
The Generalized Bayesian Committee Machine

[Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD-2000]

Volker Tresp
Siemens AG

Corporate Technology
Otto-Hahn-Ring 6

81730 München, Germany

Volker.Tresp@mchp.siemens.de

ABSTRACT
In this paper we introduce the Generalized Bayesian Com-
mittee Machine (GBCM) for applications with large data
sets. In particular, the GBCM can be used in the con-
text of kernel based systems such as smoothing splines, krig-
ing, regularization networks and Gaussian process regression
which —for computational reasons— are otherwise limited
to rather small data sets. The GBCM provides a novel and
principled way of combining estimators trained for regres-
sion, classification, the prediction of counts, the prediction
of lifetimes and other applications which can be derived
from the exponential family of distributions. We describe
an online version of the GBCM which only requires one pass
through the data set and only requires the storage of a ma-
trix of the dimension of the number of query or test points.
After training, the prediction at additional test points only
requires resources dependent on the number of query points
but is independent of the number of training data. We con-
firm the good scaling behavior using real and experimental
data sets.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning ; H.2.8 [Database Management]: Database Ap-
plications—Data Mining

General Terms
Committee Machines, Combining Estimators, Data Mining,
Gaussian Processes, Kernel-Based Systems, Support Vector
Machines

1. INTRODUCTION
Estimators for KDD applications should be able to exploit
the complete information which is contained in a large data

set. If the estimators have a fixed architecture, the predic-
tion performance will eventually be determined by the bias
of the estimator and performance will not significantly im-
prove with larger data sets. It is therefore desirable that the
complexity of the architecture of the estimators grows ap-
propriately with data size. Naturally, the resources in kernel
based estimators such as regression splines, kriging, regular-
ization networks and Gaussian process regression grow with
data size but these approaches have a big disadvantage: all
four approaches require the inversion of matrices of the di-
mension of the number of training data1 which limits their
applicability to data sets of not much more than 1000 sam-
ples. The goal of this paper is to extend the applicability of
those methods to large data sets. Since all four methods can
give equivalent solutions we will focus on only one of them,
namely Gaussian processes regression, an approach recently
introduced into the machine learning community [14, 18,
29, 11]. In our approach, the data set is divided up into M
sets of approximately the same size and M models are de-
veloped on the individual data sets. The predictions of the
individual models are combined using a weighting scheme
which is derived from a Bayesian perspective. The compu-
tational complexity of this generalized Bayesian committee
machine (GBCM) scales linearly in the number of training
data. As the name implies, the GBCM is a generalization
of the Bayesian committee machine. Whereas the latter is
only applicable to regression [20], the former one can be
applied to any probability density of the exponential fam-
ily, and therefore is suitable among others for classification
problems, prediction of counts and prediction of life times.
We show experimentally that the GBCM efficiently exploits
the information in large data sets and present online learning
solutions which require only one pass through the data set.
After learning the generalization to new query points only
requires resources dependent on the number of query points
but not the number of training data. The GBCM is an ad-
dition to the theory of combining estimators. Whereas the
BCM for regression can be seen as a generalization to the
variance-based combination of estimators [22], the GBCM
provides a principled theory for combining classifiers and es-
timators for counts, lifetimes and other applications which
can be derived from the exponential family of distributions.

1If the input dimension is larger than two.

In Section 2 we derive the theoretical foundation of the
GBCM based on a Bayesian approach and in Section 3 we
derive the BCM for regression. In Section 4 we apply the
BCM to Gaussian process regression. We follow here the
derivation in [20]. In Section 5 we introduce the GBCM for
probability densities of the exponential family and use it in
the context of Gaussian processes. In Section 6 we discuss
design and computational issues. In Section 7 we present ex-
perimental results demonstrating the excellent performance
of the GBCM approximation. Section 8 contains the con-
clusion of the paper.

2. THEORETICAL FOUNDATIONS
Let x be a vector of input variables and let y be the target
variable. We assume that, given a function f(x), the tar-
gets are (conditionally) independent with conditional den-
sity P (y|f(x)). Let Xm = {xm

1 , . . . , xm
K} denote the input

vectors of the training data set of size K (superscript m
for measurement) and let Y m = (ym

1 . . . ym
K)′ be the vec-

tor of the corresponding target measurements. Let D =
{Xm, Y m} denote both inputs and targets.

Furthermore, let Xq = {xq
1, . . . , xq

NQ
} denote a set of NQ

query or test points (superscript q for query) and let fq =
(fq

1 , . . . , fq
NQ

) be the vector of the corresponding unknown

response variables.

We assume now a setting where instead of training one es-
timator using all the data we split up the data into M data
sets D = {D1, . . . , DM} (of typically approximately same
size) and train M estimators separately on each training
data set. Gaussian process regression which will be in-
troduced in the next sections is one example where this
procedure is useful. Correspondingly, we partition inputs
Xm = {Xm

1 , . . . , Xm
M} and targets Y m = {Y m

1 , . . . , Y m
M }.

