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Abstract

We derive solutions for the problem of missing and noisy data in nonlinear time-
series prediction from a probabilistic point of view. We discuss different approxima-
tions to the solutions, in particular approximations which require either stochastic
simulation or the substitution of a single estimate for the missing data. We show
experimentally that commonly used heuristics can lead to suboptimal solutions. We
show how error bars for the predictions can be derived and we show how our results
can be applied to K-step prediction. We verify our solutions using two chaotic time
series and the sun-spot data set. In particular, we show that for K-step prediction
stochastic simulation is superior to simply iterating the predictor.

1 Introduction

Over the past years, neural networks have been applied successfully in numerous appli-
cations to nonlinear time-series prediction (Weigend and Gershenfeld, 1994). Common
problems in time-series prediction are missing and noisy data. The goal is to obtain
optimal predictions even if some measurements are unavailable, are not recorded or are
uncertain. For linear systems, efficient algorithms exist for prediction with missing data
(Kalman, 1960, Shumway and Stoffer, 1982). In particular, the Kalman filter is based
on a state space formulation and achieves optimal predictions with arbitrary patterns of
missing data. For nonlinear systems, the extended Kalman filter can be employed which is
based on a first order series expansion of the nonlinearities. The extended Kalman filter
is suboptimal (Bar-Shalom and Li, 1993) and summarizes past data by an estimate of the
means and the covariances of the variables involved. The extended Kalman filter fails to
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give good predictions if the system is not approximated well by a localized linearization,
i.e. for highly nonlinear systems, in particular if the inaccuracies in the approximations
propagate through several iterations, as in K-step prediction. In this paper we propose
stochastic sampling which converges to the optimal solution as the number of samples
approaches infinity and can handle arbitrary patterns of noisy and missing data. We
demonstrate the benefits of stochastic sampling using three examples.

The related issue of training a time-series model with missing and noisy data will be
addressed in a companion paper (Tresp and Hofmann, 1997).

In Section 2 we derive equations for prediction with missing data. As in the case of
regression and classification with missing data (Little and Rubin, 1987, Ahmad and Tresp,
1993, Buntine and Weigend, 1991), the solution consists of integrals over the unknown
variables weighted by the conditional probability density of the unknown variables given
the known variables. In time-series prediction we can use the fact that the unknown data
themselves are part of the time series. By unfolding the time-series in time we obtain a
Bayesian network (Pearl, 1988, Jensen, 1996) (a probabilistic graph with directed arcs)
which allows us to clarify dependencies between the variable to be predicted and the
measurements which provide information about that variable. In Section 3 we generalize
the results towards noisy measurements. For nonlinear systems, the integrals cannot be
solved in closed form and have to be approximated numerically. In Section 4 we propose
stochastic sampling which has the advantage that asymptotically (i.e. with the number
of samples approaching infinity) we obtain the optimal prediction. As an alternative ap-
proximation, we propose that maximum likelihood estimates can be substituted for the
missing data. Furthermore, we discuss solutions based on an iterative approximation of
the information provided by past data using probability density estimates. In Section 5
we present experimental results demonstrating the superiority of the stochastic sampling
approach. In particular, we show that for K-step prediction, stochastic sampling is supe-
rior to both simply iterating the system and the extended Kalman filter (the latter two
turn out to be identical for K-step prediction). In Section 6 we present conclusions.

2 Prediction with Missing Data

2.1 An Illustrative Example

Consider the situation depicted in Figure 1, top. The time series model is

yt = f(yt−1, yt−2) + εt

where εt is additive i.i.d. noise and f() is a nonlinear function. The goal is to predict yt

based on past measurements. Let’s assume that yt−2 is missing. A common procedure is
to obtain an estimate ŷt−2 of the missing value and then substitute that estimate in the
predictive model

ŷt = f(yt−1, ŷt−2).
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Figure 1: Top: yt−2 is missing and the goal is to predict yt. The estimate ŷt is dependent
on the substituted value for yt−2. Bottom: A time series unfolded in time. White squares
indicate unknown variables and black squares indicate measured variables. The arrows
indicate that the next realization of the time series can be predicted from only the two
most recent values, yt = f(yt−1, yt−2) + εt. Here, yt−2 is assumed to be missing. The
bracket indicates the nodes in the Markov boundary of yt−2 (see Section 4.1).
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Figure 2: The figure displays the Bayesian network corresponding to the problem of time-
series prediction with noisy measurements (N = 2). White squares indicate unknown
variables and black squares indicate measured variables.
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In some applications it might make sense to substitute for the missing value the previous
value ŷt−2 = yt−3 or to substitute the predicted value ŷt−2 = f(yt−3, yt−4). Both heuristics
might often work in practice but note the following two points:

