Average-Case Hardness of NP from Exponential Worst-Case Hardness Assumptions

Shuichi Hirahara

National Institute of Informatics, Tokyo, Japan

Full version: https://eccc.weizmann.ac.il/report/2021/058/

Overview

Main Theorem

$$\mathsf{UP} \not\subseteq \mathsf{DTIME}\big(2^{o(n)}\big) \implies \mathsf{DistNP} \not\subseteq \mathsf{AvgP}$$

- > This was a long-standing open question with good reason.
- Standard proof techniques do not work!
 - Hardness amplification procedure [Viola'05]
 - Black-box reductions [Feigenbaum-Fortnow'93, Bogdanov-Trevisan'06]
- ➤ New proof techniques: analyzing average-case complexity by meta-complexity

Outline

- 1. Average-Case Complexity
- 2. Barrier Results
- 3. Our Results
- 4. Proof Techniques
- 5. Open Problems

Motivations of Average-Case Complexity

1. To understand the practical performance of algorithms.

Example: the Hamiltonian path problem (NP-complete)

- Cannot be solved in P (unless P = NP)
- Can be solved in expected linear time on an Erdős–Rényi random graph. [Gurevich & Shelah (1987)]
- 2. To understand the security of cryptographic primitives.
 - > One-way functions cannot exist unless NP is hard on average.

Basics of Average-Case Complextiy

[Levin'86],[Impagliazzo'95],[Ben-David, Chor, Goldreich & Luby '92],[Bogdanov & Trevisan'06],...

- A <u>distributional problem</u> (L, \mathcal{D}) $L: \{0,1\}^* \to \{0,1\}$, a decision problem
 - $\mathcal{D} = \{\mathcal{D}_n\}_{n \in \mathbb{N}}$, a family of (input) distributions

Polynomial-time samplable distribution

- $DistNP = \{(L, \mathcal{D}) \mid L \in NP, \mathcal{D} \in PSamp\}$ an average-case analogue of NP

Equivalent to errorless heuristic scheme

- $(L, \mathcal{D}) \in AvgP$ average-case polynomial-time
 - \exists an algorithm A and \exists a time bound $t: \{0,1\}^* \rightarrow \mathbb{N}$ such that
 - 1. A(x) = L(x) for every x,
 - 2. A(x) runs in time $\leq t(x)$ for every x, and
 - 3. $\mathbb{E}_{x \sim \mathcal{D}_n}[t(x)^{\epsilon}] \leq n^{O(1)}$ for some constant $\epsilon > 0$.

Basics of Average-Case Complextiy

[Levin'86],[Impagliazzo'95],[Ben-David, Chor, Goldreich & Luby '92],[Bogdanov & Trevisan'06],...

- A <u>distributional problem</u> (L, \mathcal{D}) $L: \{0,1\}^* \to \{0,1\}$, a decision problem $\mathcal{D} = \{\mathcal{D}_n\}_{n \in \mathbb{N}}, \text{ a family of (input) distributions}$
- DistNP = $\{(L, \mathcal{D}) \mid L \in NP, \mathcal{D} \in PSamp\}$ an average-case analogue of NP
- $(L, \mathcal{D}) \in Avg_PP$ P-computable average-case polynomial-time
 - \Leftrightarrow \exists an algorithm A and \exists a time bound $t: \{0,1\}^* \to \mathbb{N}$ such that
 - 1. A(x) = L(x) for every x,
 - 2. A(x) runs in time $\leq t(x)$ for every x,
 - 3. $\mathbb{E}_{x \sim \mathcal{D}_n}[t(x)^{\epsilon}] \leq n^{O(1)}$ for some constant $\epsilon > 0$, and
 - 4. t is computable in polynomial time.

Example: (HamiltonianPath, Erdős–Rényi) \in Avg_PP \subseteq AvgP

Hamiltonian Path

 \triangleright Let G(n,p) denote the n-vertex Erdős–Rényi random graph with edge probability p.

Theorem [Alon & Krivelevich 2020]

For every
$$p \ge \frac{1}{o(\sqrt{n})}$$
, (HamiltonianPath, $G(n, p)$) \in AvgP.

Proposition

For every
$$p \ge \frac{1}{o(\log n)}$$
, (HamiltonianPath, $G(n, p)$) $\in \text{Avg}_P P$.