Let Di = {D1, . . . , Di} denote the data sets with indices
smaller or equal to i with i = 1, . . . M . In a Bayesian set-
ting each estimator will provide us with an estimate of the
posterior predictive probability density P (fq|Di). As an ex-
ample, for an estimator parameterized by a weight vector w,
the posterior predictive probability density is [1]

P (fq|Di) =

∫
P (fq|w)P (w|Di)dw.

Then we have in general2

P (fq|Di−1, Di) ∝ P (fq)P (Di−1|fq)P (Di|Di−1, fq).

Now we would like to approximate

P (Di|Di−1, fq) ≈ P (Di|fq). (1)

This is not true in general unless fq ≡ f : only conditioned
on the complete function f are targets independent. The
approximation might still be reasonable when, first, NQ is
large — since then fq determines f everywhere — and when,
second, the correlation between the targets in Di−1 and Di

is small, for example if inputs in those sets are spatially
separated from each other.

Using the approximation and applying Bayes’ formula, we

2In this paper we assume that inputs are given.

obtain

P (fq|Di−1, Di) ≈ const × P (fq|Di−1)P (fq|Di)

P (fq)
(2)

such that we can achieve an approximate predictive density

P̂ (fq|D) = const ×
∏M

i=1 P (fq|Di)

P (fq)M−1
(3)

where const is a normalizing constant. The posterior predic-
tive probability densities are simply multiplied. Note that
since we multiply posterior probability densities, we have to
divide by the priors M − 1 times. This general formula can
be applied to the combination of any Bayesian estimator.

3. THE BCM
In case that the predictive densities P (fq|Di) and the prior
densities are Gaussian (or can be approximately reasonably
well by Gaussians) Equation 2 takes on an especially sim-
ple form. Let’s assume that the a priori predictive density
at the NQ query points is a Gaussian with zero mean and
covariance Σqq and the posterior predictive density for each
module is a Gaussian with mean E(fq|Di) and covariance

cov(fq|Di). In this case we achieve [20] (Ê and ĉov are

caclulated w.r.t. the approximate density P̂)

Ê(fq|D) = C−1
M∑

i=1

cov(fq|Di)−1E(fq|Di) (4)

with

C = ĉov(fq|D)−1 = −(M − 1)(Σqq)−1 +
M∑

i=1

cov(fq|Di)−1.

(5)

We recognize that the prediction of each module i is weighted
by the inverse covariance of its prediction. But note that we
do not compute the covariance between the modules but
the covariance between the NQ query points! This means
that predictive densities at all query points contribute to
the prediction of the BCM at a given query point. This
way of combining the predictions of the modules is named
the Bayesian committee machine (BCM). Modules which are
uncertain about their prediction are automatically weighted
less than modules which are certain about their prediction.

4. GAUSSIAN PROCESS REGRESSION AND
THE BCM

The most interesting application of the BCM is kernel based
regression in the form of regularization networks, smooth-
ing splines, kriging and Gaussian processes regression. The
reason is that first, the degrees of freedom in such systems
increase with the number of training data points such that
it is not suitable to update posterior parameter probabilities
and that second, the approaches require the inversion of ma-
trices of the dimension of the number of data points which is
clearly unsuitable for large data sets. Since it is well known
that all four approaches can give equivalent solutions we will
focus on only one of them, namely the Gaussian process re-
gression framework. In the next section we briefly review
Gaussian process regression and in the following section we
discuss the BCM in conjunction with Gaussian process re-
gression.

4.1 A Short Review of Gaussian Process Re-
gression

In contrast to the usual parameterized approach to regres-
sion, in Gaussian process regression we specify the prior
model directly in function space. In particular we assume
that a priori f is Gaussian distributed (in fact it would be
an infinite-dimensional Gaussian) with zero mean and a co-
variance cov(f(x1), f(x2)) = σx1,x2 . We assume that we can
only measure a noisy version of f

y(x) = f(x) + ε(x)

where ε(x) is independent Gaussian distributed noise with
zero mean and variance σ2

ψ(x).

Let (Σmm)ij = σxm
i ,xm

j
be the covariance matrix of the mea-

surements, Ψmm = σ2
ψ(x)I be the noise variance between

the targets of the measurements, (Σqq)ij = σx
q
i ,x

q
j

be the

covariance matrix of the query points and (Σqm)ij = σx
q
i ,xm

j

be the covariance matrix between training data and query
data. I is the K-dimensional unit matrix.

Under these assumptions the conditional density of the re-
sponse variables at the query points is Gaussian distributed
with mean

E(fq|D) = Σqm(Ψmm + Σmm)−1ym, (6)

and covariance

cov(fq|D) = Σqq − Σqm (Ψmm + Σmm)−1 (Σqm)′. (7)

Note, that for the i−th query point we obtain

E(fq
i |D) =

K∑
j=1

σx
q
i ,xm

j
vj (8)

where vj is the j−th component of the vector

(Ψmm + Σmm)−1ym.

Equation 8 describes the weighted superposition of kernel
functions bj(x

q
i) = σx

q
i ,xm

j
which are defined for each train-

ing data point and is equivalent to some solutions obtained
for kriging, regularization networks and smoothing splines [25,
17, 29, 11, 8]. The experimenter has to specify the positive
definite covariance matrix. A common choice is that

σxi,xj = A exp(−1/(2γ2)||xi − xj ||2) (9)

with A, γ > 0 such that we obtain Gaussian basis functions
although other positive definite covariance functions are also
used.

