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Abstract: 

 

In recent years graphical models have become an increasingly important tool for the structural 

analysis of genome-wide expression profiles at the systems level. Here we present a new 

graphical modelling technique, which is based on decomposable graphical models, and apply it to 

a set of gene expression profiles from acute lymphoblastic leukemia (ALL). The new method 

explains probabilistic dependencies of expression levels in terms of the concerted action of 

underlying genetic functional modules, which are represented as so-called “cliques” in the graph. 

In addition, the method uses continuous-valued (instead of discretized) expression levels, and 

makes no particular assumption about their probability distribution. We show that the method 

successfully groups members of known functional modules to cliques. Our method allows the 

evaluation of the importance of genes for global cellular functions based on both link count and the 

clique membership count.  
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1. Introduction 

 

With the development of genome-wide expression measurements by DNA microarrays (Brown 

and Botstein, 1999) and related techniques, it became possible to gain a systems level view of the 

instantaneous state of the genetic regulatory network controlling most of the cellular processes. An 

increasing amount of modelling work focuses on the extraction of functional relationships from the 

generated database which consists of high-dimensional gene expression measurements (for 

reviews, see Berrar et al., 2002; Stetter et al., 2003, 2004).  The ultimate goal is to gain a better 

quantitative understanding of the biological processes which emerge from the dense interplay of 

the genes, the transcription and the proteome at the level of large subcellular systems or even 

whole cells. One prominent recent class of approaches adopts graphical modelling techniques to 

efficiently learn statistical relationships between the expression levels of many genes. From these 

relationships one can then try to infer the underlying biological functional links  (Friedman et al., 

2000; Hartemink et al., 2001; Imoto et al., 2002; Berrar et al., 2002; Dejori and Stetter, 2003; Segal 

et al, 2003.; Dejori et al., 2004).  The underlying hypothesis is that a more quantitative 

understanding of the structure and function of the genetic regulatory network will be the basis for 

entirely new and systematic approaches to produce highly efficient disease markers, for drug 

target finding and drug discovery, for tissue engineering, and many other fields. 

 

In this paper we address two specific issues of relevance to the systems-level modelling of 

microarray data using graphical models. The first issue is concerned with the fact, that gene 

expression levels are often discretized during preprocessing.  It is clearly unsatisfactory to learn 

graphical models on continuous variables by discretization, since discretization might mask 

statistical relationships in the data.  In our approach we are able to model arbitrary non-Gaussian 

continuous densities by employing kernel density estimators to model the statistical distributions.  

The second issue is concerned with the modularity, which is considered an important feature of 

biological organization (Hartwell et al., 1999). For example, genetic and protein networks often 

show scale-free topologies (Jeong et al., 2000), which implies that they decompose into sets of 
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densely connected gene clusters (Watts and Strogatz, 1998). One reason for this cliquishness 

might be that many proteins consist of several subunits, encoded by different genes, and become 

only functional when the corresponding genes are all expressed. Similarly, proteins can form 

larger assemblies and carry out their function only in a particular assembly. Finally, proteins can 

also be part of reaction cascades, which sub-serve a common task. In summary, gene products 

are often naturally linked to functional modules. Hence, expressing genes usually means 

expressing groups of genes necessary to manufacture a functional module.  Our analysis is 

tailored to account for this modular structure: The basis of our approach is a decomposable 

graphical model, which is capable of efficiently learning the graphical structure of continuous data. 

The decomposable model can be represented as a clique tree, where each clique represents a 

group of genes (the nodes of the clique), which are fully connected. This dense statistical 

dependency structure is thought to reflect the dense biological link of a functional module causing 

the gene expression patterns. By its structure, the decomposable model explains the statistical 

structure of the data in terms of interacting functional modules (represented by cliques), instead of 

only the functionally linked genes (the nodes). Hence, our approach has the potential to truthfully 

reflect the modular structure of gene expression. 

 

We proceed by first giving a brief introduction to the decomposable model approach in section 2, 

and apply this technique to estimate the structure of functional modules in genetic regulatory 

networks involved in the pathogenesis of childhood acute lymphoblastic leukaemia (ALL, Yeoh et 

al., 2002). 

 

 

 

 

 

2. Materials and Methods 
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We apply decomposable graphical models, which – by their clique-like structure - mirror the 

modular architecture inherent to genetic networks in a natural way. Since our knowledge about the 

structure of underlying gene-gene relationships is incomplete, we learn this structure from data. 

Decomposable graphical models and structural learning therein have been described in detail 

elsewhere (Pearl, 1988; Lauritzen, 1996; Hofmann and Tresp, 1998; Cowell et al., 1999; 

Schwaighofer et al., 2004). Hence, because the algorithm we use here has been introduced in 

another related study (Schwaighofer et al., 2004), we will in the following provide only a brief 

summarizing description of it.  