Big and Frontier Open Questions

Big Open Question

$$NP \neq P \stackrel{?}{\Rightarrow} DistNP \nsubseteq AvgP$$

> Equivalently: Can we rule out Heuristica? [Impagliazzo'95]

(a world where NP is hard in the worst case but easy on average)

Frontier Question

$$\mathsf{UP} \not\subseteq \mathsf{DTIME}\big(2^{o(n)}\big) \overset{?}{\Rightarrow} \quad \mathsf{DistPH} \not\subseteq \mathsf{AvgP}$$

- Difficulty: Any proof must bypass three barriers!
- (1) "Impossibility" of hardness amplification, (2) limits of black-box reductions, and (3) relativization barriers

Complexity Classes

PSPACE: polynomial space

PH: polynomial(-time) hierarchy

NP: non-deterministic polynomial-time

UP: unambiguous polynomial-time

(solvable by a non-deterministic polynomial-time machine with at most one accepting path for each input.)

P: polynomial time

[Ko'85, Grollmann & Selman'88]

 $UP \neq P \iff$ There is a one-to-one one-way function that is hard to invert in the worst case.

Outline

- 1. Average-Case Complexity
- 2. Barrier Results
- 3. Our Results
- 4. Proof Techniques
- 5. Open Problems

(Worst-Case) Hardness Amplification

➤ A general proof technique that shows a worst-case-to-average-case connection:

A <u>worst-case hardness amplification procedure</u> Amp^(·) maps $f: \{0,1\}^n \to \{0,1\}$ to Amp^f: $\{0,1\}^m \to \{0,1\}$ and satisfies "f is worst-case hard \Longrightarrow Amp^f is average-case hard"

- \triangleright There is a PSPACE-computable Amp^(·). (e.g., [Sudan-Trevisan-Vadhan'01])
- \triangleright In particular, PSPACE \neq P \Leftrightarrow Dist(PSPACE) \nsubseteq AvgP [Kobler-Schuler'04]

"Impossibility" of Hardness Amplification

[Viola'05]

➤ Can we prove "UP $\not\subseteq$ DTIME $(2^{0.99n}) \Rightarrow$ DistPH $\not\subseteq$ AvgP" by constructing Amp $^f \in$ PH f ?

No! (or at least very difficult) [Viola'05]

Theorem [Viola (CC'05)]

There is no Amp^f computable in PH^f

(if the relationship between f and Amp^f is proved by black-box reductions)

Theorem [Viola (CCC'05)]

If $\exists \operatorname{Amp}^f \in \operatorname{PH}^f$, then $\operatorname{P} \neq \operatorname{NP}$.

(The property of Amp^f : $f \notin SIZE(2^{0.99n}) \Rightarrow Amp^f \notin HeurSIZE(n^{O(1)})$)

(Black-Box) Reductions

Theorems:

• GapSVP \notin BPP \Longrightarrow DistNP \nsubseteq HeurBPP [Ajtai'96,...]

• SZK \neq P \Longrightarrow DistNP \nsubseteq AvgP [Ostrovsky'91,Hastad-Impagliazzo-Levin-Luby'99,...,H.'18]

• NP \nsubseteq DTIME($2^{O(n)}$) \Longrightarrow DistNP \nsubseteq AvgP [Ben-David, Chor, Goldreich & Luby '92]

 $\forall L \in SZK$, a reduction R^A solves L for any oracle A that solves some $(L', \mathcal{D}) \in DistNP$.

Limits of Black-Box Reductions

 \succ Can we use a (black-box) reduction technique to prove "UP \nsubseteq DTIME $\left(2^{o(n)}\right) \Longrightarrow$ DistNP \nsubseteq AvgP"?

No!

Theorem [Feigenbaum & Fortnow'93, Bogdanov & Trevisan'06]

There is no nonadaptive black-box reduction showing "UP \nsubseteq DTIME $(2^{o(n)}) \Rightarrow$ DistNP \nsubseteq AvgP" unless UP \subseteq coNTIME $(2^{o(n)})/2^{o(n)}$.

We need to use either non-black-box or adaptive reductions!

Relativization Barriers

Theorem [Impagliazzo'11]

There is an oracle A such that $UP^A \nsubseteq DTIME^A(2^{n^{0.1}})$ and $DistNP^A \subseteq AvgP^A$.

