A Novel Metric for Information Retrieval in
Semantic Networks

Joshua L. Moore!':?, Florian Steinke!, and Volker Tresp!

! Siemens AG, Corporate Technology, Miinchen, Germany
2 Cornell University, Ithaca, NY
jlmo@cs.cornell.edu, {Florian.Steinke, Volker.Tresp}@siemens.com

Abstract. We propose a novel graph metric for semantic entity-relationship
networks for solving two tasks. First, given a semantic entity-relationship
graph such as for example DBpedia we find relevant neighbors for a given
query node. Second, we search for paths between two given nodes in or-
der to discover interesting links between the nodes. Compared to using
the default step metric our approach yields more specific and informative
results, as we demonstrate for two semantic web datasets. Moreover, we
show that our proposed metric can intuitively be interpreted in terms
of random walks. The distances are defined via paths that maximize
the log-likelihood of a restricted round trip in such a random process.
This also yields a link to the commute distance, which is highly plau-
sible for the described tasks but prohibitively expensive to compute. In
comparison, our metric can be calculated efficiently using standard graph
algorithms, rendering the approach feasible also for the very large graphs
of the semantic web.

Keywords: Entity-relationship graph, information retrieval, random walk,
commute distance, graph metric, path finding

1 Introduction

Large entity-relationship (ER) graphs have recently become available on the
semantic web. Sources like DBpedia (Auer et al., 2008), YAGO (Suchanek et al.,
2007), OpenCyc?® or Linked Life Data* (Momtchev et al., 2009) now encode
useful information on large scale, and simple and efficient information retrieval
methods for these data sources are a pressing need.

Given an ER graph, there are many interesting questions to be answered. We
focus on the following two. First, given an entity node in the graph, e.g. a person
or a category in DBpedia, which other nodes in the graph represent entities that
are most likely to be useful in the context of the given query node? Answers might
be other concepts that could be used to refine or extend an interactive search
session. As another problem, consider selecting two nodes from the graph and
asking how they are related. For example, via which people or concepts are Albert
Einstein and Niels Bohr related in DBpedia? In the field of bioinformatics such

3 http://www.cyc.com/opencyc
4 http://linkedlifedata.com/

2 Moore, Steinke, Tresp

Nobel

Fig. 1. Stylized examples of the two proposed tasks (data taken from DBpedia) and
the associated challenges. In both examples there are links of equal length which are
of very different informative value. Paths through nodes with many links are often too
broad to be informative. Query nodes are marked orange, black lines denote links to
nodes which are not depicted.

a link query between genes and diseases might well be used to discover unknown
pathways from the existing literature (Antezana et al., 2009), given that such
knowledge is extracted into semantic graph form as is done, for example, in
Bundschus et al. (2008).

The two described tasks can both be solved with shortest-path search on
the ER graph. Most simply, one assumes a step metric, i.e. one assigns every
edge in the graph a unit cost, and computes the shortest-path distance from the
query node to all other nodes for the first task, e.g. using Dijkstra’s algorithm
(Dijkstra, 1959), or the k-shortest paths connecting the two given nodes for
the second task, e.g. by using the k-shortest path algorithm of (Yen, 1971).
While this is straightforward and efficient to implement, it often returns highly
irrelevant results. Consider for example a graph which contains a vertex which is
connected to nearly all other vertices, such as a broad category that encompasses
most entities in the graph. In the first problem we defined, this method would
return the high-degree vertex with high rankings for almost any vertex queried.
This lack of discrimination hinders context search, since a broad topic would lack
specific relevance to any one node in the graph. Also, most of the vertices in the
graph would be returned with distance two, although many of them are unrelated
to the query. In the second problem, consider a database in which every person
is connected to a “human” category node. In this case, the fact that Einstein
and Bohr are both humans is less informative than the fact that they are both
Nobel laureates, but the “human” and “Nobel laureates” nodes would have equal
ranking. These problems are schematically depicted in Figure 1.