 

 

2.1 Decomposable Models 

 

A graphical model (or, probabilistic network) describes a family of joint probability distributions in 

form of a graph (see figure 2a, b for illustrative examples of joint probability densities). The nodes  

x = (x1, ..., xn) in the graph represent random variables, and an edge between two nodes represents 

direct statistical dependencies (figure 1c). In the following we only consider graphs with undirected 

edges. Let E be the set of all edges in the graph. The absence of an edge between variables xi 

and xj implies that both variables are statistically independent, conditioned on all other random 

variables in the domain, i.e. that there is no direct dependency between the variables except the 

ones which are mediated by the remaining nodes in the network. In our application each variable xi 

represents the expression level of one gene, and edges mark statistical dependencies between 

the corresponding pairs of gene expression levels.  The set of nodes x and the set of edges E  

form the graph structure G. 

 

Figure 1 about here 

 

In the following we will only consider a particular subclass of undirected graphical models, the so-

called decomposable models. They have the particular property that each cycle of four nodes has 

a cord, i.e. an edge linking two non-adjacent nodes in the cycle. Practically speaking, in a 
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decomposable model the variables can be grouped into overlapping subsets of fully linked nodes.  

Any graphical model can be transformed into a decomposable model by adding a sufficient 

number of edges.  For inference and for the calculation of the likelihood function we need the 

notion of a clique, which is defined as a maximal subgroup of nodes, which are mutually fully 

connected. A clique tree of a decomposable model is a particular tree in which the cliques form the 

nodes.  Each edge in the tree represents a separator which contains the nodes common to the 

cliques linked by the edge.  Let Σ be the set of all separators. Figure 1c shows an example of a 

small undirected graph for a decomposable model of 7 random variables, together with one 

equivalent clique tree in Figure 1d. 

 

As their most important property, decomposable models allow the joint probability density to be 

written in terms of marginal densities of the random variables contained in a clique (cf figure 1a for 

the definition of joint and marginal probability densities). More precisely, the joint probability 

density in a decomposable model factorizes: it can be written as a product of simpler probability 

densities of the form 
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where xC denotes the subset of variables xi (i.e., the components of x) that form clique C and xS 

denotes the subset of variables xj that form separator S. The major advantage of this formulation is 

that the marginal densities over cliques and separators are usually much lower-dimensional than 

the full joint probability density of all involved variables.  

 

The goal of graphical modelling is to identify and describe significant statistical dependencies in a 

finite data set D = (x1,...,xm) where here each data sample xm represents one DNA microarray 

measurement. For this purpose one needs to tackle two problems: (i), find the structure of a clique 

tree, which is suitable for describing the dependency structure (structure learning), and (ii) find 
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suitable descriptions for the marginal densities p(xC) and p(xS) within this structure. In practice, 

these problems are solved simultaneously. 

 

 

2.2 Nonparametric Density Estimation in Decomposable Models 

 

In our work we use a nonparametric probability density estimate - namely a kernel density 

estimator – for modelling the marginal clique and separator densities. A kernel density estimator 

consists of the superposition of m kernel functions g centered at each data point: 
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We use a Gaussian kernel with diagonal covariance matrix: 
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In Eq. (3), Θ denotes the vector of variances along the n dimensions of the data space. It is worth 

noting that although the kernel function is Gaussian, the nonparametric probability density 

estimate  (2) is a superposition of Gaussians and can in principle (i.e., in the limit of many data 

points) describe general probability density functions. This is an important extension to earlier 

approaches, which were restricted to Gaussian densities: the parametric form of the probability 

densities of microarray experiment data is not known but it is likely to be non-Gaussian. Other 

researchers discretized the data prior to graphical modelling, which is also problematic since 

discretization might mask statistical dependencies (Friedman et al., 2000, Dejori et al., 2003).   
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In our approach the parameters Θ are fitted once for a fully connected model using a leave-one-

out procedure.  The densities for the low-dimensional marginal densities p(xC) and p(xS) can be 

calculated by marginalizing the joint model. Thus, we can write  
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where the vectors in  DC, ΘC and DS, ΘS contain only the dimensions (or nodes) which belong to 

clique C or separator S, respectively. The hat denotes the fitted values of a variable. 

 

This procedure has two important advantages: 

 

(i) The density estimate is consistent. In other words, calculating a marginal probability 

density with different sequences of marginalization always yields the same result.  

(ii) The probability density models Θ do not need to be re-fitted during the structural 

learning procedure. This greatly reduces the computational complexity. 

 

 

2.3 Learning Decomposable Models 

 

Structural learning of decomposable models requires (i) a criterion to score the quality of a given 

decomposable model structure for describing the data and (ii) an efficient search strategy which 

allows to successively generate new graph structures, while staying within the class of 

decomposable models. In our approach, the structure of a decomposable model is evaluated 

using the predictive assessment criterion, namely 5-fold cross-validation. For this, the data set is 

divided into disjunct subsets Dk , k=1,...,5. The model is learned using 80 percent D \ Dk of the 

available data (D \ Dk denotes all data points in D except the ones in Dk), and is evaluated based 

on the log-likelihood of the remaining data points Dk , which had not been used for training. The 

log-likelihood represents a measure of how likely the observed data could have been generated by 
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the model, or in other words, how good the model describes the test dataset. This procedure is 

repeated 5 times. The final score consists of the average of the five test-set log-likelihoods. Cross 

validation enforces the model to explain previously unseen data. This procedure gives a high 

score to models that have learned the underlying statistical structure and largely ignored the effect 

of fluctuations in the finite data set.  

