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Some Solutions to the Missing Feature Problem
in Vision

Abstract

In visual processing the ability to deal with missing and noisy informa-
tion is crucial. Occlusions and unreliable feature detectors often lead to
situations where little or no direct information about features is availa-
ble. However the available information is usually sufficient to highly
constrain the outputs. We discuss Bayesian techniques for extracting
class probabilities given partial data. The optimal solution involves inte-
grating over the missing dimensions weighted by the local probability
densities. The framework extends naturally to the case of noisy informa-
tion. We show how to obtain closed-form approximations to the Baye-
sian solution using Gaussian basis function networks. Simulations on a
complex task (3D hand gesture recognition) validate the theory. When
both integration and weighting by input densities are used, performance
decreases gracefully with the number of missing or noisy features. Per-
formance is substantially degraded if either step is omitted.

1 INTRODUCTION

The ability to deal with missing or noisy features is vital in vision. One is often faced with
situations in which the full set of image features is not computable. In fact, in 3D object
recognition, it is highly unlikely that all features will be available. This can be due to self-
occlusion, occlusion from other objects, shadows, etc. To date the issue of missing fea-
tures has not been dealt with in neural networks in a systematic way. Instead the usual
practice is to substitute a single value for the missing feature (e.g.0, the mean value of the
feature, or a pre-computed value) and use the network’s output on that feature vector.
When the features are known to be noisy, the usual practice is to just use the measured
noisy features directly. The point of this paper is to show that these approaches are not
optimal and that it is possible to do much better.

Subutai Ahmad
Siemens AG,

Central Research and Development
ZFE ST SN61

Otto-Hahn Ring 6
8000 München 83, Germany.

ahmad@icsi.berkeley.edu

Volker Tresp
Siemens AG,

Central Research and Development
ZFE ST SN41

Otto-Hahn Ring 6
8000 München 83, Germany.
tresp@inf21.zfe.siemens.de



2

A simple example serves to illustrate why one needs to be careful in dealing with missing
features. Consider the situation depicted in Figure 1(a). It shows a2-d feature space with6
possible classes. Assume a network has already been trained to correctly classify these
regions. During classification of a novel exemplar, only featurey has been measured, as
y0; the value of featurex is unknown. For each class Ci, we would like to computep(Ci|y).
Since nothing is known about x, the classifier should assign equal probability to classes 1,
2, and 3, and zero probability to classes 4, 5, and 6. Note that substituting anysingle value
will always produce the wrong result. For example, if the mean value of x is substituted,
the classifier would assign a probability near 1 for class 2. To obtain the correct posterior
probability, it is necessary to integrate the network output over all values of x. But there is
one other fact to consider: the probability distribution over x may be highly constrained by
the known value of feature y. With a distribution as in Figure 1(b) the classifier should
assign class 1 the highest probability. Thus it is necessary tointegrate over x along the line
y=y0 weighted by the joint distribution p(x,y).

2 MISSING FEATURES

We first show how the intituitive arguments outlined above for missing inputs can be for-
malized using Bayes rule. Let  represent a complete feature vector. We assume the classi-
fier outputs good estimates of  (most reasonable classifiers do - see (Richard &

Lippmann, 1991)). In a given instance,  can be split up into , the vector of known (cer-

tain) features, and , the unknown features. When features are missing the task is to esti-

mate . Computing marginal probabilities we get:

(1)

Note that  is approximated by the network output and that in order to use (1)

effectively we need estimates of the joint probabilities of the inputs.

3 NOISY FEATURES

The missing feature scenario can be extended to deal with noisy inputs. (Missing features
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Figure 1. The images show two possible situations for a 6-class classification problem. (Dark
shading denotes high-probability regions.) If the value of feature x is unknown, the correct
solution depends both on the classification boundaries along the missing dimension and on the
distribution of exemplars.
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are simply noisy features in the limiting case of complete noise.) Let  be the vector of

features measured with complete certainty,  the vector of measured, uncertain features,

and  the true values of the features in .  denotes our knowledge of the noise

(i.e. the probability of measuring the (uncertain) value  given that the true value is ).

We assume that this is independent of  and , i.e. that .

(Of course the value of  is dependent on  and .)

We want to compute . This can be expressed as:

(2)

According to our assumption:

and:

Substituting back into Eq. (2) we get:

(3)

As before,  is given by the classifier. (3) is almost the same as (1) except that

the integral now has to be weighted by the noise model. As with the missing feature case
using any single value (such as the measured values) is incorrect. Note that in the case of
complete uncertainty about the features (i.e. the noise  is uniform over the entire range of
the features), the equations reduce to the missing feature case.

