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Pessiland

1

Suppose Our World is Unfortunately Pessiland.

NP is Hard on Avg
Too Great Heuristics  
           for SAT

No One-Way Functions
(Classic) Crypto

Average-Case Inverter for Poly-Time Functions

Algorithms in Pessiland

 What Can We Do?

Hardness
/28



Learning in Pessiland
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OWF  Learning/∃ ⟹

[Blum-Frust-Kearns-Lipton]93

Average-Case PAC Learning

- High-Level Ideas of “Universal Extrapolation”
- No Formal Statements

[Impagliazzo-Levin] No Better Ways to Generate Hard NP Instances  
                                             than Picking Uniformly at Random

1990
“BigBang”

Which kind of learning tasks can be done ? 

/28



PAC Learning in Pessiland
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a concept class    𝒞 = {𝒞n}n∈ℕ 𝒞n ⊆ {f : {0,1}n → {0,1}}

ℰ = {ℰn}n∈ℕ  is over ℰn {0,1}nan example distribution

[BFKL93] Avg PAC learningOWF∄ ⟹

ℱ = {ℱn}n∈ℕ  is over ℱn 𝒞na distribution over functions

f ∼ ℱn

L

learner

(x1, f(x1)), …, (xm, f(xm)) x1, …, xm ∼ ℰn

in time 𝗉𝗈𝗅𝗒(n, ϵ−1)

[BFKL93]     : efficiently evaluatable,   : samplable𝒞 ℰ, ℱ

Pr
x∼ℰ

[h(x) ≠ f(x)] ≤ ϵw.h.p. h
hypothesis s.t.

/28



Learning in Pessiland
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OWF  Learning/∃ ⟹

[Blum-Frust-Kearns-Lipton]93

Average-Case PAC Learning

[Naor-Rothblum]
2006

Learning Adaptively Changing Distributions (ACDs)

- High-Level Ideas of “Universal Extrapolation”
- No Formal Statements

[Impagliazzo-Levin] No Better Ways to Generate Hard NP Instances  
                                             than Picking Uniformly at Random

1990
“BigBang”

/28



Distributional Learning in Pessiland
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internal state s = s0

Initialization:
initial state
s0 ∼ 𝒢n

x ∈ {0,1}*
sample

s′￼

next states := s′￼

r ∼ {0,1}𝗉𝗈𝗅𝗒(n)

D
s

seed

state

target

x1

x2

⋯

xi

predict-close toϵ
conditional dist of xi+1

given  & initial state x1, ⋯, xi s0

[NR06] Learning known ACDsOWF∄ ⟹

L

learner

 ({𝒢n}, D)
 : poly-time samplerD

ACD
: samplable 𝒢

as sampler
distribution 𝒟

w.h.p.

 ({𝒢n}, D)

[NR06] L uses the knowledge of  and {𝒢n} D
/28



Why is the knowledge of distributions important?
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target

use s0

s0

Critical Cases

x ∈ {0,1}*
sample

s′￼

next states := s′￼

r ∼ {0,1}𝗉𝗈𝗅𝗒(n)

D
s

seed

state

x1

x2

⋯
xi

-close toϵ
conditional dist of xi+1

given  & initial state x1, ⋯, xi s0

internal state s = s0

Initialization:
initial state
s0 ∼ 𝒢n

L

learner

 ({𝒢n}, D)
 : poly-time samplerD

ACD
: samplable 𝒢

as sampler
distribution 𝒟

w.h.p.

 ({𝒢n}, D)

specific 
i ∈ ℕ

[NR06] L uses the knowledge of  and {𝒢n} D
to test whether the next sample is predictable

/28



Improved Learning in Pessiland ?
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Q.  Agnostic Learning ? Pr
(x,b)

[h(x) ≠ b] ≤ min
f∈𝒞

Pr
(x,b)

[ f(x) ≠ b] + ϵ

Separated (BFKL)
proper learning

Joint
DistNP-hard
[Pitt-Valiant]

[BFKL] examples and target function are separately selected

(x, b) ∼ 𝒟𝒟 ∼ 𝒢

description of  
joint distribution

Q.  Average-Case PAC Learning on Joint Distribution?

[NR] learning known ACDs

Q.  Learning unknown ACDs ?

/28
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Our Contribution
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Q.  Learning unknown ACDs ?Q.  Joint Distribution?
Q.  Agnostic Learning ?

