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Overview

Main Theorem

UP ¢ DTIME(2°W) =  DistNP & AvgP

» This was a long-standing open question with good reason.

» Standard proof techniques do not work!

» Hardness amplification procedure [Viola'05]
« Black-box reductions [Feigenbaum-Fortnow'93, Bogdanov-Trevisan'06]

» New proof techniques: analyzing average-case complexity by meta-complexity
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Motivations of Average-Case Complexity

1. To understand the practical performance of algorithms.

Example: the Hamiltonian path problem (NP-complete)

 Cannot be solved in P (unless P = NP)

« (Can be solved in expected linear time
on an Erdos—Rényi random graph. [Gurevich & Shelah (1987)]

2. To understand the security of cryptographic primitives.

» One-way functions cannot exist unless NP is hard on average.



Basics of Average-Case Complextiy

[Levin'86],[Impagliazzo’95],[Ben-David, Chor, Goldreich & Luby '92],[Bogdanov & Trevisan'06],...

« Adistributional problem (L,D)  L:{0,1}* = {0,1}, a decision problem

D = {D,, }nen, a family of (input) distributions
Polynomial-time samplable distribution

 DistNP ={(L,D) | L € NP, D € PSamp} an average-case analogue of NP

Equivalent to errorless heuristic scheme
* (L,D) € AvgP average-case polynomial-time

< 3Janalgorithm A and 3 a time bound ¢:{0,1}* — N such that

1. A(x) = L(x) for every x,
2. A(x) runsin time < t(x) for every x, and
3. Eyop, [t(x)€] < n%) for some constant € > 0.



Basics of Average-Case Complextiy

[Levin'86],[Impagliazzo’95],[Ben-David, Chor, Goldreich & Luby '92],[Bogdanov & Trevisan'06],...

« Adistributional problem (L,D)  L:{0,1}* = {0,1}, a decision problem

D = {D,, }nen, a family of (input) distributions

 DistNP ={(L,D) | L € NP, D € PSamp} an average-case analogue of NP

* (L,D) € AvgpP P-computable average-case polynomial-time
< 3Janalgorithm A and 3 a time bound ¢:{0,1}* — N such that

1. A(x) = L(x) for every x,

2. A(x) runsin time < t(x) for every x,

3. Exp, [t(x)€] < n%W for some constant € > 0, and
4. tis computable in polynomial time.

Example: (HamiltonianPath, Erdos—Rényi) € AvgpP S AvgP



Hamiltonian Path

> Let G(n,p) denote the n-vertex Erdés—Rényi random graph with edge probability p.

Theorem [Alon & Krivelevich 2020]

1
o)

For every p > (HamiltonianPath, G(n, p)) € AvgP.

Proposition

For every p > (HamiltonianPath, G(n, p)) € AvgpP.

0(logn) '




Big and Frontier Open Questions

?
NP #P = DistNP € AvgP

» Equivalently: Can we rule out Heuristica? [Impagliazzo'95]
(a world where NP is hard in the worst case but easy on average)

?
UP ¢ DTIME(2°™W) =  DistPH & AvgP

» Difficulty: Any proof must bypass three barriers!

(1) “Impossibility” of hardness amplification, (2) limits of black-box reductions, and (3) relativization barriers



Complexity Classes

PSPACE : polynomial space

PSPACE

PH : polynomial(-time) hierarchy

NP : non-deterministic polynomial-time

UP : unambiguous polynomial-time
(solvable by a non-deterministic polynomial-time machine
with at most one accepting path for each input.)

P : polynomial time

[Ko'85, Grollmann & Selman’88]
UP # P & There is a one-to-one one-way function that is hard to invert in the worst case.
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(Worst-Case) Hardness Amplification

> A general proof technique that shows a
worst-case-to-average-case connection:

A worst-case hardness amplification procedure Amp() maps
£:{0,1}" - {0,1} to Amp’:{0,1}™ - {0,1} and satisfies

"f is worst-case hard = Amp/ is average-case hard”

> There is a PSPACE-computable Amp('). (e.g., [Sudan-Trevisan-Vadhan'01])

> In particular, PSPACE # P < Dist(PSPACE) & AvgP [Kobler-Schuler'04]



“Impossibility” of Hardness Amplification
[Viola'05]

> Can we prove "UP ¢ DTIME(2%99") = DistPH & AvgP" by constructing Amp” € PH/?