One way to allow for differently weighted nodes is to transfer PageRank-like
concepts (Brin and Page, 1998) to ER graphs. However, a simple implementation
of this might have an adverse effect in our setting: nodes are deemed popular and
thus important if many links point to them. Thus high-level, highly connected
nodes would become more important, although they are often uninformative as

Novel Metric for Semantic Networks 3

argued above. A different popularity-based ranking concept assumes that facts
that have many witnesses in a corpus are highly informative (Kasneci et al.,
2008). This, however, requires additional input apart from the graph, and the
assumption that important facts are expressed more often than others may not
hold in curated data stores like wikipedia or company networks.

Another approach based on the graph structure alone is to use properties of
random walks on the graph. It has been argued that the commute time between
nodes in an ER graph is a useful distance measure to find relevant neighboring
nodes (Baluja et al., 2008). In each step, the random walk jumps from one node
to any neighboring node. The commute time is the expected number of steps
for a random walk starting from one node to reach another before returning to
the first. Using this metric, the problems with the step distance are alleviated in
that the commute distance decreases not only if there is a short path between
two nodes, but also if there are several short paths between them. Thus, a single
link over a high-degree hub is not likely to yield a small distance. Moreover, if
two nodes are joined by a path containing a high-degree node, a random walk is
likely to “get lost” at the high-degree node, taking steps into unrelated regions
of the graph, increasing the commute time between the two nodes.

While these are strong intuitive arguments for the commute distance, it is
very difficult to compute. There exists an analytic formula for the commute dis-
tance in terms of the pseudoinverse of the graph Laplacian (Klein and Randié,
1993). This, however, is computationally prohibitive for the large graphs en-
countered in the semantic web. The pseudoinverse of the sparse graph Laplacian
matrix is in general not sparse, and a square matrix of size of the number of
nodes in the graph can typically not be stored or worked with efficiently. More
efficient approximations of the commute distance have been developed for cita-
tion graphs in Sarkar et al. (2008). Their method, however, still needs 4 seconds
for a graph of 600k nodes, which is only a moderate size in the context of the
semantic web. Moreover, it is not clear how it would perform on structurally
more complex graphs such as DBpedia.

In order to combine the simplicity and speed of shortest path finding with
the properties of the commute distance, we propose our novel approach. We also
perform shortest path finding, but with a problem adapted graph metric that
assigns each edge a weight dependent on the degrees of its endpoints. Finding
shortest paths in our novel metric can then be interpreted in terms of maximizing
the log-likelihood of the path between the two vertices in a random walk on the
graph. It can be seen as an optimally adapted first order approximation to
the commute distance, and thus experimentally inherits many of the favorable
properties of the commute distance. At the same time the computations are
very efficient since they reduce to purely local shortest path searches that can
be performed with standard graph algorithms.

In the next section we describe exactly the approach we propose to solve the
two proposed tasks. In Section 3 we explain its justification in terms of random
walks, and how it can be seen as an approximation to the commute distance. In
Section 4 we show a number of examples and a numeric evaluation on several
semantic datasets, demonstrating the superior behavior both in comparison to

4 Moore, Steinke, Tresp

the step distance path finding approach and to another simple approximation of
the commute distance.

2 Proposed Approach

Let the semantic ER graph be represented as G = (V, E) where V is the set
of nodes or entities and E the set of edges or relations holding between the
entities. We do not distinguish between different relation types for the edges,
opting to treat them all equally. Moreover, we also symmetrize the graphs, since
the semantic direction of a relation statement is often not syntactically obvious;
for example, “buys” or “is bought by” might both appear in a graph.

For each edge (u,v) € E, we then define a weight

W(y,w) = log(deg(u)) + log(deg(v))v

where deg(u) is the degree of the node u. If G is connected, then the degree
deg(u) of all nodes u is greater than or equal to one and thus w(,) > 0 for all
(u,v) € E. The weights are therefore a valid positive semi-definite path metric
on G, and the two described tasks can be solved using these novel edge weights
in standard shortest paths routines.

In our first task, a node is specified as input, and we must retrieve a set of
other nodes that are ranked based on how relevant and related they are to the
query node. The results of this search might include, for example, topics that are
contained within the query topic, topics which contain the query node, or topics
that are related by common membership within a category or broader topic. In
order to solve this task, we find the shortest path between the query node and
all other nodes and rank the results. Note that using Dijkstra’s algorithm allows
to directly retrieve the top ranked nodes without computing the shortest path
to all other nodes.