4 GAUSSIAN BASIS FUNCTION NETWORKS

The above discussion shows how to optimally deal with missing and noisy inputs in a
Bayesian sense. We now show how these equations can be approximated using networks
of Gaussian basis functions (GBF nets). Let us consider GBF networks where the Gaus-
sians have diagonal covariance matrices (Nowlan, 1990). Such networks have proven to
be useful in a number of real-world applications (e.g. Röscheisenet al, 1992). Each hid-
den unit is characterized by a mean vector  and by , a vector representing the diagonal
of the covariance matrix. The network output is:

 with

(4)

 is the weight from the j’th basis unit to the i’th output unit,  is the probability of
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choosing unit j, and d is the dimensionality of . Under certain training regimes such as
Gaussian mixture modeling, EM or “soft clustering” (Duda & Hart, 1973; Dempsteret al,
1977; Nowlan, 1990) or an approximation as in (Moody & Darken, 1988) the hidden units
adapt to represent local probability densities.

4.1 GBF NETS AND MISSING FEATURES

For our purposes, a major advantage of this architecture is that the densities required in (3)
are directly approximated. In particular  and . This can be

exploited to obtain closed form solutions to (1) and (3). Substituting into (3):

(5)

As noted before, equation (1) is simply (3) with  uniform. For the case of miss-
ing features equation (5) can be computed directly. Since the integral along each dimen-
sion of a multivariate normal density is equal to one we get:

(6)

(Here  denotes the same function as in (4) except that it is only evaluated over the

known dimensions given by .) Equation (6) is appealing since it gives us a simple closed
form solution. Intuitively, the solution is nothing more than projecting the Gaussians onto
the dimensions which are available and evaluating the resulting network. As the number
of training patterns increases, (6) will approach the optimal Bayes solution.

4.2 GBF NETS AND NOISY FEATURES

With noisy features the situation is a little more complicated and the solution depends on

the form of the noise. If the noise is known to be uniform in some region  then
equation (5) becomes:

(7)

where (8)

Here  and  select the i’th component of the j’th mean and variance vectors. U ranges
over the noisy feature indices. Good closed form approximations to the normal distribu-
tion function  are available (Press et al, 1986) so (8) is easily computed.
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In the case of zero-mean Gaussian noise we can also write down a closed form solution. In
this case we have to integrate a product of two Gaussians. If the variance of the noise is

we end up with:

with .

5 BACKPROPAGATION NETWORKS

As the number of samples tends to infinity, the outputs of a sufficiently large network
trained with back-propagation using the LMS error function converges to the optimal
Bayesa posteriori estimates of the class memberhips (Hampshire & Pearlmutter, 1990).
Let  be the output of thei’th output unit when presented with input . Then, with a

large training set, . Unfortunately, unlike GBF nets, access to the input

distribution is not available with backpropagation. Without prior knowledge it is reasona-
ble to assume a uniform input distribution, in which case the right hand side of (3) simpli-
fies to:

(9)

If the noise is uniform in an interval [a,b], then this reduces to (ignoring normalizing con-
stants):

(10)

This equation is appealing since only an estimate of  is required. (The integral

itself can be approximated using standard Monte Carlo techniques.) Strictly it is only valid
in restricted situations but even a degraded estimate using (9) or (10) should be better than
random guessing. With missing features the integral in (10) should be computed over the
entire range of each missing features.

6 AN EXAMPLE TASK: 3D HAND GESTURE RECOGNITION

A simple realistic example serves to illustrate the utility of the above techniques. We con-
sider the task of recognizing a set of hand gestures from single 2D images independent of
3D orientation (Figure 2). As input, each classifier is given the 2D polar coordinates of the
five fingertip positions relative to the 2D center of mass of the hand (so the input space is
10-dimensional). Each classifier is trained on a training set of 4368 examples (624 poses
for each gesture) and tested on a similar independent test set.

The task forms a good benchmark for testing performance with missing and uncertain
inputs. The classification task itself is non-trivial. The classifier must learn to deal with
hands (which are complex non-rigid objects) and with perspective projection (which is
non-linear and non-invertible). In fact it is impossible to obtain a perfect score since in
certain poses some of the gestures are indistinguishable (e.g. when the hand is pointing
directly at the screen). Moreover, the task is characteristic of real vision problems. The
position of each finger is highly (but not completely) constrained by the others resulting in
a very non-uniform input distribution. Finally it is often easy to see what the classifier
should output if features are uncertain. For example suppose the real gesture is “five” but
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for some reason the features from the thumb are not reliably computed. In this case the
gestures “four” and “five” should both get a positive probability whereas the rest should
get zero. (No other class in the training set contains a gesture with the other four fingers
extended.) In many such cases only a single class should get the highest score, e.g. if the
features for the little finger are uncertain the correct class is still “five”.

