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Abstract

Learning with uncertain inputs is well-known to be a diffictdsk. In order to achieve
this analytically using a Gaussian Process prior model, wpamd the original process
around the input mean (Delta method), assuming the randpuot is normally distributed.
We thus derive a new process whose covariance function atxtar the randomness of the
input. We illustrate the effectiveness of the proposed rhodea simple static simulation
example and on the modelling of a nonlinear noisy time-serie

1 Background

Solving the learning task with uncertain or missing inpuas been the scope of much research
and the level of difficulty obviously depends on the type ofd@loused. One can distinguish
between different situations, depending on the nature a@fraqoilar application. Figure 1 sum-
marizes the main different cases: (a) corresponds fornnstto the modelling of a noisy time-
seriest Case (b) is commonly encountered when the system of inteeases inputs imperfectly
and (c) corresponds to clean inputs to the system, but disruguring sensing of the inputs
for data collection. We can also imagine a blend of thesd) titth noisy channels from to
system, as in (a) & (b), and independent noise on obsengatitwn as in (c).

*Technical Report TR-2003-144, Department of Computing@®e, University of Glasgow, June, 2003.
lWhen a state-space representation is used, in which tleeistarmed of delayed observed values.
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Figure 1: Uncertain inputs arising in different situatiomss the target, noisy model outpuit,
the noisy input such that = u + ¢, with ¢, ~ N(0,v,), and the arrow indicates the variables
used for training. Our model aims at improving the learnifigystems like (a) and (b) where
the target is a function of a random input

In the statistics community, such models dealing with utaterinputs are known asrror-in-
variablesmodels. In [1] these models are analyzed in the Bayesianefraark and inference
is made about the unknowiis (case (b) in Figure 1) and model parameters. In [2, 3],rthei
solution consists of integrating over the unknown (undeytaput, using an input distribution
estimated directly from the data. Mixture models have atssnlused, along with the Expectation
Maximization algorithm [4].

In this paper, we suggest a novel approach for the learnirgystems of type (a) and (b). We
introduce amodifiedGaussian Process model witltarrectedcovariance function, accounting
for the input noise variance.

2 Overview of the problem

We assume the following statistical model
t=f(x)+e (1)

wherex is a D-dimensional input and, the output, additive, Gaussian white noise such that
e ~ N (0, vy), wherew;, is the unknown noise variance. Such a model implies that

Eft|x] = f(x) . (2)
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Now, letx = u + €, orx ~ N (u,v,I), wherel is theD x D identity matrix andv, is the
input noise variancé.In this case, the expectation bjiven the characteristics afis obtained
by integrating over the input distribution

Eltlu, v,] = / F()p(x)dx 3)

This integral can not be solved analytically without appneations for many forms of (x).

2.1 Analytical approximation using the Delta method

The functionf of the random argumenmt can always be approximated by a second order Taylor
expansion around the mearof x:

fG) = f(u)+ (x—w)'f'(u) + %(X —u)" f"(u)(x —u) + O(||x — ulf) (4)

wheref'(u) = 28 and f”(u) = 22 evaluated ak = u.

— oxoxT

Within this approximatiorf,we can now solve the integral (3). We have

Blthue] = [ |+ (= o))+ 0x- o)) x -0 pllax 9

12

Flw) + Tl (e d] = F() + 22Tl )] ©

whereTr denotes the trace.

Thus, the new generative model for our data is

= g(u, Uz) + €t

g(u,vy) = f(u) + %Tr[f"(u)] _ )

3 Gaussian Process modelling with noisy inputs

Let us recall that, in the case of inputs which aegtain the GP modelling framework consists
in putting a normal prior on the space of admissible fundipnThat is, for givenuy, .. ., u,,
the model outputg; = f(u1),...,y, = f(u,) have a joint multivariate Gaussian distribution:

2Note that accounting for different variances and/or carares between inputs in different dimensions would
be straightforward; that would simply involve more paraenst

3All approximations being imperfect by nature, it is cleaattthe goodness of the expansion will depend on how
nonlinearf is in the neighborhood af, as well as on how large, is.
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Y1y -5 Yn ~ N(0,X), whereX;; = cov(y;,y;) = C(u;,u;). It is common to assume that the
process is stationary, with zero-mean and a squared expaln@variance function

D
1
C(u;,u;) =vexp [—5 de(uf - U?)Ql (8)
d=1
wherev andwy, . . ., wp are the model's parameters (see [5] for more details).