No! (or at least very difficult) [Viola'05]

Theorem [Viola (CC'05)]

There is no Amp’/ computable in PH/
(if the relationship between f and Amp/ is proved by black-box reductions)

Theorem [Viola (CCC'05)]

If 3 Amp/ € PH/, then P # NP.
(The property of Amp”: f ¢ SIZE(2%9°") = Amp’ ¢ HeurSIZE(n°®))




(Black-Box) Reductions

"+ GapSVP ¢ BPP = DistNP & HeurBPP  [Ajtai'%,..]
Theorems: < e SZK #=#P = DistNP _¢_ AVgP [Ostrovsky'91,Hastad-Impagliazzo-Levin-Luby'99,...,H. 18]
e NP ¢& DTIME(ZO(n)) = DistNP & AvgP [Ben-David, Chor, Goldreich & Luby '92]

» These are proved by black-box reductions:
query

No efficiency
requirement

>

i )
reduction R Answer oracle A

ol O

<

VL € SZK, a reduction R4 solves L for any oracle A that solves some (L', D) € DistNP.



Limits of Black-Box Reductions

» Can we use a (black-box) reduction technique to prove |
"UP ¢ DTIME(2°™)) = DistNP ¢ AvgP"? No!

Theorem [Feigenbaum & Fortnow'93, Bogdanov & Trevisan'06]

There is no nonadaptive black-box reduction showing
"UP ¢ DTIME(2°") = DistNP ¢ AvgP”
unless UP € coNTIME(2°()) /200,

» We need to use either non-black-box or adaptive reductions!



Relativization Barriers

Theorem [Impagliazzo'11]

There is an oracle A such that UP4 ¢ DTIME“ (2"0'1) and DistNP4 € AvgP4.

> A relativizing proof technique cannot achieve the time bound of 2" (« 20(),

» Remark: Our proof is non-relativizing because
a result of [Buhrman, Fortnow, Pavan'05] does not seem to relativize.
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Our Results

Any proof of (1) must
overcome the barrier results of
[Viola] & [Bogdanov-Trevisan].

O
o O
UP ¢ DTIME(20("/108)) = DistNP & AvgP

Main Theorem

This rules out
a variant of
Heuristica

2) PH & DTIME(20(%/108™)) = DistPH & AvgP

O
O

(3) NP ¢ DTIME(20(/108M))  —  DistNP & AvgpP

P-computable
average-case
polynomial-time

> (1) and (2) resolve the frontier open question.

» We also prove that DistPH & AvgpP < DistPH & AvgP.



Our Results

The hard distribution is
the uniform distribution ‘U
or the tally distribution 7.

Inverting a size-verifiable one- .
way function in the worst-case Main Theorems (Strong

every constant § > 0 and c € N,

(1) NTIMEq, (2"'"*) € DTIME(200"/ 1°6™) = coNP x {U, T} & Avg}_,-cP

(2) PHTIME (2%'") ¢ DTIME(20("/198™) = PH x {U, T} & Avg}_,-cP

(3) NTIME (2""") & DTIME(200"/1°8™) = NP x {U, T} & AvgpP

[ One-sided-error heuristics

n1—5_ . . : -
[ 2™~ -time version of NP with success probability n=¢.




n is the input length.

A candidate that witnesses NP ¢ DTIME(2°(")

> 3SAT is not a candidate: 3SAT € NP n DTIME(20("/ log ),

An m-clause 3CNF on O(m) variables is encoded by n = O0(mlogm) bits
and can be solved in time 20(m) = 20(n/logn)

» DNF-MCSP is an NP-complete problem conjectured to be
outside DTIME(2°(™),

Corollary (of the Main Theorems)

DNF-MCSP ¢ DTIME(20("/108 ™)) = DistNP ¢ AvgpP & DistPH & AvgP.

