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Abstract

This paper is concerned with the notion of a local factorization of a function
where we are mostly interested in the special case that this function is a probabil-
ity distribution. We introduce the notions of local independence and of the local
Kullback-Leibler divergence. We introduce a specific approximate local factoriza-
tion. The number of terms required in the approximation is linear in the number of
input dimensions and the approximation does not require the calculation of higher
derivatives (as in a Taylor expansion) and is not limited to approximations near
the mode of a function. We provide examples where we believe the approximation
might be useful as in the approximate calculation of certain integrals.

1 Introduction

This paper is concerned with the notion of a local factorization of a function where we
are mostly interested in the special case that this function is a probability distribution.
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Probability distributions which factorize locally display independence in a local neighbor-
hood. We introduce the notions of local independence and of the local Kullback-Leibler
divergence. We introduce a specific approximate local factorization, the local factoriz-
ing approximation (LFA). In contrast to other local approximations, such as the Laplace
approximation, the LFA does not rely on an approximation in the neighborhood of the
mode of the function. Also, in contrast to a Laplace approximation, the LFA is accurate
in case that the function factorizes in some rotated coordinate system.

In the next section we introduce the notion of local independence, in Section 3 we
define the local Kullback-Leibler divergence and in Section 4 we discuss the optimal local
factorization. In Section 5 we will define the LFA and discuss its properties. Readers only
interested in the algorithm should directly go to this section. In Section 6 we will outline
potential applications. In Section 7 we supply conclusions.

2 Local Factorizability and Local Independence

If random variables are globally independent their probability distribution factorizes and
vice versa. Here we study the case that variables might be locally independent and might
factorize locally.

Let

Rδ
a = {x : |xi − ai| < δi, i = 1, . . . , N}

be a rectangle, with x, a, δ ∈ <N , δi > 0.

Definition 1 The local distance between two functions g(x) and h(x) in a rectangle Rδ
a

is defined as

max
x
|g(x)− h(x)| < ε ∀x ∈ Rδ

a.

Here, x, a, δ ∈ <N , δi > 0.

Definition 2 Two functions g(x) and h(x) are locally identical in a rectangle Rδ
a if their

local distance is equal to zero.

Definition 3 Let g(x) be a function and let

h(x) =
N∏

i=1

hi(xi), ∀x ∈ Rδ
a.

If there are functions hi(xi) such that g(x) and h(x) are locally identical in a rectangle
Rδ

a, then g(x) is locally factorizable in the rectangle Rδ
a.

Definition 4 If P (x) is a probability distribution which is locally factorizable in Rδ
a, we

say that the variables x1, . . . , xN are locally independent in Rδ
a.

Proposition 1 A function which factorizes globally also factorizes locally.

The converse is not true in general.
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3 Local Kullback-Leibler (KL) Divergence

Here we introduce the local Kullback-Leibler (KL) divergence for functions which are
strictly positive in a rectangle Rδ

a such that, after normalization, they can be treated as
probability distributions.

Definition 5 Let P (x) and Q(x) be two functions which are strictly positive within the
rectangle Rδ

a. The local Kullback-Leibler (KL) divergence between P (x) and Q(x) with
respect to the rectangle Rδ

a is defined as

lKLRδ
a
(P (x)||Q(x)) =

1

ZP
Rδ

a

∫
Rδ

a

P (x) log

P (x)

Q(x)

ZQ
Rδ

a

ZP
Rδ

a

 dx (1)

where ZP
Rδ

a
=

∫
Rδ

a
P (x)dx and ZQ

Rδ
a

=
∫
Rδ

a
Q(x)dx.

Essentially, we define the local KL-divergence with respect to the normalized local func-
tions P (x)/ZP

Rδ
a

and Q(x)/ZQ
Rδ

a
.

Proposition 2 lKLRδ
a
(P (x)||Q(x)) is equal to zero if and only if

Q(x)/ZQ
Rδ

a
= P (x)/ZP

Rδ
a
, ∀x ∈ Rδ

a, ZQ
Rδ

a
> 0, ZP

Rδ
a

> 0.

This says that after normalization, both distributions must be identical. The proposition
is analogue to the corresponding global property of probability distributions.

Proposition 3 If two functions P (x) and Q(x) are strictly positive and identical in the
rectangle Rδ

a, then

lKLRδ
a
(P (x)||Q(x)) = 0.

This proposition follows from the fact that in this case the log() in Equation 1 is equal to
zero.

Even if the local KL-divergence is zero, the distance between P (x) and Q(x) might
still be large, since they are just equal up to a constant factor. That’s why we need a
definition for mass equivalence:

Definition 6 Given two functions P (x) and Q(x) that are strictly positive in the rectangle
Rδ

a, then they are locally mass equivalent, if ZP
Rδ

a
= ZQ

Rδ
a
.

