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Abstract

Learning with uncertain inputs is well-known to be a difficult task. In order to achieve
this analytically using a Gaussian Process prior model, we expand the original process
around the input mean (Delta method), assuming the random input is normally distributed.
We thus derive a new process whose covariance function accounts for the randomness of the
input. We illustrate the effectiveness of the proposed model on a simple static simulation
example and on the modelling of a nonlinear noisy time-series.

1 Background

Solving the learning task with uncertain or missing inputs has been the scope of much research
and the level of difficulty obviously depends on the type of model used. One can distinguish
between different situations, depending on the nature of a particular application. Figure 1 sum-
marizes the main different cases: (a) corresponds for instance to the modelling of a noisy time-
series.1 Case (b) is commonly encountered when the system of interestsenses inputs imperfectly
and (c) corresponds to clean inputs to the system, but corruption during sensing of the inputs
for data collection. We can also imagine a blend of these, with both noisy channels from� to
system, as in (a) & (b), and independent noise on observations of �, as in (c).�

Technical Report TR-2003-144, Department of Computing Science, University of Glasgow, June, 2003.
1When a state-space representation is used, in which the state is formed of delayed observed values.
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Figure 1: Uncertain inputs arising in different situations. � is the target, noisy model output,�
the noisy input such that� � � � �� with �� 	 
 �� 
 �� �, and the arrow indicates the variables
used for training. Our model aims at improving the learning of systems like (a) and (b) where
the target is a function of a random input�.

In the statistics community, such models dealing with uncertain inputs are known aserror-in-
variablesmodels. In [1] these models are analyzed in the Bayesian framework and inference
is made about the unknown� ’s (case (b) in Figure 1) and model parameters. In [2, 3], their
solution consists of integrating over the unknown (uncertain) input, using an input distribution
estimated directly from the data. Mixture models have also been used, along with the Expectation
Maximization algorithm [4].

In this paper, we suggest a novel approach for the learning ofsystems of type (a) and (b). We
introduce amodifiedGaussian Process model with acorrectedcovariance function, accounting
for the input noise variance.

2 Overview of the problem

We assume the following statistical model� � � �� � � �� (1)

where� is a � -dimensional input and�� the output, additive, Gaussian white noise such that�� 	 
 �� 
 �� �, where�� is the unknown noise variance. Such a model implies that� �� �� � � � �� � � (2)
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Now, let � � � � ���� , or � 	 
 �� 
 �� � �, where� is the� � � identity matrix and�� is the
input noise variance.2 In this case, the expectation of� given the characteristics of� is obtained
by integrating over the input distribution� �� �� 
 �� � � � � �� �� �� ��� � (3)

This integral can not be solved analytically without approximations for many forms of� �� �.
2.1 Analytical approximation using the Delta method

The function� of the random argument� can always be approximated by a second order Taylor
expansion around the mean� of � :

� �� � � � �� � � �� � �� � ! �� � � "# �� � �� � !! �� � �� � �� � $ ���� � � ��% � (4)

where� ! ��� � & ' () *&) and� !! �� � � & + ' () *&)&), , evaluated at� � �.

Within this approximation,3 we can now solve the integral (3). We have� �� �� 
 �� � - � .� ��� � �� � �� � ! ��� � "# �� � �� � !! �� � �� � ��/ � �� ��� (5)- � ��� � "# 01 �� !! �� ��� � � � � ��� � ��# 01 �� !! �� �� (6)

where01 denotes the trace.

Thus, the new generative model for our data is234� � 5 �� 
 �� � � ��5 �� 
 �� � � � �� � � ��# 01 �� !! �� �� � (7)

3 Gaussian Process modelling with noisy inputs

Let us recall that, in the case of inputs which arecertain, the GP modelling framework consists
in putting a normal prior on the space of admissible functions � . That is, for given� 6 
 � � � 
 �7 ,
the model outputs8 6 � � �� 6� 
 � � � 
 87 � � ��7 � have a joint multivariate Gaussian distribution:

2Note that accounting for different variances and/or covariances between inputs in different dimensions would
be straightforward; that would simply involve more parameters.