 

Since the joint probability density factorizes as given by Eq. (4), the log-likelihood becomes 
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and where A is the number of cliques and B is the number of separators. 

 

The log likelihood Eq. (5) is used to score the goodness of a model (model score). It is maximized 

successively by modifying the structure of the decomposable graphical model. We use greedy 

forward search, where, starting from an initially empty graph, edges are successively added 

sequentially, subject to two conditions: (i) An edge may be added only if the resulting new 

graphical model is still decomposable, and (ii) if, among all edges allowed according to (i) the 

addition of the edge leads to the highest increase in the total score Eq. (5). 

 

Our check for decomposability is based on a chordality check procedure introduced in (Ibarra, 

2000), and is described in detail in (Schwaighofer et al., 2004).  
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2.4 Estimating the Confidence of Decomposable model Features 

 

Structure learning in graphical models is unstable, which means that the learned structure can be 

sensitive to small modifications of the data. To distinguish between stable and unstable structures 

we used a 20-fold bootstrap approach (Friedman et al., 1999; Steck and Jaakkola, 2004). In the 

bootstrap, we generate Q=20 perturbed versions of the original data set, by sampling with 

replacement. For a data set D with m examples, each of these perturbed data sets Di also contains 

m examples, which are drawn at random (with replacement) from D. We learn a structure, as 

outlined in the previous sections, on each bootstrap data set Di , i=1,...,Q, and obtain an estimated 

structure Gi of the graphical model. The confidence of a particular edge between nodes u and v 

can be estimated as the fraction of structures Gi where this edge is present.  

 

For each of the perturbed data sets Di of the ALL data set described below, we use the structure 

obtained when the graph contained 3500 edges. In the analysis, only edges that have a 

confidence of 90% or above, i.e., edges that were found in at least 18 out of the 20 replications, 

were considered. This thresholding by edge confidence may lead to a non-decomposable resulting 

model. To again obtain a decomposable model, some of the lowest confidence edges were pruned 

until decomposability was reached. 

 

 

2.5 ALL Microarray Data Set and Data Preprocessing 

 

DNA microarray measurements reflect the expression level of thousands of genes in a cell by 

measuring the mRNA concentration for each gene simultaneously (Brown and Botstein, 1999). 

The data set analyzed here consists of measurements of 12,000 probes from 327 patients 

suffering from one of 7 different subtypes of pediatric acute lymphoblastic leukemia (ALL) (Yeoh et 

al., 2002).   
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ALL is a heterogeneous disease. It appears in various subtypes which differ markedly in their 

response to medical treatment. Leukemic ALL-cells are related to bone marrow cells, which are 

destined to either become T-lymphocytes (T-lineage) or B-lymphocytes (B-lineage). There is one 

homogeneous T-lineage-related ALL (15 % of cases), referred to as 'T-ALL', the pathogenesis of 

which is not yet well-understood, and several subtypes of B-lineage related ALL (85 % of cases), 

which can be retraced to specific genetic lesions. (E2A-PBX1, hyperdip > 50, BCR-ABL, TEL-

AML1, MLL, ‘novel’). The goal of the study of Yeoh and coworkers was to use expression profiling 

for identifying each of the known prognostically and therapeutically relevant disease subtypes and 

to assign patients to one subtype, thereby identifying patients who are at high risk for failing 

conventional therapeutic approaches. This was done by hierarchical clustering. Here we re-

analyze the same data set using decomposable model learning in order to identify disease 

relevant genes, and group together such genes to functional modules in a data-driven way. 

 

Out of the 12,000 measured gene probes, we selected those that best define the individual 

subtypes using Chi-square testing according to Yeoh et al. (2002): The 40 most discriminative 

probes for each of the 7 disease subtypes were selected, resulting in 280 gene probes. Out of 

those, 9 probes appear in more than one cluster but only once in our final data set, such that 271 

probes remain included in the data set. Hence, each microarray measurement forms a n=271-

dimensional data vector x, and the complete data matrix D contains m=327 vectors. In this data 

set, 239 genes were measured by one probe, 13 genes by two probes each, and two genes by 

three probes. The probes are in multiple copies partly to overcome problems with alternative 

splicing or to test for variability within a microarray measurement. Here we use the redundancy to 

benchmark the ability of the decomposable model to detect functionally linked genes: Every gene 

is by definition strongly linked to itself, and therefore repeated measurements of a single gene by 

duplicate or multiple probes should be grouped together within a clique by the model.  

 

 

Figure 2 about here 
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3. Results 

 

In this section we apply decomposable model analysis to the ALL microarray data set in order to 

assign functional roles and obtain functional groups of genes related to this disease.  