In our second task, we are given two distinct nodes as input and wish to find
paths between both that, ideally, provide unique insight into the relationship
between the two nodes. This might include interesting or distinct ways that the
two nodes are related. We solve this by finding the k shortest paths between the
two nodes in the weighted graph, where k is a free parameter. We return the
sequence of nodes in each of the k shortest paths.

The proposed metric can be justified intuitively: The distance to high-degree
nodes which carry potentially very unspecific information, e.g. the “human”
node, is large. This problem can be avoided as long as more specific, low degree
nodes are within reach. This means that we are effectively searching in compactly
connected, local subgraphs, assumed to carry context specific information.

As we will see in the experiments section, the proposed approach yields
matches for queried nodes that are highly specific in subject matter and are
very appropriate for someone who, for example, wants to explore a particular
academic subject in detail. In addition, our metric facilitates the discovery of
novel, distinct relations between nodes: vertices that are related to each other
in some unique way (i.e. there is a path between them that is connected to rel-
atively few other vertices outside of that path) are closer to each other than
vertices that are linked by a very common relationship.

Novel Metric for Semantic Networks 5

These intuitions can be further motivated by relating our approach with
random walks on semantic graphs. Before we do so in the next section, note
that the proposed approach only requires standard graph algorithms and is thus
simple to implement. It also runs very efficiently even for large graphs. For
example with Dijkstra’s algorithm, we only have to visit £ nodes to find the &
closest neighbors.

3 The Connection to Random Walks

Consider a random walk on G. In each step the walk moves from one vertex
v to an arbitrary adjacent node with probability deg(v)~!, where deg(v) is the
degree of v. Denote the set of paths between two fixed vertices v and v by II,, ,,
e m = (m1, M, .., Men(x)) € Iy iff 11 = w and ey = v. The probability of
the random walk following such a path and returning on the same route then is

p(r) = (H deg(m)_1> (H deg(m—)_l>
i=1 =2

= deg(m) ™" [deg(m:) > deg(mn) "

=2

The negative log-likelihood follows as

n—1 n—1
—log p(m) = log deg(m) + 2 Z log deg(m;) + log deg(my,) = Z Wi, migs)
i=2 1=1

This result shows that the negative log-likelihood of the path is exactly equal to
the path length in our proposed metric. Moreover, shortest path finding between
u and v using this metric is thus equivalent to finding that path in II,, , that
has minimal negative log-likelihood, or maximal probability, of a random walk
following that path back and forth.

As argued in the introduction, random walks are very well suited to the pro-
posed information retrieval task. At high-degree nodes, there are many possible
nodes that could be visited next and the random walk might get lost in graph
regions that often are relatively unrelated to the user’s information needs. In
contrast, on local, compactly connected subgraphs for a given topic, the random
walk is highly likely to return quickly.

3.1 Approximation of the Commute Distance

Random walk probabilities also determine the commute time which has been
proposed as an information metric on ER graphs before (Baluja et al., 2008). In
contrast to our approach, the commute distance does not only measure whether
there is a single high-probability connection between two nodes, but also takes
into account how many such paths there are.

6 Moore, Steinke, Tresp

Since the commute distance uses more of the structure of the graph, it is
potentially more robust. However, this comes at a huge computational cost and
our approach is in comparison extremely efficient. Still, it can be seen as a first
order approximation of the commute distance, as we will discuss now.

The commute time C(u,v) between nodes u and v is

len(m)—

)—1
C(u,v) = Z len(r) p(m) = Z len(m) H deg(m;) .

(1= TR =V, T e () =V)

The sum goes over all paths that start and end at v and visit v in between. Since
all terms are positive, a first order lower bound is to take into account only a
single such path 7, i.e.

C(u,v) > len(r) p(7).

Whether this is a tight bound depends on how concentrated the path probabili-
ties are on a single term. While there are certainly situations where this is not the
case, we would argue that for many semantic graphs the approximation might
be acceptable. The reason is that the degree of the nodes enters multiplicatively
into the sum. Consider query nodes that are both members of two categories of
highly different sizes. Then the path through the smaller category and back on
the same way is actually quadratically preferred over the one through the larger
category.