Gaussian processes have been shown to be a very competi-
tive approach for regression with small data sets [18].

4.2 The BCM for Gaussian Process Regres-
sion

Since the computational cost of the matrix inversion in Equa-
tion 6 scales as O(K3) where K is the number of training
data, the cost becomes prohibitive if K is large. The big
advantage of the application of the BCM (Equation 4) to
Gaussian process regression (Equations 6 and 7) is that now
instead of having to invert a K-dimensional matrix we only

have to invert approximately (K/M)-dimensional and NQ-
dimensional matrices. If we set M = K/α where α is a
constant, the BCM scales linearly in K.

5. THE GBCM
In the following section we will discuss the general case that
the distribution for the measurement process is from the
exponential family of distributions. Readers who are inter-
ested only in classification —which is the most interesting
special case from an application point of view— can directly
go to sections 5.2 and 5.3.

5.1 The General Case
In the previous section it was assumed that both the prior
distribution of f and the noise distribution P (yi|fi) are
Gaussian where for a generic xi, we define fi ≡ f(xi). In
the following sections we will still assume a prior Gaussian
distribution for fi but we will allow for more general distri-
butions for the measurement process P (yi|fi). In particular
we will assume that P (yi|fi) is from the exponential family
for which at xi

P (yi|fi) = exp

(
yiθi − b(θi)

φ
− c(yi, φ)

)
.

Here, θi is the natural parameter, φ is a scale parameter, and
b() and c() are specific functions corresponding to the type of
exponential family. Furthermore, we have the relationship

µi = h(fi) = E(yi|xi) =
∂b(θi)

∂θi

where h(.) is the link function. The variance of yi is σ2
i =

φ∂2b(θi)

∂θ2
i

. By fixing the functions b(.) and c(.) we obtain par-

ticular distributions out of the exponential family such as
the normal (Gaussian), Bernoulli, Poisson, Gamma and in-
verse Gaussian distributions which allow, among others, the
modeling of classification problems, prediction of counts and
prediction of life times. This generalization of the Gaus-
sian model corresponds the transition from linear models
to generalized linear models as described in McCullagh and
Nelder [12] and Fahrmeir and Tutz [4].

Due to the fact that the conditional densities are non-Gaussian,
the posterior distribution of f will also be non-Gaussian. We
consider a Laplace approximation of the posterior probabil-
ity density at the measurements points fm i.e. a Gaussian
approximation to the posterior density. The center and the
covariance matrix of this Gaussian is calculated as the mode
and the inverse Hessian of the cost function

cost(fm) = −
K∑

i=1

log P (ym
i |fm

i) +
1

2
(fm)′(Σmm)−1fm.

Based on a Fisher scoring approach it can be shown (see e.g.
Fahrmeir and Tutz [4] and Appendix A) that the mode can
be found by iterating the reweighted least squares equations

f̂m,(k+1) = Σmm(Ψ(k) + Σmm)−1ỹ(k).

Here,

ỹ
(k)
i =

ym
i − h(f

m,(k)
i)

D
(k)
i

+ f
m,(k)
i

where

Ψ(k) = diag


(
σ

(k)
i

)2

(
D

(k)
i

)2


and

D
(k)
i =

∂h
(
f

m,(k)
i

)
∂f

m,(k)
i

.

After convergence (k=k’), an estimate of the covariance ma-
trix is obtained by

ĉov(fm|D) = Σmm(Ψ(k′) + Σmm)−1Ψ(k′).

The mode and the covariance matrix at the query points
can now be calculated as

Ê(fq) = Σqm(Σmm)−1f̂m = Σqm(Ψ(k′) + Σmm)−1ỹ(k′)

and

ĉov(fq|D) = Σqq − Σqm (Ψ(k′) + Σmm)−1 (Σqm)′.

The GBCM is obtained if these estimates are used in the
formulas 4 and 5 to combine the estimates of fq trained on
different data sets.

5.2 Two-class Classi£cation
A special case of great practical interest is the case that
yi ∈ {0, 1} and that

P (yi|fi) = µyi
i (1 − µi)

1−yi

is Bernoulli distributed and corresponds to the posterior
probability for class one. If the natural link function (lo-
gistic distribution function)

µi = h(fi) =
exp fi

1 + exp fi

is used then b(θi) = log(1 + exp(θi)), φi = 1, θi = fi, and

σ2
i = µi(1 − µi).

Here,

Ψ(k) = diag
(
µ

(k)
i

(
1 − µ

(k)
i

))−1

,

and

D
(k)
i = µ

(k)
i

(
1 − µ

(k)
i

)
such that

ỹ
(k)
i =

ym
i − µ

(k)
i

µ
(k)
i

(
1 − µ

(k)
i

) + f
m,(k)
i .

The application of Gaussian processes to classification has
been discussed in a Bayesian setting in a paper by Williams
and Barber [28]. They also provide detailed derivations of
the Fisher scoring algorithm and discuss the multiple-class
case.

