 δK(Zc
i )

)
.

3. Mean Field Approximations

Since the proposed IHRM model has multiple DPs
which interact through the relations, blocked sampling
is still slow due to the slow exchange of information be-
tween DPs. Thus we explore two variational inference
methods, which both assume a specific form for the
posterior of all the unobservable variables, and maxi-
mize the lower bound of data log likelihood via coor-
dinate ascent algorithm.

Mean-Field with TSB Blei and Jordan (2005) intro-
duce a mean-field method to approximate the posterior
of unobserved variables using a factorized variational
distribution q. We now extend it to IHRM and define
q({Zc, V c, θc}C

c=1, {φb}B
b=1) as[ C∏

c

Nc∏
i

q(Z
c
i |η

c
i )

Kc∏
k

q(V
c

k |λ
c
k)q(θ

c
k|τ

c
k)

][ B∏
b

Kci∏
k

K
cj∏
`

q(φ
b
k,`|ρ

b
k,`)

]
.
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Where ci and cj denote the entity classes involved
in the relationship class b. k and ` denote the hid-
den states for ci and cj . {ηc

i , λ
c
k, τ c

k , ρb
k,`} are varia-

tional parameters. q(Zc
i |ηc

i ) is a multinomial distribu-
tion. q(V c

k |λc
k) is a Beta distribution. q(θc

k|τ c
k) and

q(φb
k,`|ρb

k,`) are distributions with the same forms as
Gc

0 and Gb
0, respectively.

Based on Jensen’s inequality, we can obtain a lower
bound of the log likelihood of the data given the vari-
ational distribution q. Then we use a coordinate ascent
algorithm to optimize the lower bound and yields the
following updates for the variational parameters:

λ
c
k,1 = 1 +

Nc∑
i=1

η
c
i,k, λ

c
k,2 = α

c
0 +

Nc∑
i=1

Kc∑
k′=k+1

η
c
i,k′ , (4)

τ
c
k,1 = β

c
1 +

Nc∑
i=1

η
c
i,kT(A

c
i ), τ

c
k,2 = β

c
2 +

Nc∑
i=1

η
c
i,k, (5)

ρ
b
k,`,1 = β

b
1 +

∑
i,j

η
ci
i,kη

cj
j,` T(R

b
i,j), ρ

b
k,`,2 = β

b
2 +

∑
i,j

η
ci
i,kη

cj
j,`, (6)

η
c
i,k ∝ exp

Eq [log V
c

k ] +

k−1∑
k′=1

Eq [log(1 − V
c

k′ )]

+ Eq [log P (A
c
i |θ

c
k)] +

∑
b

∑
j

∑
`

η
cj
j,`Eq [log P (R

b
i,j |φ

b
k,`)]

 .

(7)

Where τ c
k are parameters of exponential family dis-

tributions q(θc
k|τ c

k), we decompose τ c
k such that τ c

k,1

contains the first dim(θc
k) components and τ c

k,2 is a
scalar. ρb

k,`,1 and ρb
k,`,2 are defined equivalently. T(Ac

i )
denotes the sufficient statistic of the exponential fam-
ily distribution P (Ac

i |θc
k). It is clear that Equation 4

and Equation 5 updates the variational parameters for
entity class c, and follow equations in (Blei & Jordan,
2005). Equation 6 updates the variational parameters
for relationship attributes, which is computed on the
involved entities. The most interesting updates are
Equation 7, where the posteriors of entity-component
assignment are coupled together. These essentially con-
nect the DPs.

Mean-Field with DMA The other variational al-
gorithm extends to the DMA approximation of DP
(Green & Richardson, 2000; Yu et al., 2005). The ba-
sic difference from the above approximation is that we
directly assume a variational distribution Dir(πc|λc)
to the mixing weights πc, instead of Kc Beta distribu-
tions q(V c

k |λc
k). A similar coordinate ascent algorithm

is derived as the one based on TSB, except the updates
for λc and ηc:

λ
c
k =

αc
0

Kc
+

Nc∑
i=1

η
c
i,k; (8)

η
c
i,k ∝ exp

(
Eq [log π

c
k] + Eq [log P (A

c
i |θ

c
k)]

+
∑

b

∑
j

∑
`

η
cj
j,`Eq [log P (R

b
i,j |φ

b
k,`)]

)
. (9)

The coupling of entity assignments ηc
i,k remains the

same as the one based on TSB.

4. Experimental Analysis

We demonstrate the proposed inference algorithms in
two domains, including movie recommendation system
and prediction of gene functions. For space limitation,
we only list some results on the MovieLens data (Sar-
war et al., 2000). There are in total 943 users and
1680 movies in the data set, and we obtain 702 users
and 603 movies after removing low-frequent entities.
The average number of ratings of each user is 112. We
used data from 546 users for training and 156 users for
testing. The performances of all approaches are ana-
lyzed from 3 points: prediction accuracy for ratings,
convergence time and clustering effect.