3All approximations being imperfect by nature, it is clear that the goodness of the expansion will depend on how
nonlinear9 is in the neighborhood of:, as well as on how large;< is.
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8 6 
 � � � 
 87 	 
 �� 
===�, where=>? � @AB �8> 
 8? � � C ��> 
 �? �. It is common to assume that the
process is stationary, with zero-mean and a squared exponential covariance function

C ��> 
 �? � � � DEF G� "# HIJK6 LJ ��J> � �J? �MN (8)

where� andL 6 
 � � � 
 LH are the model’s parameters (see [5] for more details).

3.1 Defining a new Gaussian Process

In the case of uncertain or random inputs, the new input/output relationship is given by (7),
where the former function� , in the noise-free case, has been replaced by5 �� 
 �� � � � �� � �OPM 01 �� !! �� ��.
If we put a Gaussian prior on� �� �, we can derive the corresponding prior on its second derivative
and then define the prior on the space of admissible functions5 �� 
 �� � which is viewed as the
sum of the two correlated random functions,� ��� and

OPM 01 �� !! �� ��.
In the following, we use results from the theory of random functions [6]. Let us recall that ifQ �R � andS �R � are two random functions of the same argumentR, with expected valuesT� �R �
andTU �R � and covariance functionsC� �R 
 R ! � andCU �R 
 R ! � respectively, then the mean and co-
variance function ofV �R � � Q �R � � S �R � are given byTW �R � � T� �R � � TU �R � (9)CW �R 
 R ! � � C� �R 
 R ! � � CU �R 
 R ! � � C�U �R 
 R ! � � CU� �R 
 R ! � (10)

in the case
Q �R � andS �R � are correlated andC�U �R 
 R ! �, CU� �R 
 R ! � are the cross-covariance func-

tions.

We can now apply this to our function5 ���. Let us first derive the mean and covariance function
of 5 �� 
 �� � in the one-dimensional case and then extend these expressions to� dimensions.

Given that� ��� has zero-mean and covariance functionC ��> 
 �? �, as given by (8), its second
derivative,� !! �� �, has zero-mean and covariance functionX YC ��> 
 �? �ZX �M> X �M? [6]. It is then

straightforward that
OPM � !! �� � has zero-mean and covariance function

O +PY X YC ��> 
 �? �ZX �M> X �M? .
Also, the cross-covariance function between� ��� and

OPM � !! �� � is given by
OPM X MC ��> 
 �? �ZX�M>

[6].

Therefore, using the fact we have& +[ (\ ] ^\_ *& \+] � & +[ (\] ^\_ *&\ +_ , in one dimension,5 �� 
 �� � � � ��� �OPM � !! �� � has zero-mean and covariance function

@AB �5 ��> 
 �� � 
 5 ��? 
 �� �� � C ��> 
 �? � � � M�̀ X YC ��> 
 �? �X�M> X �M? � �� X MC ��> 
 �? �X �M> � (11)
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In the case of� -dimensional inputs, we have@AB �5 ��> 
 �� � 
 5 ��? 
 �� �� � C ��> 
 �? � � � M�̀ 01 . X MX�>X� > .X MC ��> 
 �? �X �? X� ? //
� ��01 .X MC ��> 
 �? �X �> X� > / (12)

where & +& a]& a,] b& +[ (a] ^a_ *& a_ & a,_ c is a � � � matrix, each entry of which being a� � � matrix: the

block �R 
 d� contains & +& ae] & af] b& +[ (a] ^a_ *& a_ & a,_ c.

So we see that the first term of thecorrectedcovariance function corresponds to the noise-free
case plus two correction terms weighted by the input noise variance, which might be either learnt
or assumed to be knowna priori. As we would expect, as�� tends to zero,@AB �5 ��> 
 �� � 
 5 ��? 
 �� �� gC ��> 
 �? � which corresponds to thecertain, noise-free case.

3.2 Inference and prediction

Within this approximation, the likelihood of the datah� 6 
 � � � 
 �i j is readily obtained. We havek �l 	 
 �� 
 m � n opq r >? � =!>? � �� s>? (13)

where
k

is thet � " vector of observed targets,
l

thet �� matrix of input means,=!>? is given
by (12) ands>? � " when u � v , � otherwise. The parametersw � �L 6 
 � � � 
 LH 
 � 
 �� 
 �� � can
then be learnt either in a Maximum Likelihood framework or ina Bayesian way, by assigning
priors and computing their posterior distribution.