• since in our example yt−1 is known, it should improve our estimate of yt−2,

• since yt−2 is only estimated, it should be possible to achieve better predictions by
not just substituting one estimate but several estimates and by then averaging the
predictions based on those estimates.

In the following sections we will show that a theoretical analysis confirms these intuitions.

2.2 Theory

Let yt be the value of the discrete time-series at time t. We assume that the underlying
probabilistic model of the time series is of order N and can be described by

yt = f(yt−1, yt−2, . . . , yt−N) + εt (1)

where f() is either known or approximated sufficiently well by a function approxima-
tor such as a neural network. εt is assumed to be additive i.i.d. zero-mean noise with
probability density Pε(ε) and typically represents unmodeled dynamics. The conditional
probability density of the predicted value of the time series is then

P (yt|yt−1, yt−2, . . . , yt−N) = Pε(yt − f(yt−1, yt−2, . . . , yt−N)). (2)

Often, Gaussian noise is assumed such that

P (yt|yt−1, yt−2, . . . , yt−N) = G(yt; f(yt−1, . . . , yt−N), σ2) (3)

where G(x; c, σ2) is our notation for a normal density evaluated at x with center c and
variance σ2.

It is convenient to unfold the system in time which leads to the system shown in
Figure 1, bottom. The realizations of the time series can now be considered random
variables or nodes in a Bayesian network, in which directed arcs indicate direct depen-
dencies (Pearl, 1988). The joint probability density in a Bayesian network is the product
of all conditional densities and the prior probabilities

P (y1, y2, . . . , yt) = P (y1, . . . , yN)
t∏

l=N+1

P (yl|yl−1, . . . , yl−N) (4)

where P (y1, . . . , yN) is the prior probability of the first N values of the time series.
We use the following notation: Y u

t2,t1
⊆ {yt1 , yt1+1, . . . , yt2} is the set of missing variables

from t1 to t2, Y m
t2,t1

⊆ {yt1 , yt1+1, . . . , yt2} is the set of measurements between t1 and t2 and
Yt2,t1 = Y m

t2,t1
∪ Y u

t2,t1
(t1 ≤ t2).
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The theory of Bayesian networks is helpful to decide, which past measurements provide
information about yt. Let A and B be nodes in a directed acyclic graph D (in our case a
Bayesian network). A and B are independent given the evidence entered into the network
if they are d-separate. The definition of d-separation is (Pearl, 1988, Jensen, 1996):

DEFINITION(d-separation): Two variables A and B in a directed acyclic graph are
d-separated if for all paths between A and B there is an intermediate variable V such that
either
(1) the connection is serial or diverging and the state of V is known
or
(2) the connection is converging and neither V nor any of V s descendents have received
evidence.1

In other words, A and B are d-separated if every path between both nodes is blocked
by either condition (1) or (2). An example of a serial connection is → V →, of a di-
verging connection is ← V → and of a converging connection is → V ←. We now apply
the concept of d-separation to time-series prediction. Let yt−L be the most recent case,
where N consecutive measurements are known, i. e. yt−L, yt−L−1, . . . , yt−L−N+1 are all
known. In this case, yt is d-separate from measurements previous to t− L−N + 1 given
yt−L, yt−L−1, . . . , yt−L−N+1. Consider Figure 1 (bottom). Here, yt−5 is d-separated from yt

by yt−3 and yt−4 since these nodes block all paths from yt−5 to yt. The same d-separation
is true for all measurements previous to yt−5. yt−4, on the other hand is not blocked by
yt−3 and yt−1 since there is the path yt−4 → yt−2 → yt which is not blocked.