 

 

3.1 Analysis of the Dependency Graph 

 

First we analyze the graph structure G, which was learned from the data according to the 

procedure described in the methods section. The graph structure is rather large and complex, thus 

we will only present a detailed description of some particularly interesting parts. Figure 2 shows a 

section of the obtained ALL graph structure. Most edges in the graph connect genes belonging to 

the same ALL subtype. Hence, the result correctly reflects the co-activation of genes grouped to a 

cluster, but in addition imposes a substructure within each cluster. Moreover, it can be seen that 

many genes are linked to other genes by only one or two edges, but a few of them show a high 

number of links. In other words, the number of edges from or to a certain gene, referred to as its 

degree, varies strongly between different genes.  

 

One possible interpretation of the graph, which has been suggested for Bayesian networks 

(Friedman et al., 2000, Dejori et al., 2004), is to interpret each edge as an underlying biological 

(e.g., transcriptional regulatory) relationship between genes. According to this view, the biological 

relationship indirectly causes the statistical dependency of the gene expression levels, which is 

then reflected by the edge of the graph. In light of this hypothesis, genes with a high degree 

interact – via their product – with many other genes or gene products. Hence it can be argued that 

a gene with a high degree is crucial for the coordinated action of many other genes, and therefore 

is important for the correct operation of critical cellular life processes. Conversely, any damage on 

a high degree gene is likely to have a deeper impact on cellular processes at a systems level, than 
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damaging a low-degree gene. Following this rationale, we suggest high-degree genes as critically 

involved in pathogenic mechanisms and to be candidates for drug targets.  

 

Since the structure is learned from leukaemia data, the genes with high degree should be 

important for leukaemogenesis or for tumour development in general. In figure 2, gene PSMD10 

(Affymetrix-ID 37350_at, at the bottom of the figure) is found to be linked to a high number of other 

genes, and is therefore predicted by the model as important for the stability of cellular function. 

PSMD10 is a regulatory subunit of the 26S proteasome, a protein complex which -in agreement 

with the model topology - degrades a large family of proteins that are marked to be destroyed, and 

thus helps regulating the protein turnover in eukaryotic cells. Hence, it is known to be crucial for 

normal cellular function. Conversely, a malfunction of PSMD10 is known to result in a defective 

regulation of a large number of intracellular proteins that govern cell division, tumour growth, and 

tumour survival, and which are functionally altered in cancer cells. Indeed, recent work has shown 

(Adams, 2002), that the PSMD10 pathway is often subject to cancer-related deregulation and can 

underlie processes such as oncogenic transformation or tumour progression. 

 

Table 1 about here 

 

Table 1 summarizes the 4 genes with the highest degree over the whole graph, together with their 

annotation. All highly connected genes are either known to be genes with an oncogenic 

characteristic or known to be involved in critical biological processes, while being altered during 

oncogenesis (Jordanova et al., 2003). 

 

 

3.2 Analysis of Functional Modules 

 

In a second step of analysis, we consider individual cliques of the learned decomposable model as 

functional modules. Table 2 summarizes all cliques of size 3 and higher obtained from the ALL 

data set. Horizontal lines separate different cliques. A first observation concerns multiply occurring 
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gene probes. In the given data set, 13 genes are measured by two probes and 2 by three probes 

on the chip. We noticed that each pair or triple of probes is grouped into the same clique. This can 

also be seen in part from table 2, where all multiple probes contained are highlighted in light grey. 

This observation forms an important benchmark test for the model, because each gene has by 

definition the maximum functional link to itself, and therefore multiple measurements of one gene 

should always be grouped into a clique. The fact that all 15 multiple measurements have been 

correctly assigned to 15 cliques demonstrates that the model can successfully detect functional 

cliques with high robustness.  

 

Table 2 about here 

 

We next focused on genes known to be subunits of a common functional complex. From 

annotation data we found three functional complexes with more than one member present in the 

data set: (i) The major histocompatibility complex class 2 (MHC II) (five members, one measured 

twice), the p26 proteasome (two members), and the T3 complex (two members). Table 3 lists the 

genes for these three complexes. Interpreting cliques as functional modules, the genes for each of 

these complexes should also be grouped into a common clique. We observed that the members of 

each of the complexes were always put into one clique, or into adjacent cliques, by the 

decomposable model. Adjacent positions were defined as being linked by a single separator in the 

decomposable model. Moreover, when the genes were assigned to adjacent cliques instead of a 

single clique, which occurred only for the MHC II group, the separator was very strong (the cliques 

contained 4 members, three of which formed the separator). This can also be seen from cliques 3, 

4 and 5 from top in table 2.  

 

Functionally related genes are often located on nearby places on the chromosome. This is true for 

the members of the MHC class II functional module (cf. cliques 3 - 5 from top, column 3, in table 

2). Therefore we next considered the locations of genes grouped into individual cliques. In 17 out 

of 23 cliques in table 2 (not counting the multiple probes) there are regularities in the gene 

locations. Either all genes were located nearby on the same chromosome (cliques 3, 5, 17, 18, 23, 
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24), in part located nearby (cliques 4, 9, 10 and 11), or showed some regularity of the location. For 

example, cliques 1, 2, 12, 14, 15 and 16 always contain genes at the X chromosome locations 

near p22 and p28. The widespread presence of regularities in gene-loci within cliques indicates 

that genes are grouped in a meaningful way by decomposable models. 