The theory predicts that only classifiers with knowledge about the probability distribution
will perform well with missing or noisy features. To test this we tried three different clas-
sifiers on this task: standard sigmoidal networks trained with backpropagation (BP), and
two types of gaussian networks as described in (4). In the first (Gauss-RBF), the gaussians
were radial and the centers were determined using k-means clustering as in (Moody &
Darken, 1988).  was set to twice the average distance of each point to its nearest gaus-
sian (all gaussians had the same width). After clustering,  was set to

. The output weights were then determined using LMS gradient

descent. In the second (Gauss-G), each gaussian had a unique diagonal covariance matrix.
The centers and variances were determined using gradient descent on all the parameters
(Röscheisenet al, 1992). Note that with this type of training, even though gaussian hidden
units are used, there is no guarantee that the distribution information will be preserved.

All classifiers were able to achieve a reasonable performance level. BP with 60 hidden
units managed to score 95.3% and 93.3% on the training and test sets, respectively. Gauss-
G with 28 hidden units scored 94% and 92%. Gauss-RBF scored 97.7% and 91.4% and
required 2000 units to achieve it. (Larger numbers of hidden units led to overfitting.) For
comparison, nearest neighbor achieves a score of 82.4% on the test set.

6.1 PERFORMANCE WITH MISSING FEATURES

We tested the performance of each network in the presence of missing features. For back-
propagation we used a numerical approximation to equation (10). For both gaussian basis
function networks we used equation (6). To test the networks we randomly picked samples
from the test set and deleted random features. We calculated a performance score as the
percentage of samples where the correct class was ranked as one of the top two classes.
Figure 3 displays the results. For comparison we also tested each classifier by substituting
the mean value of each missing feature and using the normal update equation.

As predicted by the theory the performance of Gauss-RBF using (6) was consistently bet-
ter than the others. The fact that BP and Gauss-G performed poorly indicates that the dis-
tribution of the features must be taken into account. The fact that using the mean value is
insufficient indicates that the integration step must also be carried out. Perhaps most aston-
ishing (and encouraging) is the result that even with 50% of the features missing, Gauss-
RBF ranks the correct class among the top two 90% of the time. This clearly shows that if
the distribution is taken into account, and the missing features are integrated out, then a
significant amount of information can be extracted.

Figure 2. Examples of the 7 gestures used to train the classifier. A 3D computer model of the hand
is used to generate images of the hand in various poses. For each training example, we choose a
3D orientation, compute the 3D positions of the fingertips and project them onto 2D. For this task
we assume that the correspondence between image and model features are known, and that during
training all feature values are always available.

“five” “four” “three” “two” “thumbs_up”“one” “pointing”
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6.2 PERFORMANCE WITH NOISY FEATURES

We also tested the performance of each network in the presence of noisy features. We ran-
domly picked samples from the test set and added uniform noise to random features. The
noise interval was calculated as  wherexi is the feature value and  is

the standard deviation of that feature over the training set. (For all features,  corre-

sponded to about 1/3 of the entire range of feature values so the noise interval was quite
large.) As before the performance score was the percentage of samples where the correct
class was ranked as one of the top two classes. For the backpropagation network we used
equation (10) evaluated over the noise interval. For both gaussian basis function networks
we used equation (8) evaluated over the noise interval. Figure 3 displays the results. For
comparison we also tested each classifier by substituting the noisy value of each noisy fea-
ture and using the normal update equation (RBF-N, BP-N, and Gauss-GN).

As with missing features, the performance of Gauss-RBF was significantly better than the
others when a large number of features were noisy. As would be expected, overall per-
formance was better than with missing features (note the change in scale from Figure 3).
Again, the excellent performance of Gauss-RBF under a large amount of noise is quite
encouraging.

7 DISCUSSION

The results demonstrate the advantages of estimating the input distribution and integrating
over the missing dimensions, at least on this task. They also show that good classification
performance alone does not guarantee good missing feature performance. (Both BP and
Gauss-G performed better than Gauss-RBF on the test set.) To get the best of both worlds
one could use a hybrid technique utilizing separate density estimators and classifiers
although this would probably require equations (1) and (3) to be numerically integrated.

One way to improve the performance of BP and Gauss-G might be to use a training set
that contained missing features. Given the unusual distributions that arise in vision, in
order to guarantee accuracy such a training set should include every possible combination
of missing features. In addition, for each such combination, enough patterns must be
included to accurately estimate the posterior density. In general this type of training is
intractable since the number of combinations is exponential in the number of features.

Figure 3. The performance of various classifiers when dealing with missing features. Each data
point denotes an average over 1000 random samples from an independent test set. For each sam-
ple, random features were considered missing. Each graph plots the percentage of samples where
the correct class was one of the top two classes.
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Note that if the input distribution is available (as in Gauss-RBF), then such a training sce-
nario is unnecessary.
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