When using theusualGP, the predictive distribution of a model output corresponding to a new
input �x, � �� ��x � �w 
 h� 
 k j 
 � x�, is Gaussian with mean and variance respectively given byy z � { r|6k} M � ~ � { r |6{ (14)

where{ is the vector of covariances between the test and the training inputs and~ the covariance
between the test input and itself. We haver>? � =>? � �� s>? and=>? � C ��> 
 �? � 
 ~> � C ��x 
 �> � 
 ~ � C ��x 
 �x � (15)

for u 
 v � "
 � � � 
 t and withC ��
 �� as given by (8).

With our new model, the prediction at a new (one-dimensional) noise-free input�x, leads to a
predictive mean and variance, again computed using (14) butwith r>? � =!>? � ��s>? , with =!>?
computed as (11), and ~> � C ��x 
 �> � � ��# X MC ��x 
 �> �X �M>~ � C ��x 
 �x� (16)
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thus taking account of the randomness in the training inputs.

In [7] we derived the equations for the predictive mean and variance, for theusualGP, when
predicting at a new random input. With this new model, the prediction at a random input is
straightforward, simply by using thecorrectedcovariance function to compute the covariances
involving the test input. Assuming�x 	 
 ��x 
 �� �, we have4

~> � C ��> 
 � x � � � M�̀ X YC ��> 
 � x �X �M> X �Mx � �� X MC ��> 
 � x �X�M>~ � C ��x 
 �x � � � M�̀ X YC ��x 
 �x �X�MxX�Mx � �� X MC ��x 
 �x �X�Mx � (17)

4 Illustrative examples

In the following, we assess the goodness of the predictions by computing the average squared
error (� ") and the average minus log Gaussian predictive density (or minus log-likelihood of the
predictions,�#

).

4.1 Static case assuming�� is known a priori

In this example, the underlying function is such that8 � #�� � for � � �", 8 � " for � � ��"
 � �
and8 � DEF ��M � for � � �.

Assuming prior knowledge of theL , � and �� parameters,5 we consider the case (b) in Figure
1. Givent � "� noise-free inputs and targets, that are known to be functions of the noise-
free inputs corrupted with white noise with variance�� , we compare the predictive means and
variances at��� noise-free test inputs computed when using theusualGP (i.e., using (15)) and
when using thecorrectedGP assuming�� is known (using (16)). Figure 2 (left) shows some
of the training data used (circles), the noise-free inputs and corresponding targets (squares), the
input distribution and the noisy inputs used to generate thetraining targets (lines) for�� � � �".On the right hand side, the evolution of the losses� " and�#

is plotted as�� increases.6

As �� increases, the predictive means computed when using thecorrectedGP become smoother,
compared to those obtained using theusualGP. Also, the predictive variances in theusualcase
do not increase as�� does, rendering the model overconfident. Figure 3 shows the predictive
means and variance (left) when�� � � �". Also shown, the percentage of model ouputs, function
of the noisy input, falling in the��� confidence interval for each test input (right).

4Note that we could easily consider a test input with a variance different from that of the training points, assuming
that we had knowledge of ita priori.

5These parameters were actually found by Maximum Likelihoodusing��� “clean” data pairs, i.e., noise-free
inputs and corresponding outputs, corrupted by a white noise with variance;� � ���� .

6In computing the losses, the mean predictions are compared to the function outputs.
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Figure 2: Left: The training data (circles) consist of noise-free inputs / targets corresponding to
noisy inputs. Also shown are the noise-free inputs with their corresponding targets (squares) and
the input distribution for�� � � �". Note that in the region where the function varies, the output
computed at the noisy input differs from that correspondingto the noise-free input, misleading a
model which does not account for the input noise. Right: Average squared error (left) and average
minus log Gaussian predictive density (right) as�� increases:�� � "�|Y 
 "�|M 
 "�|6 
 � �#�. Left
bars:usualGP, right bars:correctedGP.