We compare the following methods: Chinese restau-
rant process Gibbs sampling (CRPGS), truncated SB
Gibbs sampling (TSBGS), Dirichlet-multinomial allo-
cation Gibbs sampling (DMAGS), and the two corre-
sponding mean field methods TSBMF and DMAMF,
as well as Pearson-coefficient collaborative filter-
ing. For TSBMF and DMAMF we consider α0 =
{5, 10, 100, 1000}, and obtain the best prediction when
α0 = 100. For CRPGS, TSBGS and DMAGS α0 is set
to be 100. For the variational methods, the change of
variational parameters between two iterations is mon-
itored to determine the convergence. For the Gibbs
samplers, the convergence was analyzed by three mea-
sures: Geweke statistic on likelihood, Geweke statistic
on the number of components for each entity class, and
autocorrelation. Table 1 shows that the two blocked
Gibbs samples converge approximately by a factor
5 faster than CRPGS. The mean field methods are
again by a factor around 10 faster than the blocked
Gibbs samplers and thus almost two orders of mag-
nitude faster than CRPGS. CRPGS is much slower
than the other two Gibbs samplers mainly due to the
large time cost per iteration shown as Table 1. The
reason is that CRPGS samples the hidden variables
one by one, which causes two additional time costs.
First, the expectations of attribute parameters and re-
lational parameters have to be updated when sampling
each user/movie. Second, the posterior of hidden vari-
ables have to be computed one by one, thus we can not
use fast matrix multiplication technology to accelerate
the computation. The prediction results are measured
with prediction accuracy (shown in Table 1). For each
test user, we respectively select 5, 10, 15 and 20 ratings
as the known ratings, and predict the remaining ones.
The results are denoted as Given5, Given10, Given15
and Given20 in Table 1. All methods achieved compa-
rably good; the best results are achieved by the Gibbs
samplers. The IHRM outperforms the traditional col-
laborative filtering method, especially when there are
a few known ratings for the test users.

IHRM also provides cluster assignments for all enti-
ties involved. The columns #Comp.u and #Comp.m
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Table 1. Performances of the proposed inference methods on MovieLens data.

Prediction Accuracy
Given5 Given10 Given15 Given20 Time (s) Time(s/iter.) #Comp.u #Comp.m

CRPGS 65.13 65.71 66.73 68.53 164993 109 47 77
TSBGS 65.51 66.35 67.82 68.27 33770 17 59 44
DMAGS 65.64 65.96 67.69 68.33 25295 17 52 34
TSBMF 65.26 65.83 66.54 67.63 2892 19 9 6
DMAMF 64.23 65.00 66.54 66.86 2893 19 8 12
Pearson 57.81 60.04 61.25 62.41 - - - -

Table 2. Clustering result of CRP-based Gibbs sampler on MovieLens data.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
My Best Friend’s Wed-
ding (1997) G.I. Jane
(1997) The Truth About
Cats and Dogs (1996)
Phenomenon (1996) Up
Close and Personal (1996)
Tin Cup (1996) Bed of
Roses (1996) Sabrina
(1995) Clueless (1995)......

Big Night (1996) Antonia’s
Line (1995) Three Colors: Red
(1994) Three Colors: White
(1994) Cinema Paradiso(1989)
Henry V (1989) Jean de
Florette (1986) A Clockwork
Orange (1971) Citizen Kane
(1941) Mr. Smith Goes to
Washington (1939)......

Swingers (1996) Get
Shorty (1995) Mighty
Aphrodite (1995) Welcome
to the Dollhouse (1995)
Clerks (1994) Ed Wood
(1994) The Hudsucker
Proxy (1994) What’s Eat-
ing Gilbert Grape (1993)
Groundhog Day (1993)......

Event Horizon (1997)
Batman and Robin (1997)
Escape from L.A. (1996)
Batman Forever (1995)
Batman Returns (1992)
101 Dalmatians (1996)
The First Wives Club
(1996) Nine Months
(1995) Casper (1995)......

in Table 1 denote the number of clusters for User class
and Movie class, respectively. The mean field solutions
have a tendency to converge to a smaller number of
clusters than Gibbs samplers. Further analysis shows
that the clustering results of the methods are actu-
ally similar. First, the sizes of most clusters generated
by the Gibbs samplers are very small, e.g., there are
72% (72.55%, 75.47%) user clusters with less than 5
members in CRPGS (DMAGS, TSBGS). Intuitively,
the Gibbs samplers tend to assign the outliers to new
clusters. Second, we compute the rand index (0-1) of
the clustering results of the methods, e.g. the values
are 0.8071 between CRPGS and TSBMF, 0.8221 be-
tween TSBGS and TSBMF, which also demonstrates
the similarity of the clustering results. Table 2 illus-
trates the movies with highest posterior probability
in the 4 largest clusters generated from CRPGS. It
is quite surprising that the clustering result is highly
interpretable.

5. Conclusions

The IHRM and the related IRM (Kemp et al., 2006)
are novel and principled approaches to relational learn-
ing but the full potential can only be developed in com-
bination with fast inference approaches. The blocked
samplers proposed in this paper are more than a fac-
tor of five faster than the originally proposed Chinese
restaurant Gibbs sampler. Another factor of 10 in
speed up can be achieved by using variational meth-
ods. Thus the presented work makes the IHRM appli-
cable to considerably larger domains. In addition we
analyzed the clustering results in the experiments and
found that IHRM provides quite interpretable clusters
in the movie recommendation and gene domains.
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