Given above lower bound we now try to find the optimal lower bound for the
commute distance C'(u,v). That is we search for that path # that contributes
the most to the sum above. This then leads to

n—1

max len(m)p(7) = min — loglen(r) + Z log deg(7;).

The second term is additive in the length of the path and quickly dominates the
first term whose magnitude increases sub-linearly. At the same time, for paths
of equal length only the second term has to be considered for the minimization.
Without too large an error we can thus neglect the first term in most cases.
Moreover, we restrict the optimization set to those paths that go from w to v
and return the same way. The result will still be a lower bound on the commute
distance, and it allows us rewrite the problem using our proposed metric as

n—1
RN DLLEE

This is equivalent to our proposed approach up to a constant factor. We can thus
interpret our approach as (approximately) finding an optimal lower bound to the
commute distance, with the advantage that it can be computed very efficiently
and with simple standard graph algorithms.

This derivation has involved a number of approximation steps that are not
necessarily the tightest ones possible, see the review of Lovész (1993) for other

Novel Metric for Semantic Networks 7

approximations. Yet, this argument still gives some intuition why minimizing our
proposed objective might be sensible and it allows to derive a computationally
very advantageous algorithm.

4 Experiments

To demonstrate our methods we use two large, real world semantic ER graphs,
namely DBpedia and OpenCyec.

For the DBpedia dataset, we combine the category (skos) and the article-
category data files. From this we create an unweighted, undirected graph ne-
glecting the different relationship types and directions. We ignore literals since
they do not add information to the graph structure. Furthermore, we discard the
“Concept” node to which each category is connected. Although this is exactly
the type of high-degree node that disadvantages the naive step distance against
our method, we leave it out in the interest of a fair comparison. For the step
distance one could assume this master node to be removed, but as we will show
below, there are still many other high-level nodes that cause similar problems.
Removing these is not as trivial and could lead to unwanted effects on the search
results.

We similarly define the graph for the OpenCyc dataset. An overview of the
properties of both graphs is given in Table 1.

DBPedia|OpenCyc
Vertices 3,660,898| 150,088
Edges 8,947,631 554,762
Average degree 4.88 7.39

Table 1. Basic statistics of the used datasets.

As baseline methods for our comparisons we use the following two approaches:
First, we compare our method to using shortest paths with the step distance.
Second, we compute a simple approximation of the commute distance.

The exact computation of the commute distance on the full graph is in-
tractable, since it requires the graph Laplacian’s pseudoinverse, a matrix that
for most graphs is too big to even be stored. Instead, we assume here that the
commute distance is moderately local. For each query, we extract the 1000 clos-
est nodes to the query node — in step distance — and only use the subgraph
spanned by these nodes and the edges between them to compute the commute
distance using the analytic formula of Klein and Randié¢ (1993). If the subgraph
has only few edges leaving it, the approximation is fairly reasonable. However,
if a very unspecific node with many neighbors is among the closest nodes to the
query vertex, then it will connect almost any node in the graph to the query by
a path of, say, length 2. In this case the selection of the 1000 closest neighbor
nodes is arbitrary and not much can be expected from our approximation of the
commute distance. The baseline should thus not be regarded as a completely
accurate representative of the true commute distance.