> This is the first result connecting average-case hardness of NP and
worst-case hardness of NP-complete problems.



Minimum Circuit Size Problem (MCSP)

[Kabanets & Cai '00]

Input ~ Output

X1 P x

* The truth table c;f a Boolean function Is there a circuit of size < s 1 1 2

| f:10,13" — 10,1} computing f. /V\

* A size parameter s € N A A
/ Y N\
| -

N/ N,

» MCSP is a meta-computational problem.

MCSP = “the problem of computing the circuit complexity of f"

Fact: MCSP € NP NP-hardness of MCSP



Minimum DNF Size Problem (DNF-MCSP)

Input Output

* The truth table of a Boolean function Is there a DNF formula of size < s

. n
. 01} = 10.1) computing f.
 Asize parameters € N

Theorem [Masek'79]: DNF-MCSP is NP-complete.
Theorem [H.-Oliveira-Santhanam’18]: (DNF o XOR)-MCSP is NP-complete.

Theorem [llango'20]: AC® formula-MCSP is NP-complete.

> The fastest algorithm is an exhaustive search running in time 2°) on input length N = 2™,
> It is reasonable to conjecture that ¢-MCSP & DTIME(2°(M).



Minimum DNF Size Problem (DNF-MCSP)

Corollary (of the Main Theorems)

C-MCSP ¢ DTIME(20W/108N)) — DistNP & AvgpP and DistPH & AvgP.

Theorem [Masek'79]: DNF-MCSP is NP-complete.
Theorem [H.-Oliveira-Santhanam’18]: (DNF o XOR)-MCSP is NP-complete.

Theorem [llango'20]: AC® formula-MCSP is NP-complete.

> The fastest algorithm is an exhaustive search running in time 2°) on input length N = 2™,
> It is reasonable to conjecture that ¢-MCSP & DTIME(2°(M).
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Meta-Complexity — Complexity of Complexity

» Examples of meta-computational problems: MCSP, MKTP, MINKT, ...

MINKT [Ko'91] = “"Compute the time-bounded Kolmogorov complexity”

 t-time-bounded Kolmogorov complexity of x

Kt(x) := (the length of a shortest program that prints x in t steps)

e MINKT = {(x, 1%, 15) | Kt(x) < s}.



Meta-Complexity — Complexity of Complexity

» Examples of meta-computational problems: MCSP, MKTP, MINKT, ...

MINKT4 [Ko'91] = “Compute the A-oracle time-bounded Kolmogorov complexity”

e A-oracle t-time-bounded Kolmogorov complexity of x

Kt4(x) := (the length of a shortest program M+ that prints x in ¢t steps)

« MINKT# = {(x, 1%, 15) | K¥(x) < s}.

Remark: In general, we may have A £ MINKT“.
It is easy to see MINKT# € NP4.




Average-Case Complexity = Meta-Complexity
Theorem [H. (FOCS'20)] ﬂi}y&e;g }
DistPH € AvgP = GapMINKTYH € p

> GapMINKT#: an 0(logn)-additive approximation version of MINKTA,

» Corollary: A new technique of analyzing average-case complexity by meta-complexity.

Average-Case Complexity Worst-Case Meta-Complexitry
[H. FOC‘:S'18, CCC'20]

DistPH € Avgi_ 1 /poyayP | D> Gap(KPHvsK) € P

Corollary Easier to analyze
average-case hardness worst-case complexity!
amplification for PH
[H. ITCS'20, $TOC20]

DistPH € AvgP ¢ ; | GapMINKTFH e P




Theorem [H. STOC'21]

(2') NP ¢ DTIME(20(%/108™)) = DistPH & AvgP

Average-Case Complexity Worst-Case Meta-Complexitry
[H. FOCS'18,ECCC’20]
DistPH € AvgP | , > GapMINKTNP € P
[H. STOC'21]
Goal based on [H. ITCS'20, STOC'20]
~ L € NPh
NP € DTIME(20(/ logm)) {———— v L € N has

H.sToc21] @ universal heuristic scheme.