3.1 Defining a new Gaussian Process

In the case of uncertain or random inputs, the new inputidutglationship is given by (7),
where the former functiorf, in the noise-free case, has been replaceg(wyv,) = f(u) +

S Tr[f" (uw)].

If we put a Gaussian prior of{u), we can derive the corresponding prior on its second dérévat
and then define the prior on the space of admissible funcgoasv,) which is viewed as the
sum of the two correlated random functiorf$n) and®Tr[ " (u)].

In the following, we use results from the theory of randomdlions [6]. Let us recall that if
X(r) andY (r) are two random functions of the same argumemith expected values,(r)
andm,(r) and covariance functionS,(r, ') andC,(r, ") respectively, then the mean and co-
variance function o (r) = X (r) + Y (r) are given by

m, (1) = mg(r) + my(T) (9)
C.(r,r")y = Cylr,r") + Cy(r, ") + Coy (r,1") + Cyu(r, ") (10)

in the caseX (r) andY (r) are correlated an@y, (r, '), Cy,(r, r') are the cross-covariance func-
tions.

We can now apply this to our functigy{.). Let us first derive the mean and covariance function
of g(u, v,) in the one-dimensional case and then extend these expres$sib dimensions.

Given thatf(u) has zero-mean and covariance funct@(u;, u,), as given by (8), its second
derivative, f”(u), has zero-mean and covariance funct®@(u;, u,)/0u;u’ [6]. It is then

straightforward that f”(u) has zero-mean and covariance functi—‘élﬁi‘*C(ui,uj) [Ouzous3.
Also, the cross-covariance function betwegm) and % f”(u) is given by*%0>C(u;, u;)/0u?

[6].

Therefore, using the fact we ha\%\% — 2Cw) i one dimensiong(u, v,) = f(u) +

2
6uj

L f"(u) has zero-mean and covariance function

ﬁ840(ui, Uj) e 820(ui, Uj)
4 Ouiou; Toou

(3

cov(g(ui, vz), g(uj,v2)] = C(us, uj) + (11)



In the case ofD-dimensional inputs, we have

2 { 02 [GQC(ui,uj)”

/UCE
covlg(ui ve),g(wy,va)] = Olw ) + 57 | 5050T | Fu,0uT (12)

0*C(u;, u;)
4o Tr |0 2
be r[ Ou;0u’
where 3 ‘,9; T [620(_15"’}”)} is aD x D matrix, each entry of which being 2 x D matrix: the
u; u,,: u; uj
block (r, s) containsaul?zuf [623?1 E-léﬁ?)] .

So we see that the first term of therrectedcovariance function corresponds to the noise-free
case plus two correction terms weighted by the input noisenee, which might be either learnt
or assumed to be knovapriori. As we would expect, as, tends to zerasov|g(u;, v;), g(u;, v;)] —
C(u;, u;) which corresponds to theertain noise-free case.

3.2 Inference and prediction

Within this approximation, the likelihood of the daf#, . . ., tx } is readily obtained. We have

t|U ~ N(O, Q) Wlth QU = E;J + Utéij (13)
wheret is the N x 1 vector of observed target¥] the N x D matrix of input meansy;; is given
by (12) ands;; = 1 wheni = j, 0 otherwise. The paramete® = [w, ..., wp, v, vz, v CaN

then be learnt either in a Maximum Likelihood framework omifBayesian way, by assigning
priors and computing their posterior distribution.

