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Abstract

The rows of the design matrix in linear regression are the inputs of the training
data set. Normal regression is row regression: the goal is to predict a training
target from the corresponding row in the design matrix using a linear model. In
contrast, in column regression we predict the components of the test input from the
corresponding columns of the design matrix using a linear model and then use this
model to predict the target of the test vector with the training targets as input.
At first sight, column regression seems quite ridiculous. Surprisingly, both row and
column regression give precisely identical predictions!

We discuss consequences of this feature for the sensitivity of regression towards
regularization. In the context of collaborative filtering this result means that for
linear regression, the prediction of customer preferences for certain items based
on their preferences for other items is equivalent to the prediction of customer
preferences for certain items based on the preferences of other customers for the
same item.

1 Introduction

The training data set in linear regression consists of a set of input vectors and the cor-
responding targets. The parameters in the learned weight vector describe the linear
influences of the inputs on the target. To obtain the prediction of the model for a new
test input, one forms the inner product between the learned weight vector and the new
input vector. We consider this to be row linear regression. Now let’s consider the or-
thogonal problem and flip rows and columns. Now we form a linear model to predict
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the components of the new input vector given the old input vectors. At first sight, this
appears to be a rather strange idea since input vectors might be generated independently
and might therefore be unpredictable from the input vectors in the training data set. We
are now even more brave and, based on this linear model, try to predict the target of the
new data point using as inputs the targets in the training data set. We consider this to
be column linear regression. Surprisingly, both row and column linear regression lead to
the same prediction.

In the Appendix we show that the equivalence also holds if no regularization is use
but if the Moore-Penrose matrix inverse is used for calculating the weight vector.

An interesting consequence of the equivalence between row and column regression
is that if either the row or the column problem is well defined, i.e. if there are either
many more rows than columns or many more columns than rows, we obtain a prediction
which is insensitive to the degree of regularization used (unless the model is very strongly
regularized). As a consequence, the solution to a linear system with a large number of
inputs and a small number of training data is well defined in the sense that the prediction
is insensitive to the degree of regularization (unless the model is very strongly regularized).

This insight might be of importance in applications where both generative models
underlying row and column regression make sense. Such an example is collaborative
filtering where rows correspond to users and columns correspond to the items users have
rated previously. With row regression, we would form a model to predict the probability
that a user might be interested in a new item with the past ratings of this user as input.
With column regression we would form a model to predict the probability that a user
might be interested in a new product with the ratings of the other users for the new
product as input. Both views seem to be reasonable. Based on the analysis in this paper,
both approaches would lead to exactly identical predictions if one uses linear regression
models. One would chose the approach best in terms of the practical constraints.

The main part of the paper is the following section where we introduce row and column
linear regression and discuss their properties. We end with a concluding section.

2 Row and Column Linear Regression

2.1 Row Linear Regression

We start with a brief review of linear regression. Consider a training data set of N input
vectors with dimension D, {xi}N

i=1 where xi = (xi,1, . . . xi,D)T . xi is the i-th row of the
N × D design matrix X. yi is the scalar target value associated with xi. y is the N -
dimensional vector of targets. We now want to form a linear model xT w to predict the
target from the input. The least squares weight vector w(LS) minimizes the cost function

C(LS) =
N∑

i=1

yi −
D∑

j=1

xi,jwj

2

= (y −Xw)T (y −Xw).
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Often one is interested to stabilize the solution and one adds a regularization term and
uses the ridge regression cost function (Hastie, Tibshirani and Friedman, 2001)

C(RR) =
N∑

i=1

yi −
D∑

j=1

xi,jwj

2

+ λ
D∑

j=1

w2
j = (y −Xw)T (y −Xw) + λwT w.

Here, λ ≥ 0 modifies the degree of regularization. The minimizer is the regularized
solution

w(RR) = (XT X + λI)−1XT y

where I stands for the unity matrix.
Now, consider a new test input vector u. We predict for the new input u

t̂ =
D∑

j=1

ujw
(RR)
j = uT w(RR). (1)

2.2 Column Linear Regression

Now we do something apparently unreasonable and try to predict the components of u
from the columns of X, thus the new design matrix is XT , the new target vector is u.
Equivalently,

C(RR) =
D∑

j=1

(
uj −

N∑
i=1

xi,jvi

)2

+ λ
N∑

i=1

v2
i = (u−XT v)T (u−XT v) + λvT v

is the regularized cost function.
We obtain as minimizer

v(RR) = (XXT + λI)−1Xu. (2)

Now we use this model to predict t with y as input and obtain as estimate

t̃ =
N∑

i=1

yiv
RR
i = yT vRR. (3)

2.3 The Equivalence of Row and Column Regression

Consider the identity,

(XXT + λI)−1X = X(XT X + λI)−1. (4)