8 Moore, Steinke, Tresp

Step Our approach Approx. Commute

Espresso 0|BEspresso 0 [Espresso 0
(C)Italian beverages 1|(C)Italian beverages 4.5 |(C)Italian loanwords 1295.75
(C)Italian loanwords 1|(C)Coffee beverages 5.05|(C)Coffee beverages 1296.86
(C)Coffee beverages 1|(C)Italian loanwords 6.09|(C)Italian beverages 1297.35
(C)Italian cuisine 2|Bombardino 7.9 [(C)Italian cuisine 1339.5
(C)Italian words and phrases 2|Caffe corretto 8.59|(C)Opera terminology 1401.79
(C)Italian language 2|Grappa 8.59|(C)Italian words and phrases 1452.94
(C)English words foreign origin 2|Torani 8.59|(C)Pasta 1467.75
(C)Romance loanwords 2|Lemonsoda 8.59|(C)Mediterranean cuisine 1529.31
(C)Beverages by region 2|Oransoda 8.59[(C)Cuisine by nationality 1544.99
(C)Italian alcoholic beverages 2|Pelmosoda 8.59[(C)Opera genres 1582.18
(C)Coffee preparation 2|Beverly (drink) 8.59|(C)Opera 1584.02
Castrato 2|Doppio 8.59|(C)Performing arts 1599.79
Da capo 2|Caffe 9 (C)Musical notation 1601.59
Graffiti 2|Chinotto 9 (C)European cuisine 1664.97
Glissando 2|Ammazzacaffe 9 (C)Italian language 1685.92
Macaroni 2|Stappj 9 Turkish coffee 1691.75
Mozzarella 2|Galvanina 9 (C)Beverages by region 1721.4
Opera 2|Irish coffee 9 (C)Dried meat 1737.1
Pasta 2|Cortado 9 (C)Musical theatre 1740.42
Pizza 2|Iced coffee 9 |(C)Music 1743.96
Spaghetti 2|Pepsi Kona 9 (C)Articulations 1756.06
Tempo 2|Flat white 9 (C)English words foreign origin 1756.7
Cappuccino 2|Mochasippi 9 (C)Singing 1760.76
Legato 2|Red eye (drink) 9 |(C)Salumi 1764.59
Staccato 2|Liqueur coffee 9 (C)Croatian cuisine 1769.7
Operetta 2|Lungo 9 |(C)Entertainment 1773.37
Cadenza 2|Caffe Americano 9 (C)Theatrical genres 1788.05
Concerto 2|Espresso con panna 9 (C)Italian culture 1795.82
Cantata 2|Caffe breve 9 (C)Italian prod. protected origin 1799.13

Table 2. Top 30 results of neighborhood search for query node “Espresso” in DBpedia,
along with the distances from the query node. First, Step means shortest path finding
with the step distance; then follows our proposed approach; the last column shows the
results of our simple approximation of the commute distance. Entities marked with (C)
represent skos categories, other items are regular DBpedia resources.

4.1 First Task: Neighborhood finding

In the following we discuss a number of example results from the two datasets.
In Table 2 we list the results of a search for the query node “Espresso.” In this
case, the step distance gets easily distracted by the high-degree neighbor “Italian
loanwords.” As a result, the majority of the results listed are unrelated Italian
terms which refer mostly to music and food. The commute distance approxi-
mation returns highly irrelevant words that are also related mostly to food and
music, but this is probably due to the nature of the approximation we use —
most of the 1000 nodes nearest to the espresso node are probably also due to the
Italian loanwords node. Our method, on the other hand, returns a list of about
one third Italian sodas and non-coffee beverages and about two thirds drinks
made with espresso or at least coffee, as well as a few other types of terms.

In Table 3 we performed another search for the term “iPod.” The step dis-
tance mostly gives us various categories relating to hardware or software, and the
commute distance mixes these results with a few more specific terms relating to
the iPod’s function and to the related iPhone. Our method, on the other hand,
yields mostly articles relating specifically to variations and functions of the iPod
and the iTunes software that is integral to the use of the iPod.

We also provide results for the OpenCyc dataset, which is of a slightly differ-
ent nature. It contains many rather unspecific nodes like “temporally stuff like
thing” which are nice examples of how such high-degree nodes are avoided by
our algorithm. In Table 4 we show the results of a search for “machine learning.”
While the results of the other methods become wildly irrelevant after only the
first few matches, nearly the first half of our results are still relevant to the topic
at hand.