When using theisual GP, the predictive distribution of a model output corresping to a new
inputu,, p(f(u,)|O, {u, t}, u,), is Gaussian with mean and variance respectively given by
{ p=k"Q7't

0,2 =k — kTQflk (14)

wherek is the vector of covariances between the test and the tgainputs and: the covariance
between the test input and itself. We h&yg = 3;; + v,6;; and

Eij = C’(ui, Uj), kz = C(u*, ui), k= C(u*, u*) (15)
fori,j =1,..., N and withC(.,.) as given by (8).

With our new model, the prediction at a new (one-dimensipnaise-free input.,, leads to a
predictive mean and variance, again computed using (14WbltQ);; = ¥, + v,6;, with 3,
computed as (11), and
vy 02C (Uy, u;)
ki = Oluaw) + o —— 5=
(e tt) + 5 =52 (16)
k= C(us, uy)



thus taking account of the randomness in the training inputs

In [7] we derived the equations for the predictive mean amthwae, for theusual GP, when
predicting at a new random input. With this new model, thedfmtéon at a random input is
straightforward, simply by using theorrectedcovariance function to compute the covariances
involving the test input. Assuming, ~ N (u,, v,), we havé

U234C(Uz',u*)+ 0C (u4, u.)

k= C(uy, u.) + vy 9°C(u-, u.) v FC(ur, ur)
B T4 Qu20u? T ou? '

4 lllustrative examples

In the following, we assess the goodness of the predictignsomputing the average squared
error (L1) and the average minus log Gaussian predictive density ifausmog-likelihood of the
predictions,L2).

4.1 Static case assuming, is known a priori

In this example, the underlying function is such that 2:+3forx < —1,y = 1forz € [-1,0[
andy = exp(z?) for z > 0.

Assuming prior knowledge of the, v andv, parameters,we consider the case (b) in Figure
1. GivenN = 10 noise-free inputs and targets, that are known to be furetajrthe noise-
free inputs corrupted with white noise with variange we compare the predictive means and
variances aB00 noise-free test inputs computed when usingukeal GP (i.e., using (15)) and
when using theorrectedGP assuming, is known (using (16)). Figure 2 (left) shows some
of the training data used (circles), the noise-free inpats@rresponding targets (squares), the
input distribution and the noisy inputs used to generatdréiring targets (lines) for, = 0.1.

On the right hand side, the evolution of the losgésand L2 is plotted a, increases.

As v, increases, the predictive means computed when usingptinectedGP become smoother,
compared to those obtained using tieual GP. Also, the predictive variances in theualcase

do not increase as, does, rendering the model overconfident. Figure 3 shows réndigtive
means and variance (left) whep = 0.1. Also shown, the percentage of model ouputs, function
of the noisy input, falling in th&5% confidence interval for each test input (right).

“Note that we could easily consider a test input with a vaeatitferent from that of the training points, assuming
that we had knowledge of & priori.

SThese parameters were actually found by Maximum Likelihositig 300 “clean” data pairs, i.e., noise-free
inputs and corresponding outputs, corrupted by a whiteengith variancey; = 1074,

6ln computing the losses, the mean predictions are compaibe function outputs.
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Figure 2: Left: The training data (circles) consist of nefisee inputs / targets corresponding to
noisy inputs. Also shown are the noise-free inputs withrtbefresponding targets (squares) and
the input distribution fow, = 0.1. Note that in the region where the function varies, the outpu
computed at the noisy input differs from that correspondatipe noise-free input, misleading a
model which does not account for the input noise. Right: Agersquared error (left) and average
minus log Gaussian predictive density (rightrasncreasesy, = 1074,1072,1071,0.25. Left
bars:usualGP, right barscorrectedGP.

Now, usingN = 300 data pairs, we compare the learning of thev andv, parameters when
using theusual GP, with covariance function given by (8) and tberrectedone, using (11),
again assuming, is known. Table 1 gives the Maximum Likelihood (ML) paramsteound in
each case, along with the losses computed after predidtihg & noise-free inputs.