Using this identity we obtain

t̃ = yT vRR = yT (XXT + λI)−1Xu = yT X(XT X + λI)−1u = uT (XT X + λI)−1XT y

= tT wRR = t̂

where we have used that t̂ = t̂T since t is a scalar.
This result shows that indeed the predictions of row and column regression are iden-

tical.
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2.4 Primal and Dual Regression

The solution of column regression, Equation 3, can also be written as (using t̃ = t̃T )

t̃ = yT vRR = yT (XXT + λI)−1Xu = kT (K + λI)−1y

where the Gram matrix K has components (K)i,j = xT
i xj and the vector k has components

(k)i = uT xi. This is the solution to the dual version of ridge regression (Saunders, C.,
Gammerman, Vovk, V., 1998). Thus, Equation 2 by itself is not surprising; the surprising
fact is that the solution to dual regression takes on exactly the form of column regression,
as discussed.

2.5 Discussion

What is really going on? Let’s assume that row regression corresponds to the true data-
generating process. In column regression we now form a model to predict the components
of the input vector u from the columns of X and vRR

i indicates how well u can be predicted
from xi reflecting the similarity between xi and u. The similarity between xi and u also
reflects the similarity between yi and t. Somehow, against one’s intuition, this mechanism
also works when the input vectors xi and u where generated independently in which case
the asymptotic (“true”) {vRR

i }D
i=1 with D →∞ would be zero. The fact that the {vRR

i }D
i=1

are not zero is then, in this sense, only an effect of finite “sample”, i.e. a finite D.

2.6 A Consequence for Collaborative Filtering

As discussed earlier, for collaborative filtering both row and column generative models
are sensitive. Consider that xi,j is the rating of user i for item j and uj is the rating of
the user of interest for items i. yi is the known rating of user i for a given new item. For
the user of interest with ratings u we would like to predict the user’s interest in the new
item. One might now form a linear model to predict the ratings for the new item based
on the ratings on items 1 to D (the row model) or a linear model to predict the rating of
the new user based on the ratings of other users (the column model). Our theory tells us
that both models make identical predictions..

2.7 Consequence for Regularization

Consider that N >> D in which case row regression is well defined and insensitive
to regularization. According to our results, column regression which has many fewer
equations than variables is also well defined as long as a minimal degree of regularization
is used and as long as the degree of regularization is not unreasonable large. Consequently,
row and dual regression are both well defined when either D << N or N << D. Only
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Figure 1: λ-sensitivity of the prediction error as a function of the training set size N .
In the experiment, N random input vectors with dimension D = 20 were generated.
The target y is a linear function of the inputs plus random noise. For each data set
size, regularized linear models are trained where the regularization parameter λ is varied

between 0.1 and 1.2. The λ-sensitivity is defined as maxλ(test-error(λ))−minλ(test-error(λ))

maxλ(test-error(λ))
.

The plot shows the λ-sensitivity as a function of N . One sees that the test set error is
most sensitive if N ≈ D and is rather insensitive if N << D or N >> D.

when D ≈ N , a fine-tuning of the regularization parameter λ is required, a fact well-known
from practice.1 Figure 1 illustrates this point.

2.8 Column Regression is not Completely Identical to Row Re-
gression

Primal and Dual regression are mathematically identical. In particular they give the same
estimate of the variance in the prediction.

var(t̂) = σ2
yu

T (XT X + λI)−1XT X(XT X + λI)−1u

= σ2
yu

T XT (XXT + λI)−1(XXT + λI)−1Xu.

1More precisely, we should compare D to the effective number of free parameters
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The predicted variance of the column regression is different,

var(t̂) = σ2
uy

T (XXT + λI)−1XXT (XXT + λI)−1y.

Here, we assume i.i.d. target noise with variance σ2
y , respectively σ2

u. Since σ2
y and σ2

u are
unrelated, the predicted variance cannot be identical in both cases.

This illustrates that the equivalence between row and column regression is more or
less a remarkable coincidence.

3 Conclusions

The equivalence between row and column regression is quite surprising. We indicated
potential consequences to collaborative filtering and to regularization. The equivalence
does not hold for nonlinear systems. Here, the sensible combination of row and column
regression might be an interesting area of future work.

4 Appendix

(With he help of an anonymous reviewer)
The equivalence is also valid if no regularization is used and one exploits the Moore-

Penrose. Let X† be the Moore-Penrose matrix inverse of X. Then we obtain as weight
vector for row regression

w(Penrose) = X†y

and the prediction is

t̃ = uT w(Penrose) = uT X†y

On the other hand we obtain for column regression

v(Penrose) =
(
XT

)†
u

and the prediction is

t̃ = yT v(Penrose) = yT
(
XT

)†
u

Since (
XT

)†
=
(
X†
)T

the identity follows.
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