 

If we identify a clique as a functionally linked group of genes (gene products), which subserves a 

certain common task, genes which belong to many cliques can be predicted to be of more central 

(or common) purpose than genes belonging to few or only one clique. Therefore, we next ranked 

genes by the number of cliques they contribute to. Table 1 summarizes the four genes with the 

highest number of clique memberships. As can be seen, both the identity of the genes and their 

ranking coincide with the ranking obtained from the degree distribution. However the absolute 

number of the rank differs slightly. In summary, both the degree and clique membership count 

draw a consistent picture of the functional importance of genes. 

 

Table 3 about here 

 

Motivated by this observation, we re-analyzed the three functional modules provided in table 2, in 

terms of their fine structure as ranked by the clique membership count. Genes listed in the upper 

part of table 3 are part of the MHC II complex. Class II molecules are composed of two polypeptide 

chains, α and β chains. The MHC II molecules themselves are highly polymorphic (meaning that 

there are many different variants of these genes within the population), forming different MHC II 

variants for different antigenes. Yet, HLA-DRA itself is monomorph, thus it is present in almost 

each of the MHC modules. This is reflected in the high number of cliques in which HLA-DRA is 

involved, in comparison to the lower clique counts of the polymorphic components (table 3). 

Also, whereas some cliques link HLA-DRA to genes outside the MHC II, each clique containing a 

MHC II member also contains HLA-DRA itself. 

 

Table 3 also contains one example of a doubly measured gene, HLA-DPB1. It can be seen that in 

both cases the clique count of this gene is low but not identical, (clique counts 3 and 1). This 
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variability can serve as a measure for the confidence in the clique count. Although there is some 

variability to be seen between both counts, the HLA-DPB1 counts are much smaller than the 

clique count found for HLA-DRA. Hence, the difference in clique counts between HLA-DRA and 

HLA-DPB1 is likely to be significant.  

 

Genes listed in the second part of table 3 are subunits of the 26S proteasome complex. Whereas 

PSMD10 is present in many cliques, the other subunit, PSMC1, is present only in one clique, 

namely with PSMD10. This can be evidence for a more dominant role of PSMD10 in protein 

degradation than PSMC1. In the learned structure, PSMD10 connects most cliques that contain 

genes which are altered in ALL subtype hyperdipl>50, predicting a dominant role of PSMD10 in 

the hyperdipl>50 subtype. This prediction seems reasonable, since the 26S proteasome is 

involved in general protein degradation and is therefore likely to be hyperactive in response to 

excess protein production by hyperdiploidy.  

 

The third part of table 2 contains the two subunits of the data set which contribute to the T-cell 

antigen receptor complex. CD3D forms the δ subunit of the T3 complex, and has been identified 

as the gene which discriminates between ALL of T and of B-lineage (Yeoh et al., 2002). Hence, 

CD3D seems to play a central role in ALL disease mechanisms. At the same time, CD3D is 

assigned to be a member in many (12) cliques by our analysis, pointing towards a central function 

as well. In contrast, the gene for the ε subunit of the T3 complex, CD3E, appears only in one 

clique: Correspondingly, the decomposable model assigns a less dominant role of CD3E in ALL.  

 

 

4. Discussion 

 

We presented a novel approach towards a systems level analysis of concerted cellular 

mechanisms, and applied the model to a set of genome-wide expression profiles from ALL 

patients. The approach is based on a graphical modelling technique called decomposable model, 

which puts particular emphasis on the modular way in which bio-molecules act together to 
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accomplish a certain task, and on the continuous yet noisy nature of the data to be analyzed. A 

decomposable model tries to explain the statistics in a data set by the action of mutually linked 

functional modules, so-called cliques. Decomposable models with continuous variables have 

significant advantages for this application domain: 

 

(i) Previous approaches (e.g., Friedman et al., 2000, Pe’er et al., 2001) have mostly concentrated 

on learning discrete valued models from such data. Hence, one needs to first discretize the 

continuous-valued expression level. This is a crucial and quite delicate pre-processing step that 

needs to be conducted carefully (Friedman et al., 2000). In contrast, the approach adopted here 

accounts in a natural way for the continuous nature of the measurements, and for their unknown 

and probably non-Gaussian joint probability distribution.  

 

(ii) Molecular networks often show a “small-world” topology (Jeong et al., 2000), in which the 

network is decomposable into smaller groups of densely connected clusters (Watts and Strogatz, 

1998). This finding might render decomposable models with their intrinsic modular or clique-like 

structure particularly suitable for describing genetic networks. 