Following the discussion in the previous paragraph, yt is independent of measurements
earlier than yt−L−N+1 given yt−L, yt−L−1, . . . , yt−L−N+1. This means that we have to con-
dition yt only on measurements Y m

t−1,t−L−N+1 and we obtain for the expected value of the
next realization of the time series

E(yt|Y m
t−1,1) =

∫
ytP (yt|Y m

t−1,t−L−N+1)dyt (5)

=
∫

f(yt−1, . . . , yt−k, . . . , yt−N) P (Y u
t−1,t−N |Y m

t−1,t−L−N+1) dY u
t−1,t−N

=
∫

f(yt−1, . . . , yt−k, . . . , yt−N) P (Y u
t−1,t−L+1|Y m

t−1,t−L−N+1) dY u
t−1,t−L+1

where (assuming t − L ≥ N)

P (Y u
t−1,t−L+1|Y m

t−1,t−L−N+1) =
1

const
×

t−1∏
l=t−L+1

P (yl|yl−1, . . . , yl−N)

and const = P (Y m
t−1,t−L+1|Y m

t−L,t−L−N+1) is a normalization constant independent of the
unknown variables.

1In our case this means that neither V nor any of V s descendents are known.
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3 Prediction with Noisy Measurements

Let again yt = f(yt−1, yt−2, . . . , yt−N) + εt but now we assume that we have no access to
yt directly. Instead, we measure zt = yt + δt where δt is independent zero-mean noise
(Figure 2) with probability density Pδ(δ). Let Zt−1,1 = {z1 . . . zt−1} and Yt,1 = {y1 . . . yt}.
The joint probability density is

P (Yt,1, Zt−1,1) = P (y1, . . . , yN)
t∏

l=N+1

P (yl|yl−1, . . . , yl−N)
t−1∏
l=1

P (zl|yl) (6)

with P (zl|yl) = Pδ(zl − yl). The corresponding Bayesian network is shown in Figure 2.
Note, that for each known variable zt−k there is a path to yt which is not blocked by any
of the other known variables and which has no converging arrows, i.e. the path zt−k ←
yt−k → yt−k+1 → . . . → yt. This means that yt is dependent on all past measurements.

The expression for the expected value of the next instance of the time series (predic-
tion) is then

E(yt|Zt−1,1) =
∫

f(yt−1, . . . , yt−N) P (Yt−1,t−N |Zt−1,1) dYt−1,t−N (7)

=
∫

f(yt−1, . . . , yt−N) P (Yt−1,1|Zt−1,1) dYt−1,1

where P (Yt−1,1|Zt−1,1) = 1/const × P (Yt−1,1, Zt−1,1) which is obtained from Equation 6.
const = P (Zt−1,1) is a normalization constant independent of Yt−1,1. Note, that the
case of noisy measurements includes the case of missing data. In particular, if we allow
the measurement noise to be time-dependent (which does not introduce any additional
complexity) we can use σ2

δ (t) = 0 for certain measurements and σ2
δ (t) = ∞ for unknown

data.

4 Approximations to the Theoretical Solutions

In general, if f() is a nonlinear function the equations (5) and (7) we obtained for pre-
diction cannot be solved analytically and must be approximated numerically. First, we
propose an approximation based on stochastic simulation which provides the optimal pre-
diction when the number of samples approaches infinity. As a second approximation, we
discuss an approach where the most likely values are substituted for the missing data.
The latter approach tends to be computationally less expensive but provides biased pre-
dictions. Finally, we discuss the extended Kalman filter which can be used on-line and is
based on a first order series expansion of the nonlinearities.
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4.1 Stochastic Simulation

We will discuss a solution based on stochastic simulation. Note that all solutions have the
general form

∫
h(U,M)P (U |M)dU where U is a set of unknown variables and M is a set

of known variables. An integral of this form can be solved by drawing random samples
of the unknown variables following P (U |M). Let U1, . . . , US denote these samples. Then
we can approximate

∫
h(U,M)P (U |M)dU ≈ 1

S

S∑
s=1

h(U s,M).

The problem now reduces to sampling from P (U |M). Let’s first assume that only one
variable is missing. Then the problem reduces to sampling from a one-variate distribution
which can be done using sampling-importance-resampling or other sampling techniques
(Bernardo and Smith, 1994).