- > A relativizing proof technique cannot achieve the time bound of $2^{n^{0.1}} (\ll 2^{o(n)})$.
- Remark: Our proof is non-relativizing because a result of [Buhrman, Fortnow, Pavan'05] does not seem to relativize.

Outline

- 1. Average-Case Complexity
- 2. Barrier Results
- 3. Our Results
- 4. Proof Techniques
- 5. Open Problems

Our Results

Any proof of (1) must overcome the barrier results of [Viola] & [Bogdanov-Trevisan].

Main Theorems

This rules out 1) UP \nsubseteq DTIME $(2^{O(n/\log n)}) \implies$ DistNP \nsubseteq AvgP

a variant of

Heuristica

(2) PH \nsubseteq DTIME $(2^{O(n/\log n)}) \implies \text{DistPH} \nsubseteq \text{AvgP}$

(3) NP \nsubseteq DTIME $(2^{O(n/\log n)}) \implies \text{DistNP} \nsubseteq \text{Avg}_{P}$ P

P-computable average-case polynomial-time

- \triangleright (1) and (2) resolve the frontier open question.
- \triangleright We also prove that DistPH \nsubseteq Avg_PP \iff DistPH \nsubseteq AvgP.

Our Results

Inverting a *size-verifiable* one-way function in the worst-case

Main Theorems (Stronge

The hard distribution is the uniform distribution \mathcal{U} or the tally distribution \mathcal{T} .

every constant $\delta > 0$ and $c \in \mathbb{N}$,

(1)
$$\text{NTIME}_{\text{sv}}\left(2^{n^{1-\delta}}\right) \nsubseteq \text{DTIME}\left(2^{O(n/\log n)}\right) \implies \text{coNP} \times \{\mathcal{U}, \mathcal{T}\} \nsubseteq \text{Avg}_{1-n^{-c}}^{1}\text{P}$$

(2) PHTIME
$$\left(2^{n^{1-\delta}}\right) \nsubseteq \text{DTIME}\left(2^{O(n/\log n)}\right) \implies \text{PH} \times \{\mathcal{U}, \mathcal{T}\} \nsubseteq \text{Avg}_{1-n^{-c}}^1 \text{P}$$

(3) NTIME
$$(2^{n^{1-\delta}}) \nsubseteq DTIME(2^{O(n/\log n)}) \implies NP \times \{\mathcal{U}, \mathcal{T}\} \nsubseteq Avg_PP$$

 $2^{n^{1-\delta}}$ -time version of NP

One-sided-error heuristics with success probability n^{-c} .

n is the input length.

A candidate that witnesses NP \nsubseteq DTIME($2^{o(n)}$)

- ➤ 3SAT is not a candidate: 3SAT ∈ NP ∩ DTIME $(2^{O(n/\log n)})$. An m-clause 3CNF on O(m) variables is encoded by $n = O(m\log m)$ bits and can be solved in time $2^{O(m)} = 2^{O(n/\log n)}$.
- > DNF-MCSP is an NP-complete problem conjectured to be outside DTIME($2^{o(n)}$).

Corollary (of the Main Theorems)

DNF-MCSP \notin DTIME $(2^{O(n/\log n)}) \Longrightarrow$ DistNP \nsubseteq Avg_PP & DistPH \nsubseteq AvgP.

➤ This is the first result connecting average-case hardness of NP and worst-case hardness of NP-complete problems.

Minimum Circuit Size Problem (MCSP)

[Kabanets & Cai '00]

Input

- The truth table of a Boolean function $f: \{0,1\}^n \to \{0,1\}$
- A size parameter $s \in \mathbb{N}$

Example truthtable(\bigoplus_2) = 0110

Output

Is there a circuit of size $\leq s$ computing f.

 $size(\bigoplus_2) = 3$

MCSP is a meta-computational problem.

MCSP = "the problem of computing the circuit complexity of f"

Fact: MCSP ∈ NP

Open: NP-hardness of MCSP

Minimum DNF Size Problem (DNF-MCSP)

Input

- The truth table of a Boolean function $f: \{0,1\}^n \to \{0,1\}$
- A size parameter $s \in \mathbb{N}$

Output

Is there a DNF formula of size $\leq s$ computing f.

$$x_1 \oplus x_2 = (x_1 \land \neg x_2) \lor (\neg x_1 \land x_2)$$

 $DNFsize(\bigoplus_2) = 4$

Example truthtable(\bigoplus_2) = 0110

<u>Theorem</u> [Masek'79]: DNF-MCSP is NP-complete.