5.3 Multiple-class Classi£cation
There are several ways of approaching the multiple-class
classification case [4]. A straightforward generalization to
multiple classes assumes C binary variables where yi,c ∈
{0, 1} and yi,c = 1 indicates that at input xi class c is the
correct class. Furthermore, we use C Gaussian processes
where fi,c is the activation of the c-th Gaussian process at
xi and ∀i

P (yi,c = 1|{fi,c}C
c=1) = µi,c =

exp fi,c∑C
c′=1 expfi,c′

is the probability of class c at xi. The cost function becomes

cost = −
K∑

i=1

[
C∑

c=1

yi,cf
m
i,c − log

C∑
c′=1

e
fm

i,c′

]

+
1

2

C∑
c=1

(fm
c)′ (Σmm

c)−1 fm
c

where fm
c = (fm

1,c, . . . , fm
K,c)

′ and Σmm
c is the covariance at

the data points for the c-th Gaussian.

A full Fisher scoring approach for learning would require
the inversion of matrices of dimension CN . It is therefore
appropriate to ignore terms in the Fisher information ma-
trix which couple the different Gaussian processes. In this
case we obtain update equations identical to the ones in
Section 5.2 if we use the µi,c as defined in this section. Cor-
respondingly, we would require one GBCM for each class.

6. DESIGN ISSUES
6.1 Effective Number of Parameters
In general, the GBCM will have good performance if Equa-
tion 1 is a good approximation. This is the case if data sets
are independent conditioned on fq. A trivial solution would
be that fq are the functional values at the training data
since given those, all target measurements are independent.
Of course, this is unsuitable since the BCM requires compu-
tations which scale to the third power with the number of
query points but this discussion makes clear that the query
data should be similar to the training data, i. e. should
come from the same input data distribution.

From another point of view, to obtain a good approximation,
we would require the query points to uniquely define the
function since then target measurements are independent.
In general, the degrees of freedom of a kernel based sys-
tem are infinite which would mean that an infinite number
of query points would be required to obtain independence.
In [20] it was shown that even if in theory a Gaussian process
regression system might have infinite degrees of freedom, in
typical cases only a limited number of degrees of freedom
are really used such that even with a small number of query
points, the GBCM approximation is reasonable.

Let’s define the effective degrees of freedom as

P Data
eff = trace (Σmm(Ψmm + Σmm)−1)

which measures how many degrees of freedom are used by
the given data. This is analogous to the definition of the
effective number of parameters by Wahba [24], Hastie and

Tibshirani [8], Moody [13] and MacKay [10].3 Let {λ0, . . . λK}
be the eigenvalues of Σmm. Then we obtain

P Data
eff =

K∑
i=1

λi

λi + σ2
ψ

.

The effective degrees of freedom are therefore approximately
equal to the number of eigenvalues which are greater than
the noise variance. If σ2

ψ is small, the system uses all degrees

of freedom to fit the data. For a large σ2
ψ, P Data

eff → 0 and the
data barely influence the solution. One can therefore con-
clude that only P Data

eff query points are necessary to fix the
relevant degrees of freedom of the system —assuming that
training data and query data come from the same distribution—
such that the GBCM performs well.

6.2 Online Implementations
In this section we consider an online version. We assume
that data arrive continuously in time. Let Dk denote the
data points collected between time t(k) and t(k− 1) and let
Dk = {D1, . . . , Dk} denote the set of all data collected up
to time t(k).

We can derive an algorithm which directly adapts the pos-
terior probabilities of fQ. The iterations are based on the
Kalman filter and yields for k = 1, 2, . . .

Ak = Ak−1 + Kk(E(fq|Dk) − Ak−1)

Kk = Sk−1(Sk−1 + cov(fq|Dk))−1

Sk = Sk−1 − Kk(Sk−1 + cov(fq|Dk))K′
k

with S0 = Σqq and A0 = (0, . . . , 0)′. At any time

Ê(fq|Dk) =
1

k
Σqq(

1

k
Σqq − Sk)−1Ak.

Note that only one matrix and one vector of the size of the
number of query points need to be stored which makes this
online version of the GBCM applicable for KDD applica-
tions.

Another formulation of the BCM and the corresponding on-
line version can be found in Appendix B.

6.3 Parallelization
Due to the modularity of the approach, the GBCM is easily
parallelizable. The Gaussian approximation of the posterior
density of the individual committee members can be calcu-
lated in parallel by M processors.

6.4 New Test Points
After training, we might be interested in the responses at
additional query points. The goal is then to infer from the
estimated density at the query points fq the density at other
query points f∗. P̂ (f∗|D) is approximately Gaussian dis-
tributed with expectation

Ê(f∗|D) = Σ∗q(Σqq)−1Ê(fq|Dk). (10)

3Note, that Σmm(Ψmm + Σmm)−1 maps training targets
into predictions at the same locations. This expression is
therefore equivalent to the so called hat matrix in linear re-
gression. There analogously, the trace of the hat matrix is
defined as the effective number of parameters.