Novel Metric for Semantic Networks 9

Step Our approach Approx. Commute

IPod 0[IPod 0 IPod 0
(C©)2001 introductions 1] (C)IPod 4.97 |(C)ITunes 695.93
(C)IPod 1[(C)Industrial designs 5.78 |(C)Portable media players 698.52
(C)Portable media players 1[(C)ITunes 5.98 |(C)Digital audio players 750.23
(C)ITunes 1/(C)2001 introductions 6.29 |(C)IPhone OS software 757.78
(C)IPhone OS software 1|(C)Portable media players 6.49 |(C)IPod 784.31
(C)Industrial designs 1|(C)IPhone OS software 6.52 |(C)Industrial designs 857.01
(C)2001 2|TPod click wheel 8.15 |(C)Smartphones 889.69
(C)Apple Inc. software 2|IPod Photo 8.84 [(C)2001 introductions 907.63
(C)Industrial design 2|List of iPod models 8.84 |(C)Mac OS X software 929.97
(C)Windows software 2|Dock Connector 8.84 |(C)Touchscreen portable media players 955.66
(C)Software by operating system 2|IPod Mini 9.25 |(C)Consumer electronics brands 959.29
(C)Apple Inc. hardware 2|IPod advertising 9.25 |(C)Apple Inc. software 973.22
(C)Windows media players 2|IPhone Touch 9.25 |(C)IPhone 974.07
(C)Mac OS X software 2|IPod Nano 9.53 |(C)2007 introductions 1010.71
(C)Digital audio players 2|Neistat Brothers 9.53 |IPhone 1025.22
(C)USA PATRIOT Act 2[IPod Classic 9.53 |(C)IPhone OS 1031.79
(C)MPEG 2|Ipod+HP 9.53 |(C)Web 2.0 1035.86
(C)TPod accessories 2|List of iPhone OS devices 9.53 |(C)Windows software 1047.63
(C)IPod software 2|IPod Shuffle 9.76 |[ITunes 1049.63
(C)21st-century introductions 2|Juicy Salif 9.77 |(C)Apple Inc. hardware 1057.46
(C)ITunes-exclusive releases 2|DADVSI 10.09|(C)Software by operating system 1075.57
(C)IPhone OS games 2|NextWorth Solutions 10.09|(C)Online social networking 1096.2
(C)Mac OS X media players 2| IMix 10.17|(C)Mac OS software 1096.22
(C)Apple Inc. peripherals 2|Genius (iTunes) 10.17|(C)Personal digital assistants 1112.79
(C)Apple Inc. services 2| AirTunes 10.17|(C)Brands 1126.36
(C)Vehicles introduced in 2001 2|ITunes law 10.17|(C)Media players 1126.94
(C)IPhone 2|ITunes Music Store 10.17|(C)Creative Technology products 1129.28
(C)2001 comic debuts 2|ITunes U 10.17|(C)IPod software 1151.43
(C)IPhone OS 2|ITunes Applications 10.17|Nimbuzz 1156.45

Table 3. Top 30 results of neighborhood search for query node “iPod” in DBpedia.
Labels as in Table 2.

To demonstrate the dramatic computational advantage of our method against
even the described approximation of the commute distance, we picked 1000 query
nodes at random and performed a query with it using all three methods. The
mean run-times on a standard desktop PC as well as the standard deviation for
each method is given below

Step Our Approach|Approx. Commute
0.13s (0.07s)[0.11s (0.04s) [10.43s (9.51s)

The average run-time for our method was 0.11 seconds, compared to an aver-
age of 10.43 seconds for our approximation of the commute time — a difference of
two orders of magnitude. As would be expected, our method runs approximately
as fast as the step distance method.

It is worth noting that the time taken to approximate the commute time
was extremely high in some cases. The longest time taken with the commute
distance was over one minute, whereas the longest time taken with our method
was only 0.66 seconds. Furthermore, one should also consider that the method
we have used to calculate the commute distance is only an approximation using
a graph of 1000 nodes. The most computationally intensive step required of the
commute distance is the calculation of the pseudoinverse. Since this step requires
cubic time to calculate, an attempt to improve the accuracy of the estimate by
adding more nodes to the approximation would drastically increase the time
required for computation, while an exact computation would be intractable for
most practical problems.