If more than one realization is missing the situation becomes more complicated. The
reason is that the unknown variables are in general dependent and we have to draw from
the joint probability distribution of all unknowns. A general solution to this problem is
Markov Chain Monte Carlo sampling, with the Metropolis-Hastings algorithm and Gibbs
sampling being the two most important representatives. We will briefly describe the
latter.

In Gibbs sampling we initialize the unknown variables either randomly or better with
reasonable initial values. Then we select one of the unknown variables ui ∈ U and pick
a sample from the one-dimensional conditional density P (ui|MB(i)) and set ui to that
value. MB(i) is the Markov boundary of ui.

2 Then we select another unknown variable
uj, pick a sample from P (uj|MB(j)) and set uj to that value. We repeat the procedure
for another unknown variable and so on. In this way, repeated samples of all unknowns
are drawn. Discard the first samples since they strongly depend on which initial values
were chosen. Then, for strictly positive distributions, samples are produced with the
correct distribution, that is for s → ∞, U s tends in distribution to a joint random vector
whose joint density is P (U |M) (Bernardo and Smith, 1994). Gibbs sampling reduces the
problem of drawing a sample from the joint density of all unknowns to sequentially drawing
samples from the univariate densities of each unknown conditioned on the variables in its
Markov boundary.

In the case of missing data, we have to generate samples from all missing data
Y u

t−1,t−L+1. In the case of noisy measurements we even have to sample from all Yt−1,1.
In practice, one would restrict the sampling to a reasonably chosen time window in the
past.

2We only have to condition on the nodes in the Markov boundary since, by definition of the Markov
boundary, under the assumption that all nodes in the Markov boundary are known, the node ui is d-
separated from the remaining variables in a Bayesian network. The Markov boundary of a node consists
of its direct parents, its direct successors and all direct parents of its direct successors (Pearl, 1988) (as
example, see Figure 1).
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For independent samples, the variance of an estimated mean is equal to σ2
s/S where

σ2
s is the variance of an individual sample. Unfortunately samples generated by Gibbs

sampling and other Markov Chain Monte Carlo sampling techniques are typically highly
correlated such that —depending on the particular problem— a large number of samples
might be required for a good estimate. This is particularly true if regions of high proba-
bility are separated by regions of low probability such that the transition between regions
has low probability. Another disadvantage is that for each new prediction we have to
perform a separate sampling process. Neal (1993) discusses hybrid Monte-Carlo methods
and other advanced sampling techniques which try to overcome some of the difficulties
associated with dependent samples.

Sampling is simple if only samples of future values are required as in K-step prediction
(for details, see Section 5.1). The reason is that we can sample forward in time by simply
simulating the system. Note that in this procedure, independent samples are generated.

Note, that the idea of generating multiple samples from the unknown variables and
averaging the responses using those samples confirms the intuition formulated in Sec-
tion 2.1 and is known as multiple imputation in statistical approaches to regression and
classification with missing data (Little and Rubin, 1987).

Note, that the samples can also be used to estimate variances and covariances from
which error bars can easily be derived. As examples, if {ys

t}S
s=1 are samples generated

from yt, the standard deviation of yt can be estimated as

stdev(yt) ≈
√√√√ 1

S − 1

S∑
s=1

(ys
t − ŷt)2

and the standard deviation of the estimated ŷt = 1/S
∑S

s=1 ys
t can be estimated as

stdev(ŷt) ≈
√√√√ 1

S(S − 1)

S∑
s=1

(ys
t − ŷt)2.

4.2 Maximum-Likelihood Substitution

The approach consists of substituting the most likely values

Y ml
t−1,1 = arg max

Y u
t−1,1

P (Yt−1,1)

for the missing variables. Then, we estimate

ŷt = f(Y ml
t−1,t−N , Y m

t−1,t−N). (8)

Considering, as example, the case with one missing variable yt−k and assuming Gaussian
noise

yml
t−k = arg min

yt−k

t−1∑
l=t−k

(yl − f(yl−1, yl−2, . . . , yl−N))2 (9)
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we simply find the substitution which minimizes the sum of the squared errors. As another
interesting case consider noisy measurements and Gaussian noise distributions

Y ml
t−1,1 = arg min

Y u
t−1,1

[− log P (YN,1) +
1

2σ2
ε

t−1∑
l=N+1

(yl − f(yl−1, yl−2, . . . , yl−N))2 +
1

2σ2
δ

t−1∑
l=1

(yl − zl)
2]

where σ2
ε and σ2

δ are the variances of the two noise sources (Section 3). Note, that this is
a multidimensional optimization problem. Also note that, for highly nonlinear systems,
Equation 8 can be a crude estimate of the expected value and the prediction based on a
maximum likelihood estimate of the unknowns can therefore be highly biased.