Note, that this equation describes the superposition of basis
functions defined for every query point fq and evaluated
at f∗ with weights (Σqq)−1Ê(fq|Dk). Note also, that the
inverted matrix is of the dimension of the number of query
points. Furthermore the approximate covariance becomes

ĉov(f∗|D) = Σ∗∗

+Σ∗q[(Σqq)−1 ĉov(fq|D) (Σqq)−1 − (Σqq)−1](Σ∗q)′.

The covariance of the prediction is small if the covariance
ĉov(fq|D) has small elements and if f∗ can be well deter-
mined from fq.

6.5 A Fast Version for Two-class Classi£cation
Whereas the prediction for Gaussian process regression can
be computed in closed form, for the generalized model train-
ing is iterative and requires typically around 10 iteration
steps. There is a fast alternative which in our experiments
gave very comparable classification results. It is applicable
when the experimenter is not interested in posterior class
probabilities as the GBCM would supply but just in the
classification decision. In this case one can change the tar-
gets to 1 if a training pattern belongs to class 1 and to −1 if a
training pattern belongs to class 2. Then treat the problem
as a regression problem and use Equation 4 and Equation 5
for the calculation of the estimate and the covariance ma-
trix. Finally combine the predictions using the BCM. For
a new test point use the sign of the output of the BCM as
classification decision.

6.6 Valid Covariance Matrices
In our work we always used a Gaussian dependency (i.e. a
Gaussian kernel) for the covariance as in Equation 9. Here,
the experimenter has great freedom in choosing an alterna-
tive kernel. The only condition is that it must generate a
non-negative definite covariance matrix for any set of points.
Mackay [11] has published a number of recipes of how one
can design (problem specific) covariance functions. As an
example, Williams and Rasmussen report good results by
adding a constant (and sometimes additional terms) to the
Gaussian kernel.

There is a very close relationship between Gaussian pro-
cesses and regression with fixed basis functions. Consider
that f(x) is a superposition of N fixed basis functions, i.e.

f(x) =
N∑

i=1

wiφi(x)

where w = (w1, . . . , wN)′ is the N−dimensional weight vec-
tor with a Gaussian weight prior with mean 0 and covariance
Σw. We can now calculate the prior distribution for f(x) it-
self which is a zero mean Gaussian process with

σx
q
i ,xm

j
= φ(xq

i)
′Σwφ(xm

j) (11)

where φ(x) = (φ1(x), . . . , φN (x))′ is the activation of the
fixed basis functions at x. In this way we can derive co-
variance functions from systems with fixed basis functions.
Neal [15] and Williams [27] have shown that multi-layer per-
ceptron neural networks with an infinite number of hidden
units also can be described by Gaussian processes.

One might also ask: given a Gaussian process can we find an
equivalent system of fixed basis functions or in other words
is there always a decomposition as described in Equation 11.
The answer is generally yes but we will typically require an
infinite number of fixed basis functions (see also the discus-
sion on the effective number of parameters in Section 6.1).
In this sense Gaussian process regression corresponds to the
fitting of functions to an infinite number of fixed basis func-
tions.

6.7 Support Vector Machines
Let’s consider the cost function [26, 16]

cost(fm) = const

K∑
i=1

|1 − (2ym
i − 1)(fm

i + b)|+

+
1

2
(fm)′(Σmm)−1fm.

where |.|+ is equal to its argument when the argument is
larger than zero and zero otherwise and where const > 0.4

After optimization a large number of training data will not
contribute to the first term in the cost function which means
that the corresponding components in the weight vector (see
Section 4.1) v are zero. The “surviving” weights correspond
to the support vectors [23] and the output to a new input
xq

i is

sign
(∑
support vectors

σx
q
i ,xm

j
vj

)
.

In principle the SVM-approach would also be suitable for the
GBCM although due to the highly nonlinear cost function
the second order Laplace approximation used for the GBCM
might not be very good.

As a note, Platt [16] discusses a version of the SVM which
allows the calculation of posterior class probabilities and
achieved results comparable to the solution obtained using
the approach described in Section 5.2.

6.8 Other Interesting Models
We have already seen in Section 5.3 how several Gaussian
processes can interact in multiple-class classification. Inter-
acting Gaussian processes can form many more interesting
models [4]. In [21] it is shown how Gaussian Processes can
be used to model the dependency structure in a Bayesian
belief network and the ideas are applied to the mixtures of
experts system [9]. These models can be used in connection
with the GBCM where the number of GBCMs is equal to
the number of Gaussian processes used in the model.

6.9 Preliminary Results on Boosting the GBCM
The GBCM can be considered to be a committee in which
each committee member is trained independently from one
another. In contrast in boosting the training of a com-
mittee member depends on the performance of the previ-
ously trained committee members. Typically one puts more

4In a previous version of the paper we defined |.|+ to be
equal to one if the argument is larger than zero and zero
otherwise. Our new definition includes the case that classes
are not linearly separable.

weight on training patterns which were previously misclas-
sified. In boosting not only the variance in the prediction is
decreased as in other approaches to committee machines but
also the bias in the prediction [7]. Boosting was introduced
by Schapire and Freund [19, 5, 6] and a description of the
state of research and current variants can be found in [3].