Now, usingt � ��� data pairs, we compare the learning of theL , � and�� parameters when
using theusualGP, with covariance function given by (8) and thecorrectedone, using (11),
again assuming�� is known. Table 1 gives the Maximum Likelihood (ML) parameters found in
each case, along with the losses computed after predicting at thet noise-free inputs.

From this experiment we can conclude that although ignoringthe randomness in the input does
not lead to a poor predictive mean, the predictive variancesare small and the model is far too
confident; thus leading to a large�#

(Figure 2, right). If we compare the parameters learnt using
the noisy data compared to those obtained when learning withclean data (we hadL � "� ���,� � "�#�"� and �� � � ���� "), we see that the “extra” noise, induced by the random input,
is “explained” by having a much smallerL (i.e., function varying more slowly) and larger�
(controlling the vertical scale of variation) and�� (estimate of the output noise variance). Also,
theL and the� parameters that are learnt using thecorrectedGP are different from those learnt
using theusualGP, showing the “correlations” that exist betweenL , � and�� , thus leading to a
multimodal likelihood function.
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Figure 3: Left: Mean predictions (top) and
#} error-bars (bottom) when computed using the

usualGP (crosses) and thecorrectedone (circles), when�� � � �". Right: Percentage of model
outputs, function of the noisy test inputs, falling in the��� confidence interval (i.e., within the�Z � #} bounds) when using theusualGP (top) and thecorrectedone (bottom).

Table 1: Parameters found by ML and losses

L � �� � " �#�� � � �� "usualGP "���"� � ���� " � ���`� � ���## �"��#��correctedGP
# �� "`# � ����� � ���`� � ��� "� �"���� "�� � � �"usualGP "�� "� " "# �`��� � ��`�" � ����# "����`correctedGP � ����` "� ��#�� � ��`�� � ��`## �� �#"##

4.2 Application to the modelling of the noisy logistic map

We now apply our approach to the modelling of the logistic map(as in [8]), corrupted with white
noise with variance�� � � �� ". Let � 6 
 � � � 
 �i be the time series. We assume a state-space model
of the form�> � � ��>|6� � ��, where the state is formed of one delayed output (case (a) Figure
1). In order to use our new model, we need to replace�� by �� in the relevant equations, since in
this case the “input noise” is the same as the output noise.

We generatet � "�� points for training and another"�� points for testing. Again, we com-
pare the training when ignoring the noise on the state (usualGP) and when using thecorrected
covariance function, assuming the noise variance is known,and when learning it, respectively.
After optimization of the log-likelihood, we find
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� UsualGP:L � "� �����, � � � ���` ", �� � � �� "�#,� CorrectedGP, assuming�� is known:L � �� �� "��, � � � ���"�,� CorrectedGP, learning��: L � #� �`��`, � � � �`���, �� � � �� "� "
Figure 4 (left) shows the mean predictions with their

#} � �� error bars (with the appropriate��
for each case) when having used theusualGP (top) and thecorrectedGP with�� known (middle)
and with�� learnt (bottom). Note that the predictions were computed using (17), when using the
correctedGP, and the equations derived in [7] when using theusualGP, since the test inputs are
known to be random (with variance��).
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Figure 4: Left: Mean predictions with their
#} � �� error bars, along with the true time-series,

in theusualcase (top) and in thecorrectedcase when�� known (middle) and�� learnt (bottom).
Right: Losses, average over"�� points, for theusualcase (left bar), thecorrectedcase when��
known (midlle) and�� learnt (right).

From this experiment, it is clear that accounting for the noise in the input in the covariance
function does improve the predictions. Again, we notice the“correlation” betweenL and the
noise level when using thecorrectedcovariance function.

5 Conclusions

We have presented a novel approach for the training of a Gaussian Process when the output is
a function of a random input. The newcorrectedprocess is based on an approximation of the
random function around the input mean. We have shown that this new model surpasses the usual
GP in the case of modelling with noisy inputs in a simple static case, as well as when applied to
the modelling of a nonlinear noisy time-series.
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Both examples show that accounting for the randomness in theinput improves the predictions,
via acorrectedcovariance function. They also highlight the correlation between all the param-
eters, indicating the multimodal nature of the likelihood function, and the potential problems
for maximum likelihood optimization. Use of numerical Bayesian approaches via MCMC, and
putting priors on�� , will ameliorate these issues.
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