4.3 Solutions Based on Iterative Density Estimation and the
Extended Kalman Filters

We consider the case of prediction with noisy measurements. Note that a solution based on
stochastic simulation of Equation 7 (noisy measurements) means that we have to sample
from the space of all unknown variables y1, . . . , yt. This becomes intractable for large t.
To summarize the information about past measurements more efficiently, we can use that

P (Yt−1,t−N |Zt−1,1) = (10)

P (zt−1|yt−1)
∫

P (Yt−2,t−N−1|Zt−2,1)P (yt−1|Yt−2,t−N−1)dyt−N−1∫
P (zt−1|yt−1)P (Yt−2,t−N−1|Zt−2,1)P (yt−1|Yt−2,t−N−1)dYt−1,t−N−1

.

This equation can be derived from the Chapman-Kolmogorov equation and by applying
Bayes’ rule (Lewis, 1986). The update equation implies that we can summarize all infor-
mation provided by the past measurements by approximating P (Yt−1,t−N |Zt−1,1) and use
Equation 10 to update the estimates on-line as time progresses and more measurements
become available.

If the system is linear and the noise is normally distributed, Equation 10 can be
solved analytically and the probability densities can be represented by a multi-dimensional
normal distribution. This is the well-known Kalman filter.

In general the integral in Equation 10 must be solved numerically and an appropriate
representation for the conditional density has to be found. Neural network techniques for
approximating joint and conditional densities exist (Neuneier et al., 1994, Bishop, 1994).

In Lewis (1986) it is shown that for continuous time systems the time update leads
to the Fokker-Planck equation which can only be solved in a few simple cases. The
problem can be simplified by only requiring to find the iterative estimates of the mean
and the covariance. Unfortunately, this approach leads to computationally intractable
solutions (Lewis, 1986). The update equations become tractable by using a first order
series expansion of the nonlinearities (Lewis, 1986, Bar-Shalom and Li, 1993) which leads
to the extended Kalman filter. The extended Kalman filter can be used for both discrete
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and continuous time systems and summarizes past data by an estimate of the mean
and the covariance of the variables involved and is suboptimal in the sense that even
with a perfect model, due to the linearization of the system, it does not provide optimal
predictions (Lewis, 1986, Bar-Shalom and Li, 1993). The Kalman filter is an iterative
algorithm and has the great advantage that it can be used on-line. The Kalman filter
has been used for training neural networks and for neural control (Singhal and Wu, 1989,
Kadirkamanathan and Niranjan, 1991, Puskorius and Feldkamp, 1994).

5 Experiments

5.1 K-step Prediction

K-step prediction can be considered a special case of prediction with missing data: yt

must be predicted with yt−1, . . . , yt−K+1 missing. In this case, stochastic simulation is
very simple: generate a sample ys

t−K+1 of the first missing value using the distribution
P (yt−K+1|yt−K , . . . , yt−K−N+1). Using that sample and the previous measurements, gener-
ate a sample of yt−K+2 following P (yt−K+2|ys

t−K+1, . . . , yt−K−N+2) and so on until a sample
of each unknown is produced. Repeat this procedure S times and approximate

E(yt|Yt−K,1) ≈ 1

S

S∑
s=1

f(ys
t−1, y

s
t−2, . . . , y

s
t−N)

where we have assumed that K > N . If K ≤ N substitute measured values for yt−k

for k ≥ K. Note, that in this procedure samples are simply generated by simulating the
system including the noise model.