Let’s look at a combination of the GBCM with boosting
and consider a particular variant, i.e. the Gentle AdaBoost
algorithm [7]. If applied to the GBCM we would change
the weights on the i-th training exemplar for the current
committee member to

wi = e−yiFi

where yi ∈ {−1, 1} indicates the class label and Fi is the
output of the current committee. Note that more weight
is placed on mis-classified patterns. The new committee
member is formed by a weighted regression using Equation 6
where

Ψmm = diag(
σ2

ψ

wi
)

incorporates the weights on the training patterns. The com-
mittee is formed either by the BCM algorithm or by simple
addition of the ouputs of the committee members. The clas-
sification is performed based on the sign of the output of the
committee.

We have done some preliminary experiments which did not
show a significant improvement by the addition of boosting
to the GBCM. The reason might be that Gausssian processes
are rather strong learners and boosting was mostly success-
ful with weak learners such as very simple decision trees.
Our result so far is that the reweighting did not strongly
influence the prediction of the Gaussian process classifier.

7. EXPERIMENTS
In the first experiment we investigated the computational
scaling behavior of the BCM in conjunction with Gaussian
process regression. Figure 1 shows the CPU-time as a func-
tion of the number of training samples. Clearly, the CPU-
time for Gaussian process regression scales as K3. The two
versions of the BCM schemes scale linearly. Also note that
for K/M = 100 ≈ K/NQ (in the experiment, NQ = 128) we
obtain the least computational cost.

In the second set of experiments we tested the performance
of the GBCM using a number of real and artificial data sets.
In the experiments we set for two locations in input space
xi and xj : σxi,xj = A exp(−1/(2γ2)||xi − xj ||2) where γ
is a positive constant optimized with cross validation and
A = 10, implementing a weak prior. The input for the arti-
ficial data set space was Dim−dimensional and the inputs
were randomly chosen in x ∈ [−1, 1]Dim. We generated first
continuous targets by adding independent Gaussian noise
with variance σ2

ψ to a map defined by 5 normalized Gaus-
sian basis functions (see Appendix C). We then assigned
patterns with positive target values to class one and pat-
terns with negative target values to class two. By varying
the variance of the noise we obtain non-overlapping classes
(σ2

ψ = 0) and overlapping classes (σ2
ψ > 0). Table 1 sum-

marizes the results. Well demonstrated is the excellent per-
formance of the GBCM. For the real world data (Table 1)

200 400 600 800 1000
0

50

100

150

200

250

300

K

C
P

U
−

tim
e

 [
s]

Figure 1: CPU-time as a function of the training set
size K for M = 1 (Gaussian process regression, con-
tinuous) and the BCM with module size K/M = 10
(dash-dotted) and module size K/M = 100 (dashed).
In these experiments the number of query points
was NQ = 128.

we obtain excellent performance for the BUPA and the DI-
ABETES data sets.

In our third experiment (Figure 2) we tested the online
GBCM described in Section 6.2 with a Dim = 5−dimensional
input. Note, that the GBCM with K = 60000 achieves re-
sults unobtainable with Gaussian process regression which
is limited to a training data set of approximately K = 1000.
For K = 60000, Gaussian process regression would require
one year of CPU-time.

8. CONCLUSIONS
The GBCM provides a new principled approach for the com-
bination of estimators for regression, classification, the pre-
diction of counts, the prediction of life times and other ap-
plications which can be derived from the exponential family
of distributions. We found experimentally that the GBCM
provides excellent predictions on several data sets. Since
the CPU-time of the GBCM scales linearly in the number
of training data, it can be used in applications with large
data sets as in data mining and in applications requiring
online learning.

As a final note, after completion of the manuscript the au-
thor became aware of independent work on scaling up Gaus-
sian processes to large data sets based on mean field ap-
proaches from statistical physics [2].

9. REFERENCES
[1] J. M. Bernardo and A. F. M. Smith. Bayesian Theory.

John Wiley and Sons, New York, 1994.

[2] L. Csató, E. Fokoué, M. Opper, B. Schottky, and
O. Winther. Efficient approaches to gaussian process
classification. In S. A. Solla, T. K. Leen, and K.-R.

Müller, editors, Advances in neural information
processing systems 12. MIT Press, 2000.

[3] H. Drucker. Boosting neural networks. In A. J. C.
Sharkey, editor, Combining artificial neural nets.
Springer, 1999.

[4] L. Fahrmeir and G. Tutz. Multivariate Statistical
Modeling Based on Generalized Linear Models.
Springer, New York, 1994.

[5] Y. Freund. Boosting a weak learning algorithm by
majority. Information and Computation,
121(2):256–285, 1995.

[6] Y. Freund and R. E. Schapire. A decision theoretic
generalization of online learning and an application to
boosting. Journal of Computer and System Sciences,
55, 1997.

[7] J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: a statistical view of boosting.
Annals of Statistics, 2000. To appear.

[8] T. J. Hastie and R. J. Tibshirani. Generalized additive
models. Chapman & Hall, 1990.