Universal Heuristic Scheme — A key notion in this work

> A universal heuristic scheme is “universal” in the following sense.

Proposition (universality of universal heuristic schemes)

Assume DistNP < AvgP.
For every L:{0,1}* — {0,1}, the following are equivalent.

1. There is a universal heuristic scheme for L.
2. {L} X PSamp S AvgpP.

The notion of P-computable
average-case poly-time
appears naturally!



The Definition of Universal Heuristic Scheme

» Computational Depth [Antunes, Fortnow, van Melkebeek, Vinodchandran'06]
cdf(x) = Kf(x) — K®(x)
> (t,s)-Time-Bounded Computational Depth
cd®S(x) = Kt (x) — KS(x)
> An algorithm A is called a universal heuristic scheme for L if
for some polynomial p, (Simplified, weak definition)

1. A(x,t) = L(x) and
2. A(x,t) halts in time 20(cd®PY@+logt) for gl large t € N.




The Definition of Universal Heuristic Scheme

» Computational Depth [Antunes, Fortnow, van Melkebeek, Vinodchandran'06]

cdf(x) = Kf(x) — K®(x)
> (t,s)-Time-Bounded Computational Depth
cd®S(x) = Kt (x) — KS(x)

> A pair (C,S) of algorithms is called a universal heuristic scheme for L if
for some polynomial p, for every t = p(n) and every x € {0,1}",
1. cdPO(x) <k = C(x,t,k)=1
2. Clx,t,k)=1 = S(x,t,k) = L(x)
3. C runs in time poly(t) and S runs in time poly(t, 2%).

C: checker, S: solver



Theorem [H. STOC'21]

(2') NP ¢ DTIME(20(%/108™)) = DistPH & AvgP

Average-Case Complexity Worst-Case Meta-Complexitry
[H. FOCS'18,iCCC'20]
DistPH € AvgP | , > GapMINKTNP € P
[H. STOC'21]
Goal based on [H. ITCS'20, STOC'20]
v [H. STOC'21] Vv L € NP has

NP € DTIME(20("/log 1)) , -

Easy to prove
(Next slide)

a universal heuristic scheme.




Fast Algorithms from Universal Heuristic Schemes

Lemma

If there is some universal heuristic scheme A for L, then
L € DTIME(20(/ logn)),

Proof Idea: Find a parameter t so that the input x is “computationally shallow” (i.e., cd??(®(x) = 0(n/logn)).

Proof: Consider the following telescoping sum for a parameter I = elogn (¢ > 0, constant):
cdiP® (x) 4 cdPOPPO (x) 4 o+ cdP OP D (x) = Kt(x) = KP' O(x) <n + 0(1)

Algorithm B: = for somei € {1, 2, ...,1}, we have cdPTHOPHO) (x) < nt0() _ 0( - )

I logn
Run A(x, t), A(x, p(2)), A(x, p%(1)), ..., A(x, p'~1(2)) in parallel.
Take the first one that halts, and output what it outputs.

A universal heuristic scheme 4 for L: 3 p(t) = t°®),
1. A(x,t) = L(x)
Correctness: B(x) = L(x) for every input x. 2. A(x,t) runs in time 20(cd?@@+log ),
e |
(The running time of B) < min{ZO(Cdpl OP O @) +log Pl(t))} < 20(n/logn)
i

(p!(t) s n¢ < 20@/10g™) for [ = elogn )



Theorem [H. STOC'21]

(2') NP ¢ DTIME(20(%/108™)) = DistPH & AvgP

Average-Case Complexity Worst-Case Meta-Complexitry

[H. FOCS'18,iCCC'20]

DistPH € AvgP | , > GapMINKTNP € P
» Direct product generator [H. sToc20] [H. STOC'21]
G ° Weak symmetry of information (1. stoc21) based on [H. ITCS'20, STOC'20)

v |
[H. STOC'21]
NP € DTIME(20(/logn)) {——— VL eNPhas
g a universal heuristic scheme.