4.2 Task 2: Path Finding

In this section, we present an example of our method as applied to the path
finding task, showing the novel connections that our method is able to find

10

Moore, Steinke, Tresp

Step

Our approach

Approx. Commute

machine learning
temporal stuff also a durative event
computer activity

discriminative weight learning
generative weight learning

machine rule induction

MLN Generated Using Learning Type
alcoholism

burning

flowing

anthem

the union of ensemble showman
playing

halt

rock climbing

snow-skiing

Iter. Event Scene Fn id veg. 1-3 km
rafting

candy making

composting

woodworking

diagnosis of Wegeners granulomatosis
breast cancer treatment

AIDS treatment

acne care

affliction procedure

allergic reaction treatment

atrial septal aneurysm med treatment
most autistic procedure

vision impairment treatment

NNNNNNNNNNNNNNNNNNRNNDNNNE SRS 2O

machine learning
machine rule induction
discriminative weight learning
generative weight learning

MLN Generated Using Learning Type
computer activity

markov logic network

temporal stuff also a durative event
MLN Data File Pathname

MLN File Pathname

MLN Generated Using Cmd String
MLN Rule File Pathname

MLN Type Const Dec File Pathname
MLN Represented By Microtheory
Content Of MLN Fn

computer activity that computer did
computer activity that person did
hack

computer thread

help desk session

network packet filtering

network packet routing

opening presents

packet sniffing

partitioning a disk

placing a residual malicious program
browser requests a secure connection
locking computer display

website maintenance

network prop. malicious program

LOOLNDBWNNNO
00 00 00 00 ~1 00N~ 0000
OO U 0O O

9.86

10.27
10.56
11.85
11.85
11.85
11.85
11.85
11.85
11.85
11.85
11.85
11.85
11.85
12.13
12.13
12.13
12.13

machine learning
first-order collection

temp stuff also a durative event
computer activity

temporal stuff

employee computer activity type
computer activity type

athletic activity

physical information transfer
biological transportation

body movement

recreational activity

using a computer
information-accessing event
physical event

structured information source
type of accomplishment
individual

computer editing

internet activity

running computer process
locomotion event

ride

CW instantiating

unnatural thing

biological process

QA clarifying collection type
internet communication
network propagation

0
875.61
887.91
897.63
921.03
1061.05
1090.34
1104.59
1115.24
1138.37
1152.19
1169.12
1181.74
1195.75
1196.47
1213.39
1236.74
1239.97
1256.46
1266.56
1280.32
1280.92
1303.08
1313.32
1315.36
1321.43
1338.81
1355.33
1357.71

candidate KB completeness node 1360.95

Table 4. Top 30 results of neighborhood search for query node “machine learning” in
OpenCyc. Labels as in Table 2.

between two nodes in the graph — i.e., between two concepts in our semantic
network. We also compare our method to path finding using the naive step
distance to show the advantage that our method has in discovering truly distinct
and specific connections between concepts.

We compare the results of our path-finding method to those of the step dis-
tance path finding method in the case of finding connections between “computer
vision” and “machine learning”, again with data from DBpedia. The resulting
paths are listed in Table 5. Many of the results of our method provide insight
into exactly how machine learning is used to solve specific tasks in the com-
puter vision domain. Although insightful, some of the paths returned here by
our method have significant intersection with each other. This could, however, be
remedied by, for example, modifying the k-shortest paths algorithm to add ex-
tra weight to the edges equivalent to the ones traversed in previously discovered
paths. Such a modification would lead to increased diversity in the results.

The step distance, on the other hand, gives us only very vague, general con-
nections between the two subjects. The most that we learn from these results
is that computer vision and machine learning are both within the subject of

artificial intelligence.

Note that our method is actually able to find informative paths of significant
length. While for the step distance the exponential number of possibilities for
such paths quickly renders the retrieval infeasible, our method is still able to
discriminate between the many choices. This might be an important advantage
when applying this framework to biomedical databases, such as for example
Linked Life Data. Here, one often tries to find non-obvious rather long distance
interactions between different genes and diseases to discover novel pathways.
Focusing on the most discriminative ones might save significant research time in

this domain.