 

(iii) Functional modules are considered to be a critical level of biological organization (Hartwell et 

al., 1999). One example are modules in transcriptional regulation. Transcription factors work by 

binding to DNA-motifs and affecting the rate of transcription. Many binding sites occur in spatial 

and functional clusters called enhancers, promoter elements, or regulatory modules. Thus, the 

promoter regions suggest a hierarchical or modular style of the transcription complex. Two further 

examples of molecular modules are subunits of multimeric proteins, where the subunits are coded 

by separate genes, or protein groups which associate into larger structures termed 

macromolecular assemblies. In the latter two cases, the genes for the different subunits or the 

genes that code for proteins of the same macromolecular assembly are functionally grouped to a 

module. Finally, gene products can also form a functional module by carrying out a certain cellular 

function in a concerted way, without being physically grouped to a molecular assembly. The 

inherent modular structure of a decomposable model imposes a strong drive for it towards 
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explaining the data in terms of densely linked gene groups. By this, decomposable models should 

be able to detect with particularly high sensitivity the signature of a concerted action of gene 

modules in the data. In light of this rationale, cliques are likely to contain functionally highly 

correlated genes, as opposed to gene clusters (Eisen et al., 1998, Yeoh et al., 2002), where genes 

are grouped together by mere co-expression. Hence, as opposed to clustering, the learned 

structure also reveals some information about the possible statistical relationship of genes within a 

cluster. 

 

A decomposable model approach preserves some of advantages of the related systems-level 

modelling techniques by Bayesian networks (Friedman et al., 2000; Dejori et al., 2003, 2004), 

namely (i) it takes into account the systemic nature of many biological processes, which arise from 

the interactions of many genes rather than from actions of an individual gene, and (ii) it accounts 

for the statistical and noisy nature of the data by adopting a probabilistic approach. A difference is 

that Bayesian networks allow a causal interpretation whereas decomposable models are restricted 

to identifying strongly coupled sets of genes. The two main advantages of our approach are that (i) 

it directly works with the continuous expression data and does not depend on preprocessing by 

discretization or assumptions like Gaussianity of the data. (ii) The approach is tailored to account 

for the modular nature of biological molecular life processes, which frequently involve the collective 

action of protein subunits, protein assemblies, and other functional modules.  

 

An apparent restriction of a decomposable graphical model, namely its special structure as a set of 

linked cliques, turns out to be its strength: Decomposable models are particularly sensitive to the 

signature of functional modules in the data, because they are designed to explain all the statistics 

in terms of interacting cliques of genes. In applying the model to ALL data, genes known to encode 

subunits of known complexes were correctly inked into individual or closely linked adjacent 

cliques, demonstrating a high sensitivity for detecting functional modules. If subunits were not 

grouped into a single clique but in adjacent cliques, the link connecting them was very strong. This 

means that for such adjacent cliques only one or few edges in the graph were missing to render 

them a single clique, which might be a consequence of statistical fluctuations due the limited 
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number and the noisiness of the data set. Based on the clique and the link structure learned from 

the data, it became possible to formulate two new scores for ranking genes according to their 

putative importance in cellular processes: the number of links to a gene and the number of cliques 

it participates in. 

 

One important ingredient of cellular processes is their dynamical nature, which is linked with 

molecular reaction constants (Stetter et al., 2003). Unfortunately, due to the vast complexity of 

these dynamics and the small amount of data available the dynamics of molecular networks at a 

large scale have rarely been investigated so far. At present, dynamical considerations can be at 

most applied to small and experimentally very well-characterized subsystems. Decomposable 

models might be able to simplify a dynamic analysis by suggesting small (i.e., low-dimensional) 

tightly coupled functional modules. These modules might be natural breakpoints for the separation 

of scales, for example by assuming an adiabatic approximation within a functional module and by 

explicitly modelling only the time constants for interactions between modules.   

 

Decomposable models are not restricted to analyzing the transcriptome of a cell and its changes 

under various pathological conditions. As cellular life processes are strongly affected and even 

dominated by a enormous multitude of protein-protein interactions, the technique presented here 

will be suitable to analyse whole proteome measurements from cells in laboratories of the near 

future, putting emphasis in the level of interaction between proteins. Of similar importance is the 

extraction of the modularity of these interactions, where small functional modules will be 

continuously grouped together to accomplish more and more complex tasks, up to whole cellular 

genetic programs. In light of this view, genome wide and proteome wide modular analysis and 

related techniques might form a key ingredient of modern functional genomics and proteomics.  
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Figure captions: 

 

Figure 1: Schematic illustration of decomposable graphical models. (a) Sketch of a two-

dimensional joint probability density p(x1,x2). The marginal densities p(x1) and p(x2) are obtained by 

integrating over the respective other variable. In this example, the conditional probability density 

p(x2|x1) differs from the marginal density, reflecting a statistical dependency between x1 and x2. (b) 

Same as (a) but for statistically independent variables x1 and x2. Here conditional and marginal 

probability densities coincide and the joint probability density factorizes. (c) Graph structure of a 

simple decomposable graphical model with 7 nodes. Each node i stands for a variable xi, and each 

edge reflects a direct statistical dependency. (d) A clique tree equivalent to the graph structure of 

(c). Each node of the tree stands for a clique of fully connected variables, and each edge reflects a 

set of variables common to adjacent cliques: their separator. 