Constructing Universal Heuristics

Lemma [H. STOC'21]

GapMINKTN? € P = VL € NP admits a universal heuristic scheme.

[H. FOCS'20]
GapMINKTNP € P & Gap(KNP vs K) € P

A harder problem,
The Gap(KN* vs K) Problem [H. ccc20, but equivalent.

Myes = {(x,1%,15) | K& NP (x) < s}.
My, = {(x, 15, 15) | KPIFIFD () > s + logp(|x| + ) }.

(p: some polynomial)




Lemma [H. STOC'21]

Gap(KNP vs K) € P = VL € NP admits a universal heuristic scheme.

. A pseudorandom generator
» Main Tool: k-wise direct product generator [H. STOC'20] construction based on

DP.(y; z) = (Zl, A EnC(y)Zl, e Enc(y)zk) a "hard” truth table y

Enc(-): an arbitrary list-decodable error correcting code (e.g., Hadamard code)

DP,(y; Z) = (Z,Zy), where Z € GF(2)**™ and y € GF(2)" for Hadamard code.

Reconstruction Algorithm R®) of DP,:

Given any D that e-distinguishes DP, (y;-) from the uniform distribution,

there exists an advice string a € {0,1}k+°0°8™) gych that R?(a) = y.

Key Point: (The advice complexity of DP,) = k + O(logn)




Symmetry of Information [Levin-Kolmogorov]

Lemma [H. STOC21] K®(x,w) = K*(x) + K®(w|x) — 0(logn)

Gap(KNP vs K) € P = VL € NP admits a universal heuristic scheme.

> Let y, be the lexicographically first certificate for x € L, if any.
» Want to distinguish DP, (y,; z) from w ~ {0,1}/#/+k
K26 NP (x, DRy (v 2)) < KE(x) + |2z] + O(logn) — Weak symmetry of

information (1. stoc21]

KPCO (x, w) > Ka(p(20) (x) + |w| — 0(logn) with high prob. over w ~ {0,1}/2I**

I
|1z| + k

If k > Kf(x) — K1P@D) (x) + 0(logn) = cd“4°P2(x) + O(logn),
then we get KPZ0 (x, w) > K2NP(x, DP, (y,; 2)).
9 (x, w) (. DR (yx; 2))

My, [ly.s Can be distinguished using Gap(KNP vs K) € P



Lemma [H. STOC'21]

Gap(KNP vs K) € P = VL € NP admits a universal heuristic scheme.

> Let M be a poly-time algorithm for Gap(KN? vs K) , |
Randomized algorithm, but

Universal heuristic scheme (C, S) for L can be derandomized using
[Buhrman-Fortnow-Pavan'05]
 Inputx €{0,1}",teN,keN
- Define D, (w) == M(xw, 1%¢,15) for some threshold s.
« Checker C accepts iff Pr[D,(w) = 1] < %.
w

» Solver S computes a list Y := {RPx(a)|a € {0,1}¢+0U08™M1} and
accepts iff 3y € Y is a certificate for x € L.

The size of list
< poly(n, 2¥)

Correctness of C: cd®?°P2Y(x) < k — 0(logn) = (xw, 12¢,15) € My, w.h.p. = C accepts.
Correctness of S: C accepts = D, distinguishes DP,(y,;:) from w = y, €Y (if any).



Theorem [H. STOC'21]

(2') NP ¢ DTIME(20(%/108™)) = DistPH & AvgP

Average-Case Complexity . ! Worst-Case Meta-Complexitry
Direct product generator}

[H. FOCS'18,iCCC'20]

DistPH € AvgP | , > GapMINKTNP € P
 Direct product generator [H. stoc20] [H. STOC'21]
«  Weak symmetry of information [H. stoc21) based on [H. ITCS'20, STOC'20]
YV

[H. STOC'21]
NP C DTIME(ZO("/ logn)) < ' : V L € NP has

= a universal heuristic scheme.
[ Easy (“computationally shallow”)




How we overcame limits of black-box reductions

Let p(n) be the
runtime of AvgP.