[9] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and J. E.
Hinton. Adaptive mixtures of local experts. Neural
Computation, 3, 1991.

[10] D. J. C. MacKay. Bayesian model comparison and
backprop nets. In J. E. Moody, S. J. Hanson, and
R. P. Lippmann, editors, Advances in neural
information processing systems 4, pages 839–846.
Morgan Kaufmann, 1992.

[11] D. J. C. MacKay. Introduction to gaussian processes.
In C. M. Bishop, editor, Neural Networks and Machine
Learning, volume 168. NATO Asi Series F, Computer
and Systems Sciences, Morgan Kaufmann, 1998.

[12] P. McCullagh and J. Nelder. Generalized linear
models. Chapman & Hall, 1983.

[13] J. E. Moody. The effective number of parameters: an
analysis of generalization and regularization in
nonlinear learning systems. In J. E. Moody, S. J.
Hanson, and R. P. Lippmann, editors, Advances in
neural information processing systems 4, pages
847–854. Morgan Kaufmann, 1992.

[14] R. M. Neal. Bayesian learning for neural networks.
Springer, 1996.

[15] R. M. Neal. Monte Carlo implementation of Gaussian
process models for Bayesian regression and
classification. Chapman & Hall, 1997.

[16] J. C. Platt. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood
methods. In A. J. Smola, editor, Advances in large
Margin Classifiers. MIT press, 2000.

[17] T. Poggio and F. Girosi. Networks for approximation
and learning. Proceedings of the IEEE, 78:1481–1497,
1990.

0 1 2 3 4 5 6

x 10
4

50

55

60

65

70

75

80

85

90

95

100

K

q
u

e
ry

−
s
e

t
c
la

s
s
if
ic

a
ti
o

n
 p

e
rf

o
rm

a
n

c
e

Figure 2: The test of the online learning algorithms of Section 6.2 using the artificial data set. Shown is the

percentage of correct classification on the query-set for NQ = 1000 and a module size of K/M = 1000 as a function of

the number of training data K. In the experiment, σψ is varied. From top curve to bottom curve the degree of overlap

between classes increases. From top to bottom: σψ = 0 (continuous), σψ = 0.1 (dotted), σψ = 0.2 (dash-dotted), σψ = 0.5

(dashed), σψ = 1 (continuous), σψ = 2 (dotted), σψ = 4 (dash-dotted), σψ = 8 (continuous). Note, that (generalized)

Gaussian process regression is limited to a data set of approximately 1000 which corresponds to the furthest left points

of the curves. The improvement in performance possible with the GBCM is impressive: For σψ = 8 the percentage of

correct classification increases from less than 50 % (for K = 1000) to more than 70% (for K = 60000) and for σψ = 0 the

percentage of correct classification increases from less than 95 % (for K = 1000) to more than 98.5% (for K = 60000).

Table 1: The table shows results from real world data and artificial data. The real world data sets can
be retrieved from the UCI data base at http://www.ics.uci.edu/ mlearn/MLRepository.html. The inputs
to all data sets were normalized to a mean of zero and a standard deviation of one. Shown is the input
dimension Dim, the number of training data used K, and the percentage of correct classification of various
algorithms. Shown are averages over 20 experiments from which error bars could be derived. The width
parameter γ was optimized using a validation set of size 100. The first result (GPR) shows the performance
of (generalized) Gaussian process regression (M=1). GBCM(i, j) shows the classification performance with
module size K/M = i and query-set size NQ = j. The artificial data are generated as described in the beginning
of Section 7. In columns from left to right, the experiments using the artificial data are characterized as: no
overlap between classes σψ = 0, large overlap between classes σψ = 0.5, high input dimension Dim = 50 and
low input dimension Dim = 2. Note the excellent performance of the GBCM approximation.

BUPA DIAB. ART ART ART ART

Dim 6 8 5 5 50 2
K (train. size) 200 600 600 600 600 600
σψ - - 0 .5 .1 .1
GPR 69.15 ± 0.5 77.5 ± 0.0 97.6 ± 0.4 93.2 ± 0.4 90.1 ± 0.4 98.4 ± 0.4
GBCM(10, 50) 70.0 ± 0.8 77.8 ± 1.3 98.0 ± 0.4 93.2 ± 0.9 89.9 ± 0.9 99.0 ± 0.4
GBCM(100, 50) 70.6 ± 1.7 78.2 ± 1.0 97.3 ± 0.5 93.5 ± 1.0 89.1 ± 1.0 98.6 ± 0.5
GBCM(10, 100) 69.9 ± 0.9 76.6 ± 0.7 97.4 ± 0.3 92.9 ± 0.6 90.6 ± 0.6 98.4 ± 0.3
GBCM(100,100) 69.2 ± 0.7 76.7 ± 0.8 97.6 ± 0.4 93.2 ± 0.5 91.7 ± 0.7 98.0 ± 0.4

[18] C. E. Rasmussen. Evaluation of gaussian processes
and other methods for non-linear regression. Technical
report, Department of Computer Science, University
of Toronto, 1996.

[19] R. E. Schapire. The strength of weak learnability.
Machine learning, 5(2):197–227, 1990.