 

Figure 2: A part of the decomposable model structure learned from the ALL data set, visualized as 

graph structure G. The highly connected gene PSMD10 (Affymetrix-ID 37350_at, at the bottom of 

the figure) is thought to be involved in cellular deregulations that lead to oncogenesis. 
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Figure 1 of Dejori et al., � top 
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Figure 2 of Dejori et al., � top 
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Table 1 : Genes in the ALL data set, ranked by the number of connections 

Gene Affymetrix ID Degree no. cliques Putative function 

PSMD10 37350_at 17 12 Proteasome, protein degradation 

HLA-DRA 37039_at 13 8 immune response, antigene presentation 

SCML2 38518_at 9 6 embryogenesis, transcription factor 

POU2AF1 36239_at 7 6 transcription cofactor, antipathogene response 
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Table 2: List of all cliques of size 3 and higher 

Gene Affym.-ID Location Putative function 

BCAP31 41724_at Chr:Xq28 accessory protein BAP31 

MPP1 32207_at Chr:Xq28 membrane protein, palmitoylated 1, 55kDa 

SCML2 38518_at Chr:Xp22 sex comb on midleg-like 2 (Drosophila) 

SYBL1 34753_at Chr:Xq28 synaptobrevin-like 1 

PSMD10 37350_at Chr:Xq22.3 proteasome 26S subunit, non-ATPase, 10 

BCAP31 41724_at Chr:Xq28 accessory protein BAP31 

SCML2 38518_at Chr:Xp22 sex comb on midleg-like 2 (Drosophila) 

SYBL1 34753_at Chr:Xq28 synaptobrevin-like 1 

HLA-DPB1 38095_i_at Chr:6p21.3 major histocompatibility complex, class II, DP beta 1 

HLA-DPA1 38833_at Chr:6p21.3 major histocompatibility complex, class II, DP alpha 1 

HLA-DRA 37039_at Chr:6p21.3 major histocompatibility complex, class II, DR alpha 

HLA-DMA 37344_at Chr:6p21.3 major histocompatibility complex, class II, DM alpha 

CD74 35016_at Chr:5q32 CD74 antigen (invariant polypeptide of MHC II) 

HLA-DPB1 38095_i_at Chr:6p21.3 major histocompatibility complex, class II, DP beta 1 

HLA-DRA 37039_at Chr:6p21.3 major histocompatibility complex, class II, DR alpha 

HLA-DMA 37344_at Chr:6p21.3 major histocompatibility complex, class II, DM alpha 

HLA-DPB1 38095_i_at Chr:6p21.3 major histocompatibility complex, class II, DP beta 1 

HLA-DPB1 38096_f_at Chr:6p21.3 major histocompatibility complex, class II, DP beta 1 

HLA-DPA1 38833_at Chr:6p21.3 major histocompatibility complex, class II, DP alpha 1 

HLA-DMA 37344_at Chr:6p21.3 major histocompatibility complex, class II, DM alpha 

HLA-DRA 37039_at Chr:6p21.3 major histocompatibility complex, class II, DR alpha� 

CD3D 38319_at Chr:11q23 CD3D antigen, delta polypeptide (TiT3 complex) 

CD19 1096_g_at Chr:16p11.2 CD19 antigen 

HLA-DRA 37039_at Chr:6p21.3 major histocompatibility complex, class II, DR alpha 

CD79A 38017_at Chr:19q13.2 CD79A antigen (immunoglobulin-associated alpha) 

POU2AF1 36239_at Chr:11q23.1 POU domain, class 2, associating factor 1 

HLA-DRA 37039_at Chr:6p21.3 major histocompatibility complex, class II, DR alpha 

CD3D 38319_at Chr:11q23 CD3D antigen, delta polypeptide (TiT3 complex) 

BLNK 38242_at Chr:10q23.2 B-cell linker 

HLA-DRA 37039_at Chr:6p21.3 major histocompatibility complex, class II, DR alpha 

TCL1A 39318_at Chr:14q32.1 T-cell leukemia/lymphoma 1A 

CD24 266_s_at Chr:6q21 CD24 antigen (small cell lung carcinoma cl. 4 antigen) 

PSMD10 37350_at Chr:Xq22.3 proteasome 26S subunit, non-ATPase, 10 

VBP1 171_at Chr:Xq28 von Hippel-Lindau binding protein 1 

PGK1 37677_at Chr:Xq13 phosphoglycerate kinase 1 

PSMD10 37350_at Chr:Xq22.3 proteasome 26S subunit, non-ATPase, 10 

SOD1 36620_at Chr:21q22.11 superoxide dismutase 1, soluble (ALS 1 (adult)) 

PGK1 37677_at Chr:Xq13 phosphoglycerate kinase 1 

PSMD10 37350_at Chr:Xq22.3 proteasome 26S subunit, non-ATPase, 10 

VBP1 171_at Chr:Xq28 von Hippel-Lindau binding protein 1 

SYBL1 34753_at Chr:Xq28 synaptobrevin-like 1 
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PSMD10 37350_at Chr:Xq22.3 proteasome 26S subunit, non-ATPase, 10 