Theorem [H.-Oliveira-Santhanam'18]: (DNF • XOR)-MCSP is NP-complete.

<u>Theorem</u> [llango'20]: AC⁰ formula-MCSP is NP-complete.

- \triangleright The fastest algorithm is an exhaustive search running in time $2^{O(N)}$ on input length $N=2^n$.
- ➤ It is reasonable to conjecture that C-MCSP \notin DTIME $(2^{o(N)})$.

Minimum DNF Size Problem (DNF-MCSP)

Corollary (of the Main Theorems) -

 $\mathcal{C}\text{-MCSP} \notin \mathrm{DTIME}\big(2^{O(N/\log N)}\big) \Longrightarrow \mathrm{DistNP} \not\subseteq \mathrm{Avg}_{\mathrm{P}}\mathrm{P} \text{ and } \mathrm{DistPH} \not\subseteq \mathrm{Avg}\mathrm{P}.$

 $x_1 \oplus x_2 = (x_1 \land \neg x_2) \lor (\neg x_1 \land x_2)$

Example

 $truthtable(\bigoplus_2) = 0110$

 $DNFsize(\bigoplus_2) = 4$

Theorem [Masek'79]: DNF-MCSP is NP-complete.

Theorem [H.-Oliveira-Santhanam'18]: (DNF • XOR)-MCSP is NP-complete.

<u>Theorem</u> [llango'20]: AC⁰ formula-MCSP is NP-complete.

- \triangleright The fastest algorithm is an exhaustive search running in time $2^{O(N)}$ on input length $N=2^n$.
- ➤ It is reasonable to conjecture that C-MCSP \notin DTIME $(2^{o(N)})$.

Outline

- 1. Average-Case Complexity
- 2. Barrier Results
- 3. Our Results
- 4. Proof Techniques
- 5. Open Problems

Meta-Complexity – Complexity of Complexity

Examples of meta-computational problems: MCSP, MKTP, MINKT, ...

```
MINKT [Ko'91] = "Compute the time-bounded Kolmogorov complexity"
```

- t-time-bounded Kolmogorov complexity of x $K^t(x) := \text{(the length of a shortest program that prints } x \text{ in } t \text{ steps)}$
- MINKT = $\{(x, 1^t, 1^s) \mid K^t(x) \le s\}$.

Meta-Complexity – Complexity of Complexity

> Examples of meta-computational problems: MCSP, MKTP, MINKT, ...

 $MINKT^{A}$ [Ko'91] = "Compute the A-oracle time-bounded Kolmogorov complexity"

- *A*-oracle *t*-time-bounded Kolmogorov complexity of x $K^{t,A}(x) \coloneqq \text{(the length of a shortest program } M^A \text{ that prints } x \text{ in } t \text{ steps)}$
- MINKT^A = $\{(x, 1^t, 1^s) \mid K^{t,A}(x) \le s\}$.

Remark: In general, we may have $A \nleq_m^p MINKT^A$. It is easy to see $MINKT^A \in NP^A$.

Average-Case Complexity = Meta-Complexity

- \triangleright GapMINKT^A: an $O(\log n)$ -additive approximation version of MINKT^A.
- > Corollary: A new technique of analyzing average-case complexity by meta-complexity.

Theorem [H. STOC'21]

(2')
$$NP \nsubseteq DTIME(2^{O(n/\log n)}) \Longrightarrow DistPH \nsubseteq AvgP$$

Universal Heuristic Scheme — A key notion in this work

> A universal heuristic scheme is "universal" in the following sense.

Proposition (universality of universal heuristic schemes)

Assume DistNP \subseteq AvgP.

For every $L: \{0,1\}^* \to \{0,1\}$, the following are equivalent.

- 1. There is a universal heuristic scheme for *L*.
- 2. $\{L\} \times PSamp \subseteq Avg_PP$.

The notion of P-computable average-case poly-time appears naturally!