[20] V. Tresp. A bayesian committee machine. Neural
Computation, 2000. In print.

[21] V. Tresp. Interacting gaussian processes for graphical
models. submitted, 2000.

[22] V. Tresp and M. Taniguchi. Combining estimators
using non-constant weighting functions. In
G. Tesauro, D. S. Touretzky, and T. K. Leen, editors,
Advances in neural information processing systems 7,
pages 419–426. MIT Press, 1995.

[23] V. N. Vapnik. The nature of statistical learning theory.
Springer, New York, 1995.

[24] G. Wahba. Spline models for observational data.
Society for Industrial and Applied Mathematics, 1983.

[25] G. Wahba. Bayesian “confidence intervals” for the
cross-validated smoothing spline. J. Roy. Stat. Soc.
Ser. B, 10:133–150, 1990.

[26] G. Wahba. Support vector machines, reproducing
kernel hilbert spaces and randomized GACV. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola,
editors, Advances in Kernel Methods, pages 69–88.
MIT Press, 1999.

[27] C. K. I. Williams. Computing with infinite neural
networks. Neural Computation, 10:1203–1216, 1998.

[28] C. K. I. Williams and D. Barber. Bayesian
classification with gaussian processes. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 20:1342–1351, 1998.

[29] C. K. I. Williams and C. E. Rasmussen. Gaussian
processes for regression. In M. C. Mozer and M. E.
Hasselmo, editors, Advances in neural information
processing systems 8, pages 514–520. MIT Press, 1996.

APPENDIX
A. FISHER SCORING ALGORITHM
We start with the cost function

cost(fm) = −
K∑

i=1

log P (ym
i |fm

i) +
1

2
(fm)′(Σmm)−1fm.

The mode can be found by a Fisher scoring algorithm of the
form

fm,(k+1) = fm,(k) + F−1(fm,(k))J(fm,(k))

for k = 1, 2, . . . and where

J(fm,(k)) = −∂cost(fm,(k))

∂fm,(k)
= s(fm,(k)) − (Σmm)−1fm,(k)

is the vector of negative first derivatives and

F (fm,(k)) = (Ψ(k))−1 + (Σmm)−1

is the expected (penalized) Fisher information matrix. Fur-
thermore

s(fm,(k)) = vec
(
D

(k)
i (σ

(k)
i)−2(ym

i − h(f
m,(k)
i))

)
.

In all cases of interest here the expected (penalized) Fisher
information is identical to the Hessian of the cost function
and therefore the Fisher scoring update is identical to a
Newton-Raphson update.

Then

fm,(k+1) =
(
(Ψ(k))−1 + (Σmm)−1

)−1

×
(
s(fm,(k)) + (Ψ(k))−1fm,(k)

)

= Σmm
(
Ψ(k) + Σmm

)
Ψ(k)

(
s(fm,(k)) + (Ψ(k))−1fm,(k)

)
= Σmm(Ψ(k) + Σmm)−1ỹ(k)

where we have used that(
(Ψ(k))−1 + (Σmm)−1

)−1

= Σmm
(
Ψ(k) + Σmm

)
Ψ(k).

ỹ(k) is defined in Section 5.1.

B. ANOTHER FORMULATION OF THE BCM
Based on our Gaussian assumptions we can also calculate
the probability density of measurements given the query
points P (ym|fq). This density is also Gaussian with mean

E(ym|fq) = (Σqm)′(Σqq)−1fq, (12)

and covariance

cov(ym|fq) = Ψmm + Σmm − (Σqm)′(Σqq)−1Σqm. (13)

Now, the BCM approximation can also be written as

P̂ (fq|D) ∝ P (fq)
M∏

i=1

P (ym
i |fq).

Then we obtain with Ai = (Σqm,i)′(Σqq)−1

Ê(fq|D) = C−1
M∑

i=1

A′
icov(ym

i |fq)−1ym
i (14)

with

C = ĉov(fq|D)−1 = (Σqq)−1 +
M∑

i=1

A′
icov(ym

i |fq)−1Ai.

(15)

Σqm,i is the the covariance matrix between training data for
the i-th module and the query points. An online version
can be obtained using the Kalman filter which yields the
iterative set of equations, k = 1, 2, . . .

Ê(fq|Dk) = Ê(fq|Dk−1) + Kk(ym
k − Akfq)

Kk = (Sk−1A
′
k)(AkSk−1A

′
k + cov(ym

k |fq))−1

Sk = Sk−1 − Kk(AkSk−1A
′
k + cov(ym

k |fq))K′
k

with S0 = Σqq. In the iterations, no matrix of size NQ needs
to be inverted.

C. ARTIFICIAL DATA
Explicitly, the target is calculated as

yi =

1

2

1 + sign

∑5
j=1 aj exp

(
− ||xi−centerj ||2

2σ2
a

)
∑5

j=1 exp
(
− ||xi−centerj ||2

2σ2
a

) + εi

 .

In the experiments

σa = 0.36 a = (1.16,−0.63,−0.08, 0.35,−0.70)′

and centeri is generated randomly according to a uniform
density in the Dim-dimensional unit hypercube.