PGK1 37677_at Chr:Xq13 phosphoglycerate kinase 1 

--- 35688_g_at --- --- 

PSMD10 37350_at Chr:Xq22.3 proteasome 26S subunit, non-ATPase, 10 

HNRPH2 41132_r_at Chr:Xq22 heterogeneous nuclear ribonucleoprotein H2 (H') 

ATP6IP2 40903_at Chr:Xq21 ATPase, H+ transp., lysosomal interacting protein 2 

PSMD10 37350_at Chr:Xq22.3 proteasome 26S subunit, non-ATPase, 10 

BCAP31 41724_at Chr:Xq28 accessory protein BAP31 

DXS9879E 40891_f_at Chr:Xq28 DNA segment on X (unique) 9879 expr. sequence 

PSMD10 37350_at Chr:Xq22.3 proteasome 26S subunit, non-ATPase, 10 

SYBL1 34753_at Chr:Xq28 synaptobrevin-like 1 

DKC1 34829_at Chr:Xq28 dyskeratosis congenita 1, dyskerin 

PSMD10 37350_at Chr:Xq22.3 proteasome 26S subunit, non-ATPase, 10 

UBE2A 890_at Chr:Xq24-25 ubiquitin-conjugating enzyme E2A (RAD6 homolog) 

NDUFA1 36169_at Chr:Xq24 NADH dehydrogenase 1 alpha subcomplex, 1, 7.5kDa 

PSMD10 37350_at Chr:Xq22.3 proteasome 26S subunit, non-ATPase, 10 

TCEAL1 38317_at Chr:Xq22.1 transcription elongation factor A (SII)-like 1 

FLJ21174 32251_at Chr:Xq22.1 hypothetical protein FLJ21174 

PTPRM 31892_at Chr:18p11.2 protein tyrosine phosphatase, receptor type, M 

PTPRM 994_at Chr:18p11.2 protein tyrosine phosphatase, receptor type, M 

PTPRM 995_g_at Chr:18p11.2 protein tyrosine phosphatase, receptor type, M 

ITGA6 33410_at Chr:2q31.1 integrin, alpha 6 

ITGA6 41266_at Chr:2q31.1 integrin, alpha 6 

ITGA6 33411_g_at Chr:2q31.1 integrin, alpha 6 

BCR 1635_at Chr:22q11.23 breakpoint cluster region 

BCR 1636_g_at Chr:22q11.23 breakpoint cluster region 

ABL1 39730_at Chr:9q34.1 v-abl AML viral oncogene homolog 1 

CD44 2036_s_at Chr:11p13 CD44 antigen (homing function, Indian blood group s.) 

CD44 40493_at Chr:11p13 CD44 antigen (homing function, Indian blood group s.) 

--- 1126_s_at --- --- 

SOD1 36620_at Chr:21q22.11 superoxide dismutase 1, soluble (ALS 1 (adult)) 

KIAA0179 31863_at Chr:21q22.3 KIAA0179 protein 

HMGN1 306_s_at Chr:21q22.2 high-mobility group nucleosome binding domain 1 

SOD1 36620_at Chr:21q22.11 superoxide dismutase 1, soluble (ALS 1 (adult)) 

KIAA0179 31863_at Chr:21q22.3 KIAA0179 protein 

CSTB 35816_at Chr:21q22.3 cystatin B (stefin B) 

VBP1 171_at Chr:Xq28 von Hippel-Lindau binding protein 1 

PGK1 37677_at Chr:Xq13 phosphoglycerate kinase 1 

HPRT1 37640_at Chr:Xq26.1 hypoxanthine phosphoribosyltransferase 1 

SCML2 38518_at Chr:Xp22 sex comb on midleg-like 2 (Drosophila) 

TNRC11 40998_at Chr:Xq13 trinucleotide repeat containing 11 (THR-associated) 

--- 34374_g_at --- --- 

Table 2 of Dejori et al. 
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Table 3 : Genes of three functional complexes, ranked by the number of cliques they belong to. 

Genes Affy.-ID no. cliques Putative function 

MHC, class II 

HLA-DRA 37039_at 8 MHC II, DR α 

HLA-DMA 37344_at 4 MHC II, DM α 

HLA-DPB1 38095_i_at 3 MHC II, DP β 1 

HLA-DPA1 38833_at 2 MHC II, DP α 1 

HLA-DPB1 38096_f_at 1 MHC II, DP β 1 

HLA-DRB1 41723_s_at 1 MHC II, DR β 1 

Proteasome p26 

PSMD10 37350_at 12 26S, non-ATPase regulatory subunit 10 

PSMC1 688_at 1 26S, ATPase regulatory subunit 1 

T3 complex 

CD3D 38319_at 12 T3 complex, δ polypeptide subunit 

CD3E 36277_at 1 T3-cpmlex, ε polypeptide subunit  
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