5.1.1 Logistic Map

In the first experiment, we used the noisy logistic map yt = 4qt−1(1 − qt−1) + εt with
0 ≤ qt−1 < 1 and where

qt =




yt if 0 ≤ yt < 1
yt − 1 if yt ≥ 1
yt + 1 if yt < 0

where εt is uncorrelated Gaussian noise with a variance of σ2 = 0.01.3

Figure 3 (left) shows a realization of the time series and the predictions based on
stochastic simulation and a simple iteration of the map. Figure 3 (right) shows the mean
squared error as a function of K averaged over 2000 realizations. Shown are the iterated

3Note, that here and in the following experiments qt is only introduced for notational convenience to
differentiate the cases when additive noise results in a value of the time series for which the iteration is
not defined. qt is therefore not a “real” hidden variable.
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Figure 3: Left: The noisy logistic map (continuous), the K-step prediction using stochas-
tic simulation (dashed) and the K-step prediction by simply iterating the logistic map
(dotted). The prediction based on stochastic simulation converges for large K towards
the mean of the time-series (which is the optimal solution, since chaotic time series be-
come quickly unpredictable for large K.). Right: The mean squared error as a function
of K in K−step prediction. The iterated solution (continuous) and the approximation
based on stochastic simulation with 3 (dotted) and 20 samples (dashed) are shown. Note,
that for K = 1 (one-step prediction) the iterated system gives the optimal prediction. For
K > 1 the accuracy of the prediction of the iterated solution quickly deteriorates. The
error bars (± one standard deviation) are derived from 2000 independent runs.

system (continuous line) and solutions following the stochastic sampling approach (dotted
and dashed). As expected, for K = 1 the iterated solution is optimal, but for K > 1,
stochastic simulation even with only few samples is far superior. This indicates that for
highly nonlinear stochastic time series simply iterating the model K-times as it is usually
done in K−step prediction is suboptimal if K > 1. Note, that the K−step prediction of
the extended Kalman filter, which is based on a local linearization of the nonlinearities,
is identical to the iterated system (and therefore is suboptimal as well).

5.1.2 Sun-Spot Data

The second experiment uses the sun-spot data which are records of yearly sun-spot ac-
tivities from the year 1700 to 1979. First, a multi-layer perceptron was trained to predict

11



the sun-spot activity based on the 12 previous years of sun-spot activity. The neural
network had 12 inputs and one hidden layer with 8 hidden units. Following other authors
we trained on data from 1700-1920. We used a weight decay parameter of 0.2.4

After training, the mean squared error on the training set is 51.6, on test set number
one (data from 1921 to 1955) the mean squared error is 161.5 and on test set number two
(data from 1956 to 1979) is 682.0. We assumed normally distributed additive noise with
a variance equal to the average error on the whole data set σ2 = 124. Figure 4 shows the
sun-spot data (dots) from T = 1738 to T = 1987. In the experiment we perform K-step
prediction starting from T = 1738 (i.e. T = 1738 corresponds to one-step prediction and
T = 1987 corresponds to 250-step prediction). The top part of the figure displays the
prediction of the iterated system and the second plot shows the prediction by stochastic
simulation using 1000 samples. The third plot shows one simulated run (including the
noise model). Note, that since the latter includes the simulated noise it is more noisy than
the iterated system but note also, that in “character” the more noisy time-series is more
similar to the true time-series (dots). Unlike the prediction based on the iterated system
the prediction based on stochastic simulation converges towards a constant for large K
and gives the correct estimate in predicting the mean if K is large.

Figure 5 shows the mean squared prediction error as a function of K. We see that
for K >> 1 stochastic simulation is clearly superior. Recall, that for K = 1 the iterated
prediction is optimal.

5.2 Prediction with Missing Data

In this experiment we used the Henon map5 yt = 1−aq2
t−1+bqt−2+εt with a = 1.4, b = 0.3

and where

qt =




yt if −1.26 ≤ yt < 1.26
yt − 1.26 if yt ≥ 1.26
yt + 1.26 if yt < 1.26

and where εt is uncorrelated Gaussian noise with a variance of σ2 = 0.1. The goal is to
predict yt with different patterns of yt−1, yt−2, yt−3, yt−4 missing and yt−5, yt−6 known. We
used stochastic simulation (here, Gibbs sampling) of Equation 5 for prediction. Figure 6
shows the results.

Apparent is the considerable reduction in error for the solution based on stochastic
simulation compared to the heuristic solution.

4Readers unfamiliar with weight decay or the multi-layer perceptron, please consult Bishop (1994).
5A variation of this experiment was already presented by Tresp and Hofmann (1995).