Proposition 4 Given two functions P (x) and Q(x) which are strictly positive in the
rectangle Rδ

a. If they are locally mass equivalent and if

lKLRδ
a
(P (x)||Q(x)) = 0

then they are identical in the rectangle Rδ
a.

This proposition follows directly from Proposition 2.
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4 Optimal Local Factorization

We now consider the optimal local factorization with respect to the local KL-divergence.
Let Q(x) be an approximating function which is strictly positive in Rδ

a and let Q(x)
factorize locally with respect to the rectangle Rδ

a in the form

Q(x) =
N∏

i=1

qi(xi) ∀x ∈ Rδ
a.

Proposition 5 Under the constraints that∫
Rδ

a

qi(xi)dxi = 1, qi(x) ≥ 0, ∀i,

the local KL-divergence between P (x) and the approximation Q(x) is minimum with respect
to the rectangle Rδ

a if

qi(xi) =
1

ZP
Rδ

a

∫
Rδ

a

P (x) dx \ xi ∀x ∈ Rδ
a, ki > 0.

Furthermore

Q̃(x) = ZP
Rδ

a

N∏
i=1

qi(xi) ∀x ∈ Rδ
a.

is locally mass equivalent

This proposition follows from the corresponding theorem for global distributions.

5 The Local Factorizing Approximation

As stated in Proposition 5, the minimum local KL-divergence can be achieved by a local
marginalization but this requires the calculation of N -dimensional integrals. In general,
closed-form solutions to those integrals will not exist and those integrals would have to
be solved numerically.

In this section we want to study the properties of a local factorization of a function
which can easily be calculated.

5.1 Definition

We start with a definition of a local factorizing approximation.
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(a) A factorizing density producing four Gaus-
sians in joint space.

(b) LFA: in this case, the approximation is
exact. The white maker indicates the position
of a which is in a region with low probability.

Figure 1: Approximating a Factorizing Distribution

Definition 7 (Local Factorizing Approximation) Given a function g(x) with x ∈
<N . The local factorizing approximation (LFA) approximates the function by a product
of one-dimensional functions in the neighborhood of x = a as

LFAa(g(x)) =
1

g(a)N−1

N∏
l=1

g(ã−l) (2)

where ã−l is equal to a except that the l-th component is replaced by xl.

Note that g(ã−l) is a 1-D function of a line parallel to xl and going through a.
Figures 1, 2 and 3 illustrate the approximation.

5.2 LFA for Factorizing Functions

A factorizing function can be written as

g(x) =
N∏

i=1

hi(xi).

If we substitute into the LFA

g(x) ≈ 1

g(a)N−1

N∏
l=1

g(a)
hl(xl)

hl(al)
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(a) A Gaussians with full covariance matrix. (b) LFA. The maker indicates the position of a

Figure 2: Approximating a fistribution which does not factorize.

Figure 3: The difference between the true Gaussian and the LFA approximation from the
previous figure. Note that near a and along axis-parallel lines through a, the approxima-
tion is exact.
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= g(a)
N∏

l=1

hl(xl)

hl(al)
=

N∏
i=1

hi(xi) = g(x).

Proposition 6 This result shows that for functions which factorize the LFA is exact.

Note, that the factorization of a function is not unique. For, example, if we set

hi(x) → Ahi(x) hj(x) → 1

A
hj(x)

for one j 6= i we obtain another a valid factorization. On the other hand the LFA is
unique.

5.3 Relationship to Taylor Expansion

Here we motivate that LFA is also a reasonable approximation if the function g(x) does
not factorize. Here we assume that g(x) > 0. Let G(x) = log g(x). For notational
simplicity we assume that x is two-dimensional. Using a Taylor expansion one may write

G(x1, x2) = G(a1, a2)+ (3)

∞∑
j=1

1

j!

[
(x1 − a1)

∂

∂x′1
+ (x2 − a2)

∂

∂x′2

]j

G(x′1, x
′
2)

∣∣∣∣∣∣
x′
1=a1,x′

2=a2

. (4)

If we now make the approximation that all interaction-terms are equal to zero,

∂j

∂x′1
j

∂i

∂x′2
i G(x′1, x

′
2)

∣∣∣∣∣
x′
1=a1,x′

2=a2

= 0 ∀j, i > 0 (5)

then we obtain

G(x1, x2) = G(a1, a2)+ (6)

∞∑
j=1

1

j!

[
(x1 − a1)

∂j

∂(x′1)
j

+ (x2 − b2)
∂j

∂(x′2)
j

]
G(x′1, x

′
2)

∣∣∣∣∣
x′
1=a1,x′

2=a2

(7)

= G(x1, a1) + G(a1, x2)−G(a1, a2).