Oo.
DistPH € AvgP |

[H. FOCS™18, CCC'20]

apMINKTNP € p

= " The algorithm runs
in time [H. STOC'21]
Goal 5 (cdt'p’(t) (x)) based on [H. ITCS'20, STOC'20]
2

\Ve \ .
NP C DTIME(ZO(n/ logn)) < K V L € NP has

H.stoc21] @ universal heuristic scheme.

» The reduction is non-black-box because we exploit the efficiency of AvgP.
.e., the proof is not subject to the barrier of [Bogdanov & Trevisan'06].



How we overcame [Viola'05]

> One can regard our proof as a "hardness amplification procedure Amp®” in a sense,
but Amp”/: {0,1}* - {0,1} must be defined on all input lengths.

[H. FOCS'18, CCC'20]

Amp’/ € AvgP 1 Y GapMINKTN? € p
[H. STOC'21]
Goal based on [H. ITCS'20, STOC'20]
Vv

f
NP/ € DTIME/ (20(n/logm)) ¢ ) VL NP has
H.sToc'21] @ universal heuristic scheme.

> [Viola'05]'s proof techniques can be applied only when Amp/:{0,1}™ - {0,1}.
(Extending it to {0,1}" would resolve P # NP.)



Proof Ideas for other results

Main Theorems

(1) UP ¢ DTIME(20(*/108)) = DistNP & AvgP

[Already ex@
(2) PH & DTIME(20(/1logn)) =  DistPH & AvgP

(3) NP & DTIME(20(%/108n)) = DistNP & AvgpP



Proof Ideas for other results

: "Algorithmic language compression”
Main Lemmas ws [H. FOCS'18, CCC'20]

(1) VL € UP has universal heuristic schemes if DistNP € AvgP.

(2) VL € PH has universal heuristic schemes if DistPH € AvgP.

(3) VL € NP has universal heuristic schemes if DistNP € AvgpP.

“Universality” of universal heuristic schemes
Based on the ideas of [Antunes & Fortnow '09]




Algorithmic language compression [H. STOC'21]

Why U P? If (L1, U) € AvgP, then (Ilyes, [Iy,) € promise-P, where

Myes = Lo, Myo = {x|KPP)(x) = log#L, + logp(t)}

» Consider a language L € UP and a verifier V for L.
x€L=3IAy,V(ix,y)=1
x¢L=Vy,V(x,y) =0

» A hard distributional problem (L, U) in DistNP is (roughly) as follows.
Lo = {(x DP(y;2), 15, 19) K (x) < 5,V(x,y) = 1}

Ll = {(DP{(W, Z,); 1tl 1S)|(W; 1t’ 15) € LO}
:= {(DP,(x DP,(y; 2); z"), 1%, 15)|K!(x) < 5,V (x,y) = 1} € NP

> We exploit the property that [Valiant-Vazilani'86]
#{(x, Y)th(X) S S, V(x, y) — 1} S 25+1.o o O isn‘t sufficient.



Summary and Open Questions

» Meta-complexity is a powerful tool to analyze average-case complexity.

> A lot of interesting questions remain open:

- Can we prove NP ¢ DTIME(2°(™) = DistNP & AvgP?
« Does the exponential-time hypothesis (ETH) imply DistPH & AvgP?
- Can we prove PH & io-DTIME(2°™) = DistPH & io-AvgP?
Viola’'s barrier comes into play in this setting!
« (Can our results relativize?



Subsequent Work

Theorem [H. and Nanashima]

There exists an oracle 4 such that

DistPH4 < AvgP# and UP4 N coUP# ¢ DTIME(27/@(logn)),

> Surprisingly, our time bound 20/ 1087 s nearly optimal for relativizing proof techniques.

Thank you!