12



1750 1800 1850 1900 1950
0

100

200

year

s
u

n
s
p

o
t 

a
c
ti
v
it
y

1750 1800 1850 1900 1950
0

100

200

year

s
u

n
s
p

o
t 

a
c
ti
v
it
y

1750 1800 1850 1900 1950
0

100

200

s
u

n
s
p

o
t 

a
c
ti
v
it
y

year

Figure 4: Shown are the sun-spot data from T = 1738 to T = 1987 (dots). The continuous
lines show the K-step predicted value (K increasing with T ) based on three different
methods. The plot on top shows the iterated system, the plot in the middle shows the
prediction based on stochastic simulation using S = 1000 samples and the plot on bottom
shows one run of the stochastic simulation.
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Figure 5: Shown is the mean squared error for K-step prediction for the iterated system
(dash-dotted) and the prediction based on stochastic simulation (continuous) for the sun-
spot data. It is apparent, that for K >> 1, the prediction based on stochastic simulation
is superior. Shown are averages over all possible experiments where in each experiment
the prediction was started from a different point in time. For 1-step prediction we used
250 different starting times possible which means we averaged over 250 experiments and
for 50-step prediction, we used 200 possible starting times and consequently, we could
average over 200 experiments.
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Figure 6: Time series prediction with missing data. The patterns of the missing data
are indicated using “X” for known, “0” for unknown values, and “ ” for the value to be
predicted. As example, XXOO indicates that yt−4 and yt−3 are known and that yt−1

and yt−2 are missing. yt−5 and yt−6 are always known. The goal is to predict yt using
either stochastic sampling (left bars) or a heuristic where predicted values are substituted
for the missing data (right bars). The height of the bars indicates the squared prediction
error averaged over 1000 experiments. The error bars show ± their standard deviation.
For stochastic sampling, we used 200 samples for each prediction. It can be seen that
except for one-step prediction (XXXX ) the stochastic sampling solution is significantly
better than the heuristic.
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6 Conclusions

We have shown how the problem of missing and noisy data can be approached in a prin-
cipled way in time-series prediction. By unfolding the time-series in time we could apply
ideas and methods from the theory of Bayesian networks. We proposed approximations
based on stochastic simulations. Experimental results using the logistic map, the Henon
map and the sun-spot data confirmed that stochastic sampling leads to excellent predic-
tions which are clearly superior to simple heuristical approaches. The main drawback
of stochastic sampling is that generated samples are often highly correlated and a large
number of samples might be required to obtain good approximations. For the problem
of noisy measurements, the solution would require to generate samples from the joint
probability space of all past realizations of the time-series which is clearly unfeasible. In
practice, one would only sample from realizations of the time series up to a reasonable
chosen time window into the past, which —as a draw back— would lead to suboptimal
solutions even with a large number of samples. In this paper we focussed on univariate
time-series prediction. The results can easily be extended to multi-variate times series
(see the appendix).

Appendix

Multivariate Nonlinear Time-Series

The results can easily be generalized to general nonlinear multivariate models. It is con-
venient to switch to a state space representation where now yt ∈ <Dy is a Dy-dimensional
state space vector containing all relevant states of all time-series involved. Typically, yt

will be the present and past realizations of all time-series involved, up to a time window
in the past. The nonlinear states space model is

yt = f(yt−1) + εt

where εt is a Dy-dimensional vector of possibly correlated noise and with probability
density Pε. We assume that we have access to a Dz-dimensional measurement vector
zt ∈ <Dz with

zt = g(yt) + δt

where δt is a Dz-dimensional vector of possibly correlated noise and with probability
density Pδ. Recall from the discussion in Section 3 that the problem of missing data can
be considered a special case of noisy data. The joint density of the time-series up to time
t (not including zt, since we consider predictions) is

P (Yt,1, Zt−1,1) = P (y1)
t∏

l=2

Pε(yl − f(yl−1))
t−1∏
l=1

Pδ(zl − g(yl)). (11)
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with Zt−1,1 = {z1 . . . zt−1} and Yt,1 = {y1 . . . yt}. Now

E(yt|Zt−1,1) =
∫

f(yt−1) P (Yt−1,1|Zt−1,1) dYt−1,1

where P (Yt−1,1|Zt−1,1) = P (Yt−1,1, Zt−1,1)/P (Zt−1,1) is obtained from Equation 11.
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