The Definition of Universal Heuristic Scheme

➤ Computational Depth [Antunes, Fortnow, van Melkebeek, Vinodchandran'06]

$$\operatorname{cd}^t(x) := \operatorname{K}^t(x) - \operatorname{K}^{\infty}(x)$$

 \triangleright (t,s)-Time-Bounded Computational Depth

$$\operatorname{cd}^{t,s}(x) \coloneqq \operatorname{K}^t(x) - \operatorname{K}^s(x)$$

- An algorithm A is called a <u>universal heuristic scheme</u> for L if for some polynomial p, (Simplified, weak definition)
 - 1. A(x,t) = L(x) and
 - 2. A(x,t) halts in time $2^{O(\operatorname{cd}^{t,p(t)}(x)+\log t)}$ for all large $t \in \mathbb{N}$.

The Definition of Universal Heuristic Scheme

➤ Computational Depth [Antunes, Fortnow, van Melkebeek, Vinodchandran'06]

$$\mathrm{cd}^t(x) \coloneqq \mathrm{K}^t(x) - \mathrm{K}^\infty(x)$$

 \triangleright (t,s)-Time-Bounded Computational Depth

$$\operatorname{cd}^{t,s}(x) \coloneqq \operatorname{K}^t(x) - \operatorname{K}^s(x)$$

- \triangleright A pair (C,S) of algorithms is called a <u>universal heuristic scheme</u> for L if for some polynomial p, for every $t \ge p(n)$ and every $x \in \{0,1\}^n$,
 - 1. $\operatorname{cd}^{t,p(t)}(x) \le k \implies C(x,t,k) = 1$
 - 2. $C(x,t,k) = 1 \implies S(x,t,k) = L(x)$
 - 3. C runs in time poly(t) and S runs in time poly(t, 2^k).

C: checker, S: solver

Theorem [H. STOC'21]

(2') NP
$$\nsubseteq$$
 DTIME $(2^{O(n/\log n)}) \Longrightarrow$ DistPH \nsubseteq AvgP

Fast Algorithms from Universal Heuristic Schemes

Lemma

If there is some universal heuristic scheme A for L, then $L \in DTIME(2^{O(n/\log n)})$.

<u>Proof Idea</u>: Find a parameter t so that the input x is "computationally shallow" (i.e., $\operatorname{cd}^{t,p(t)}(x) = O(n/\log n)$).

<u>Proof</u>: Consider the following telescoping sum for a parameter $I = \epsilon \log n$ ($\epsilon > 0$, constant):

$$cd^{t,p(t)}(x) + cd^{p(t),p \circ p(t)}(x) + \dots + cd^{p^{l-1}(t),p^l(t)}(x) = K^t(x) - K^{p^l(t)}(x) \le n + O(1)$$

Algorithm *B*:

⇒ for some $i \in \{1, 2, ..., I\}$, we have $cd^{p^{i-1}(t), p^i(t)}(x) \le \frac{n + O(1)}{I} = O\left(\frac{n}{\log n}\right)$.

Run A(x,t), A(x,p(t)), $A(x,p^2(t))$, ..., $A(x,p^{l-1}(t))$ in parallel. Take the first one that halts, and output what it outputs.

Correctness: B(x) = L(x) for every input x.

(The running time of B) $\lesssim \min_{i} \left\{ 2^{O\left(\operatorname{cd}^{p^{i-1}(t),p^{i}(t)}(x) + \log p^{i}(t)\right)} \right\} \leq 2^{O(n/\log n)}$ $(p^{I}(t) \lesssim n^{c^{I}} \leq 2^{O(n/\log n)} \text{ for } I = \epsilon \log n \text{ })$

A universal heuristic scheme A for L: $\exists p(t) = t^{O(1)}$,

$$1. \qquad A(x,t) = L(x)$$

2. A(x,t) runs in time $2^{O(\operatorname{cd}^{t,p(t)}(x) + \log t)}$.

Theorem [H. STOC'21]

(2') NP
$$\nsubseteq$$
 DTIME $(2^{O(n/\log n)}) \Longrightarrow$ DistPH \nsubseteq AvgP

Constructing Universal Heuristics

Lemma [H. STOC'21]

GapMINKT^{NP} \in P $\implies \forall L \in$ NP admits a universal heuristic scheme.