Now we set

g(x1, x2) = exp(G(x1, x2)) ≈
1

g(a1, a2)
g(x1, a1)g(a1, x2) (8)

which is the LFA for the 2-D case.
This result generalizes to the higher-dimensional case. The relationship to the Taylor

expansion clarifies the approximation which is being made in the LFA.
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5.4 Approximation along Axis Through a

Let’s define ã−k as before.

Proposition 7 On points on ã−k, the LFA is exact,

since

g(ã−k) ≈
1

g(a)N−1

N∏
l=1

g(ã−l) =
1

g(a)N−1
g(a)N−1g(ã−k) = g(ã−k).

5.5 Additional Favorable Properties of the LFA

The approximation is easy to calculate and only requires the evaluation of g(x). The
number of terms is linear in the dimension of x. The approximation is well-behaved, if
g(x) is well-behaved since we multiply functional values of g(x).

Also we have,

Proposition 8 For a function which factorizes globally the LFA is locally exact.

5.6 The LFA for Positive Functions

We want to consider one more favorable property of the LFA:

Proposition 9 Consider the situation in Proposition 5 and assume in addition that that
P (x) is a strictly positive linear function within Rδ

a. Then, the LFA minimizes the local
KL-divergence and is also locally mass equivalent.

Proof: Without loss of generality, let

P (x) = c0 +
N∑

i=1

ci(xi − ai) ∀x ∈ Rδ
a.

Then

qi(xi) =
1

2c0δi

(c0 + ci(xi − ai))

and, with ZP
Rδ

a
= c02

N ∏N
i=1 δi,

Q̃(x) = ZP
Rδ

a

N∏
i=1

qi(xi) =
1

cN−1
0

N∏
l=1

(c0 + ci(xi − ai)).

Thus,

Q(x) = LFAa (P (x)) .
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6 Applications

6.1 Normalized RBF

In some applications, one needs to calculate normalized radial basis functions (rbf) of the
form

rbfi(x) =
exp(− 1

2σ2 (x− c(i)2))∑M
j=1 exp(− 1

2σ2 (x− c(j)2))
.

If we apply the LFA to the denominator around a = ci, we obtain

rbfi(x) ≈ exp
(
− 1

2σ2
(x− c(i))2

)
n(ci)

N−1∏N
l=1 n(c̃

(i)
−l)

= n(ci)
N−1

N∏
l=1

exp(− 1
2σ2 (xl − c

(i)
l

2
))

n(c̃
(i)
−l)

where

n(x) =
M∑

j=1

exp(− 1

2σ2
(x− c(j)2)).

We obtain a product of one-dimensional functions which are easy to evaluate.

6.2 Improving the Laplace Approximation

Consider an integral of the form

P (D) =
∫

P (D|w)P (w)dw

where D denotes observed data and where w are model parameters. Such integrals need
to be evaluated for calculating the evidence of a model (Heckerman, 1999). The Laplace
approximation gives

P (D) ≈ P (D|wMAP )P (wMAP )(2π)−d/2|A|−1/2

with

wMAP = arg max
w

(P (D|w)P (w)) A = − ∂2

∂w2
log P (D|w)P (w)

∣∣∣∣∣
w=wMAP

.

Let’s now consider the coordinate system, in which A is diagonal. Here, the Laplace ap-
proximation corresponds to a Taylor expansion in log P (D|w)P (w) where only quadratic
non-interacting terms are considered. We can now perform the LFA in this new coordinate
system which maintains all higher non-interacting terms in the Taylor expansion.
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The LFA applied in the new coordinate system leads to

P (D) ≈ 1

P (wMAP )N−1

N∏
l=1

∫
g(w̃MAP,−l)dwl.

The LFA is exact, if P (D|w)P (w) factorizes in the rotated coordinate system. The 1-D
integrals can be solved numerically.

As a example, consider that

P (D|w)P (w) = B N (w; wMAP , Σ) +
C

V
b(w − wMAP )

where N (w; wMAP , Σ) is a normal density of w, evaluated at wMAP with covariance Σ.
Furthermore, b(x) is equal to one if |x| < 1 and zero elsewhere, B and C are constants
and V =

∫
b(w − wMAP )dw.

Then,
∫

P (D|w)P (w)dw = B+C which is the result the LFA would also give if we ap-
ply the LFA in the coordinate system in which Σ is diagonal. The Laplace approximation
would provide the incorrect result

B +
C

V
(2π)d/2|Σ|−1/2.

7 Conclusions

We have introduced the notions of a local factorization, a local independence and of the
local Kullback-Leibler divergence. We have introduced the local factorizing approxima-
tion (LFA) and have highlighted a number of potential applications. In addition to the
evidence, the LFA can also be used to calculate an approximation to the entropy of a dis-
tribution and might also find applications in variational approximations (see, for example,
Jaakkola, 2000).
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