Novel Metric for Semantic Networks 11

Our Approach:

— Path 1 (length 15.2407): Computer vision - (C)Computer vision - (C)Learning in computer
vision - Machine learning

— Path 2 (length 22.1722): Computer vision - (C)Computer vision - (C)Object recognition and
categorization - Boosting methods for object categorization - (C)Learning in computer vision -
Machine learning

— Path 3 (length 22.4706): Computer vision - (C)Artificial intelligence - (C)Cybernetics - Machine
learning

— Path 4 (length 23.5585): Computer vision - (C)Computer vision - Segmentation based object
categorization - (C)Object recognition and categorization - Boosting methods for object cate-
gorization - (C)Learning in computer vision - Machine learning

— Path 5 (length 23.5585): Computer vision - (C)Computer vision - Object recognition (computer
vision) - (C)Object recognition and categorization - Boosting methods for object categorization
- (C)Learning in computer vision - Machine learning

Step Distance:

— Path 1 (length 3): Computer vision - (C)Artificial intelligence - (C)Machine learning - Machine
learning

— Path 2 (length 3): Computer vision - (C)Computer vision - (C)Learning in computer vision -
Machine learning

— Path 3 (length 3): Computer vision - (C)Artificial intelligence - (C)Cybernetics - Machine
learning

— Path 4 (length 4): Computer vision - (C)Artificial intelligence - (C)Machine learning -
(C)Learning - Machine learning

— Path 5 (length 4): Computer vision - (C)Computer vision - (C)Artificial intelligence -
(C)Machine learning - Machine learning

Table 5. Path finding between the terms “Computer vision” and “machine learning”
in DBpedia.

5 Conclusion

We have presented a novel metric that allows us to solve two important infor-
mation retrieval task in semantic networks efficiently. The metric just depends
on the degrees of adjacent nodes, and shortest path search with such a metric
will thus avoid unspecific, high-degree nodes. This allows us to find interesting
neighbors of a query node and novel, specific links between entities, while only
using standard graph algorithms.

Often the authors themselves discovered novel, interesting information when
querying the test datasets DBpedia and OpenCyc with different entities. This
makes us strongly believe that the proposed approach could also be helpful to
others.

A detailed user study is currently under way. From a technical point one
could imagine mixing the step metric and the proposed one to obtain a tunable
trade-off between the length and the distinctiveness of a path. It would also
be interesting to explore ways to learn additional parameters in the metric,
e.g. assigning different weights to specific edge types. Such parametric learning
approaches, however, would require a benchmarking dataset which is currently
not available to us. In contrast, the proposed approach is parameter free and
solely dependent on intuitive arguments.

Bibliography

Antezana, E., Kuiper, M., and Mironov, V. (2009). Biological knowledge man-
agement: the emerging role of the Semantic Web technologies. Briefings in
bioinformatics.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z.
(2008). Dbpedia: A nucleus for a web of open data. In Proceedings of Gth
International Semantic Web Conference, 2nd Asian Semantic Web Conference
(ISWC+ASWC 2007), pages 722-735.

Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichan-
dran, D., and Aly, M. (2008). Video suggestion and discovery for youtube:
taking random walks through the view graph. In Proceeding of the 17th in-
ternational conference on World Wide Web, pages 895-904. ACM.

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual Web
search engine. Computer networks and ISDN systems, 30(1-7):107-117.

Bundschus, M., Dejori, M., Stetter, M., Tresp, V., and Kriegel, H. (2008). Ex-
traction of semantic biomedical relations from text using conditional random
fields. BMC bioinformatics, 9(1):207.

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269-271.

Kasneci, G., Suchanek, F., Ifrim, G., Ramanath, M., and Weikum, G. (2008).
Naga: Searching and ranking knowledge. In Proc. of ICDE, pages 1285-1288.

Klein, D. and Randié¢, M. (1993). Resistance distance. Journal of Mathematical
Chemistry, 12(1):81-95.

Lovész, L. (1993). Random walks on graphs: A survey. Combinatorics, Paul
FErdos is Fighty, 2(1):1-46.

Momtchev, V., Peychev, D., Primov, T., and Georgiev, G. (2009). Expand-
ing the pathway and interaction knowledge in linked life data. In Proc. of
International Semantic Web Challenge.

Sarkar, P., Moore, A., and Prakash, A. (2008). Fast incremental proximity search
in large graphs. In Proceedings of the 25th international conference on Machine
learning, pages 896-903. ACM.

Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). Yago: A Core of Semantic
Knowledge. In 16th international World Wide Web conference (WWW 2007),
New York, NY, USA. ACM Press.

Yen, J. (1971). Finding the k shortest loopless paths in a network. Management
Science, 17(11):712-716.