[H. FOCS'20]

 $GapMINKT^{NP} \in P \iff Gap(K^{NP} vs K) \in P$

The Gap(K^{NP} vs K) Problem [H. CCC'20]

A harder problem, but equivalent.

$$\Pi_{\text{Yes}} = \{(x, 1^t, 1^s) \mid K^{t, \text{NP}}(x) \le s\}.$$

$$\Pi_{\text{No}} = \{(x, 1^t, 1^s) \mid K^{p(|x|+t)}(x) > s + \log p(|x|+t)\}.$$
(p: some polynomial)

Lemma [H. STOC'21]

 $Gap(K^{NP} vs K) \in P \implies \forall L \in NP \text{ admits a universal heuristic scheme.}$

Main Tool: k-wise direct product generator [H. STOC'20] $DP_k(y;z) = (z_1, ..., z_k, Enc(y)_{z_1}, ..., Enc(y)_{z_k})$

A pseudorandom generator construction based on a "hard" truth table *y*

 $Enc(\cdot)$: an arbitrary list-decodable error correcting code (e.g., Hadamard code)

 $\mathrm{DP}_k(y;Z) = (Z,Zy)$, where $Z \in \mathrm{GF}(2)^{k \times n}$ and $y \in \mathrm{GF}(2)^n$ for Hadamard code.

Reconstruction Algorithm $R^{(\cdot)}$ of DP_k :

Given any D that ϵ -distinguishes $\mathrm{DP}_k(y;\cdot)$ from the uniform distribution, there exists an advice string $\alpha \in \{0,1\}^{k+O(\log n)}$ such that $R^D(\alpha) = y$.

<u>Key Point</u>: (The advice complexity of DP_k) = $k + O(\log n)$

/211

<u>Symmetry of Information</u> [Levin-Kolmogorov]

 $K^{\infty}(x, w) \ge K^{\infty}(x) + K^{\infty}(w|x) - O(\log n)$

Lemma [H. STOC'21]

 $Gap(K^{NP} vs K) \in P \implies \forall L \in NP \text{ admits a universal heuristic scheme.}$

- \triangleright Let y_x be the lexicographically first certificate for $x \in L$, if any.
 - Want to distinguish $DP_k(y_x; z)$ from $w \sim \{0,1\}^{|z|+k}$

$$K^{2t, NP}(x, DP_k(y_x; z)) \le K^t(x) + |z| + O(\log n)$$
 Weak symmetry of information [H. STOC'21]

$$K^{p(2t)}(x, w) \ge K^{q(p(2t))}(x) + |w| - O(\log n)$$
 with high prob. over $w \sim \{0,1\}^{|z|+k}$

$$|z| + k$$

If
$$k \ge K^t(x) - K^{q(p(2t))}(x) + O(\log n) = \operatorname{cd}^{t,q \circ p(2t)}(x) + O(\log n)$$
, then we get $K^{p(2t)}(x, w) \gg K^{2t, \operatorname{NP}}(x, \operatorname{DP}_k(y_x; z))$.

 Π_{Yes} Can be distinguished using $Gap(K^{NP} vs K) \in P$

Lemma [H. STOC'21]

 $Gap(K^{NP} vs K) \in P \implies \forall L \in NP \text{ admits a universal heuristic scheme.}$

Let M be a poly-time algorithm for $Gap(K^{NP} vs K)$ Universal heuristic scheme (C, S) for L

Randomized algorithm, but can be derandomized using [Buhrman-Fortnow-Pavan'05]

- Input: $x \in \{0,1\}^n$, $t \in \mathbb{N}$, $k \in \mathbb{N}$
- Define $D_x(w) := M(xw, 1^{2t}, 1^s)$ for some threshold s.
- Checker C accepts iff $\Pr_{w}[D_{\chi}(w) = 1] \leq \frac{1}{4}$.
- Solver S computes a list $Y \coloneqq \{R^{D_X}(\alpha) \big| \alpha \in \{0,1\}^{k+O(\log n)}\}$ and accepts iff $\exists y \in Y$ is a certificate for $x \in L$.

The size of list $\leq \text{poly}(n, 2^k)$

Correctness of $C: \operatorname{cd}^{t,q \circ p(2t)}(x) \leq k - O(\log n) \Rightarrow (xw, 1^{2t}, 1^s) \in \Pi_{\operatorname{No}} \text{ w.h.p.} \Rightarrow C \text{ accepts.}$ Correctness of S: C accepts $\Rightarrow D_x$ distinguishes $\operatorname{DP}_k(y_x; \cdot)$ from $w \Rightarrow y_x \in Y$ (if any).