From this experiment we can conclude that although igndfiegandomness in the input does
not lead to a poor predictive mean, the predictive variamcesmall and the model is far too
confident; thus leading to a larde (Figure 2, right). If we compare the parameters learnt using
the noisy data compared to those obtained when learningolgtin data (we had = 15.77,

v = 1.2013 andv; = 0.0001), we see that the “extra” noise, induced by the random input,
is “explained” by having a much smaller (i.e., function varying more slowly) and larger
(controlling the vertical scale of variation) amg(estimate of the output noise variance). Also,
thew and thev parameters that are learnt using tlugrectedGP are different from those learnt
using theusualGP, showing the “correlations” that exist betweeyw andv,, thus leading to a
multimodal likelihood function.
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Figure 3: Left: Mean predictions (top) arkd error-bars (bottom) when computed using the
usualGP (crosses) and tlemrrectedone (circles), whem, = 0.1. Right: Percentage of model
outputs, function of the noisy test inputs, falling in ®i&% confidence interval (i.e., within the
+/ — 20 bounds) when using thesualGP (top) and theorrectedone (bottom).

Table 1: Parameters found by ML and losses

w v Vg L1 L2

v, = 0.01
usualGP 1.9318 | 3.9031 | 0.0343 || 0.0022 | —1.5258
correctedGP || 2.0142 | 3.9853 | 0.0343 || 0.0016 | —1.8381
v, = 0.1
usualGP 1.0131 | 12.4087 | 0.6471 || 0.0972 | 1.5704
correctedGP || 0.9694 | 18.5297 | 0.6485 || 0.0422 | —0.2122

4.2 Application to the modelling of the noisy logistic map

We now apply our approach to the modelling of the logistic rfggin [8]), corrupted with white
noise with variance; = 0.01. Lettq,...,ty be the time series. We assume a state-space model
of the formt; = f(t;_1) + &, where the state is formed of one delayed output (case (ayd-ig

1). In order to use our new model, we need to replacey v; in the relevant equations, since in
this case the “input noise” is the same as the output noise.

We generatéV = 100 points for training and anothdfO0 points for testing. Again, we com-
pare the training when ignoring the noise on the staseidlGP) and when using theorrected
covariance function, assuming the noise variance is knawd,when learning it, respectively.
After optimization of the log-likelihood, we find
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e UsualGP:w = 18.3806, v = 0.3941, v, = 0.0182,
e CorrectedGP, assuming; is known:w = 33.0103, v = 0.6719,

e CorrectedGP, learning;: w = 26.4954, v = 0.4808, v; = 0.0181

Figure 4 (left) shows the mean predictions with thir+ v, error bars (with the appropriate
for each case) when having used tiseialGP (top) and theorrectedGP withv; known (middle)
and withv, learnt (bottom). Note that the predictions were computeagud 7), when using the
correctedGP, and the equations derived in [7] when usingukeal GP, since the test inputs are
known to be random (with varianag).
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Figure 4: Left: Mean predictions with thet + v; error bars, along with the true time-series,
in theusualcase (top) and in theorrectedcase whem,; known (middle) andy; learnt (bottom).

Right: Losses, average ovEl0 points, for theusualcase (left bar), theorrectedcase wheny
known (midlle) andy; learnt (right).

From this experiment, it is clear that accounting for theseain the input in the covariance
function does improve the predictions. Again, we notice‘“tdwrelation” betweens and the
noise level when using theorrectedcovariance function.

5 Conclusions

We have presented a novel approach for the training of a @auBsocess when the output is
a function of a random input. The neverrectedprocess is based on an approximation of the
random function around the input mean. We have shown treh#w model surpasses the usual
GP in the case of modelling with noisy inputs in a simple ste#ise, as well as when applied to
the modelling of a nonlinear noisy time-series.
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Both examples show that accounting for the randomness imthg improves the predictions,

via acorrectedcovariance function. They also highlight the correlati@vieen all the param-

eters, indicating the multimodal nature of the likelihoashétion, and the potential problems
for maximum likelihood optimization. Use of numerical Bayen approaches via MCMC, and
putting priors onv,, will ameliorate these issues.
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