Theorem [H. STOC'21]

(2') NP
$$\nsubseteq$$
 DTIME $\left(2^{O(n/\log n)}\right) \Longrightarrow$ DistPH \nsubseteq AvgP

How we overcame limits of black-box reductions

The reduction is non-black-box because we exploit the efficiency of AvgP. i.e., the proof is not subject to the barrier of [Bogdanov & Trevisan'06].

How we overcame [Viola'05]

➤ One can regard our proof as a "hardness amplification procedure $Amp^{(\cdot)}$ " in a sense, but $Amp^f: \{0,1\}^* \to \{0,1\}$ must be defined on all input lengths.

> [Viola'05]'s proof techniques can be applied only when Amp^f: {0,1}^m → {0,1}. (Extending it to {0,1}* would resolve P ≠ NP.)

Proof Ideas for other results

Main Theorems

(1) UP
$$\nsubseteq$$
 DTIME $\left(2^{O(n/\log n)}\right) \implies \text{DistNP} \nsubseteq \text{AvgP}$

Already explained

(2) PH
$$\nsubseteq$$
 DTIME $\left(2^{O(n/\log n)}\right) \implies \text{DistPH} \nsubseteq \text{AvgP}$

(3) NP
$$\nsubseteq$$
 DTIME $\left(2^{O(n/\log n)}\right) \implies \text{DistNP} \nsubseteq \text{Avg}_{P}$ P

Proof Ideas for other results

Main **Lemmas**

"Algorithmic language compression" that generalizes [H. FOCS'18, CCC'20]

- (1) $\forall L \in \text{UP}$ has universal heuristic schemes if DistNP $\subseteq \text{AvgP}$.
- (2) $\forall L \in PH$ has universal heuristic schemes if DistPH $\subseteq AvgP$.
- (3) $\forall L \in NP$ has universal heuristic schemes if DistNP $\subseteq Avg_PP$.

"Universality" of universal heuristic schemes Based on the ideas of [Antunes & Fortnow '09]

Why UP?

Algorithmic language compression [H. STOC'21]

If
$$(L_1, \mathcal{U}) \in \text{AvgP}$$
, then $(\Pi_{\text{Yes}}, \Pi_{\text{No}}) \in \text{promise-P}$, where $\Pi_{\text{Yes}} \coloneqq L_0, \Pi_{\text{No}} \coloneqq \{x \big| K^{p(t)}(x) \ge \log \# L_0 + \log p(t) \}$

 \triangleright Consider a language $L \in UP$ and a verifier V for L.

$$x \in L \Longrightarrow \exists! y, V(x, y) = 1$$

 $x \notin L \Longrightarrow \forall y, V(x, y) = 0$

 \triangleright A hard distributional problem (L_1, \mathcal{U}) in DistNP is (roughly) as follows.

$$L_0 := \{(x \text{ DP}_k(y; z), 1^t, 1^s) | K^t(x) \le s, V(x, y) = 1\}$$

[Algorithmic language compression]

$$L_1 := \{ (DP_{\ell}(w; z'), 1^t, 1^s) | (w, 1^t, 1^s) \in L_0 \}$$

$$:= \{ (DP_{\ell}(x DP_k(y; z); z'), 1^t, 1^s) | K^t(x) \le s, V(x, y) = 1 \} \in NP$$

> We exploit the property that

$$\#\{(x,y)|K^t(x) \le s, V(x,y) = 1\} \le 2^{s+1}.$$

[Valiant-Vazilani'86] isn't sufficient.

Summary and Open Questions

- Meta-complexity is a powerful tool to analyze average-case complexity.
- > A lot of interesting questions remain open:
 - Can we prove NP \nsubseteq DTIME $(2^{o(n)}) \Longrightarrow$ DistNP \nsubseteq AvgP?
 - Does the exponential-time hypothesis (ETH) imply DistPH ⊈ AvgP?
 - Can we prove PH \nsubseteq io-DTIME $(2^{o(n)}) \Longrightarrow$ DistPH \nsubseteq io-AvgP? Viola's barrier comes into play in this setting!
 - Can our results relativize?

Subsequent Work

Theorem [H. and Nanashima] —

There exists an oracle A such that

 $DistPH^A \subseteq AvgP^A$ and $UP^A \cap coUP^A \nsubseteq DTIME(2^{n/\omega(\log n)})$.

 \triangleright Surprisingly, our time bound $2^{O(n/\log n)}$ is nearly optimal for relativizing proof techniques.