Resolve

Impagliazzo-Levin, No Better Ways to Generate Hard NP Instances  
                                           than Picking Uniformly at Random

Blum-Frust-Kearns-Lipton

Naor-Rothblum

1990

93

2006
Average-Case PAC Learning

Learning Adaptively Changing Distributions (ACDs)

- High-Level Ideas of “Universal Extrapolation”
- No Formal Statements

Unified & 
Simplified &  
Improved 

revisit

/28



In this talk...
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 (standard) OWF∄
infinitely many size n

accuracy, confidence ≤ 1/𝗉𝗈𝗅𝗒(n)
fixed as poly-time functions in n

 Infinitely Often OWF∄1.

2. No details for the choices of parameters

minimize Kyour_time(the paper |this talk)

“Adversaries can invert functions  
   for all sufficiently large parameters”

I do not discuss confidence parameters so much

/28



with sample complexity O(sϵ−2)
OWF/∃ iff  poly-time learner for all (unknown) ACDs ∃ (𝒢, D)

for -bit initial states and accuracy s ϵ

Thm. 1

Learning ACDs in Pessiland

10

⋯

x1

x2

L r

learner
Ds

x
s′￼

xi
for unknown  (G, D)

choose a prediction stage 
           uniformly at random

Q.  Learning unknown ACDs ?

improved from  [NR06]O(sϵ−4)

succeeds 
at almost all steps

How can we avoid the critical cases?

/28



Agnostic Learning in Pessiland
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Q.  Joint Distribution? Q.  Agnostic Learning ?
Thm. 2

on avg under a joint dist  on samples, where ,  is samplable𝒟 𝒟 ∼ 𝒢 𝒢

OWF/∃ iff  poly-time agnostic learner for ∃ ℱ = {f : {0,1}n → {0,1}𝗉𝗈𝗅𝗒(n)}
(= learning by information theoretically optimal hypothesis)

with sample complexity O(sϵ−2) (for  accuracy )s = |𝒟 | , ϵ

(with 0-1 loss)

optimal in general

[Previous] [Ours]
PAC Agnostic
Separated Distributions Joint Distributions
Binary Labels Multi Labels

Improper learning 
(General Hypothesis)

/28



Improved Learning in Pessiland
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Worst-Case Learning
exp-time in Computational Depth of Secrets

OWF∄ ⟺

cdt(x) := qt(x) − K(x)

: universal TMU
K(x) = min{p ∈ ℕ : ∃Π ∈ {0,1}p s.t. U(Π) = x}

Qt   dist. of  executed in  steps for := U(w) t w ∼ {0,1}t

qt(x) := − log Pr[x ∼ Qt]

≈ pKt′￼(x) − pK∞(x)

for any samplable distribution  
 w.h.p. 

𝒟 = {𝒟n}
cd𝗉𝗈𝗅𝗒(x) = O(log n) x ∼ 𝒟n

x :PPTM x′￼

cdO(t+timeM)(x′￼) ≲ cdt(x)

Slow Growth Law

w.h.p.
/28

qt(x) ≈ pKt′￼(x)

pKpoly(t)(x) ≲ qt(x)

pKt(x) ≳ qpoly(t)(x)
Optimal coding [LOZ22]
Domination

introduced in [GKLO22]



Improved Learning in Pessiland
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Thm. 3
The following are equivalent:
1.  OWF∄

2. learning unknown ACDs in time ( ), where  is initial state𝗉𝗈𝗅𝗒 n, t, ϵ−1, 2cdt(s0) s0

3. agnostic learning on unknown joint dists  over samples 
                                                                   in time ( )

𝒟

𝗉𝗈𝗅𝗒 n, t, ϵ−1, 2cdt(|𝒟|)

(worst case on initial states)

(worst case on joint distributions over samples)

Note Thm1 & 2 are implied by Thm3

Worst-Case Learning
exp-time in Computational Depth of Secrets

OWF∄ ⟺

/28
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Our Approach

14

Step I State “Universal Extrapolation” formally 

Step II Translate “Universal Extrapolation” into Learning

/28



Our Approach
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Step I State “Universal Extrapolation” formally 

Step II Translate “Universal Extrapolation” into Learning

/28



Formulating Universal Extrapolation
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Our Proposal Universal Extrapolation = Extrapolation under Qt

(Time-Bounded Universal Distribution)

Lemma (informal)  (io)OWF∄ ⟹   that works in worst case on ∃𝖴𝖤 x

in time 𝗉𝗈𝗅𝗒( |x | , k, t, ϵ−1, 2cdt(x))

k ∈ ℕ ϵ ∈ (0,1)t ∈ ℕ
paramaters 𝖴𝖤

Notation distribution 𝒟 prefix x ∈ {0,1}* k ∈ ℕ
𝖭𝖾𝗑𝗍k(x; 𝒟) = distribution of k bits following  w.r.t. x 𝒟

prefix  x ∈ {0,1}*

y ∈ {0,1}≤k   ≈ 𝖭𝖾𝗑𝗍k(x; Qt)
within statistical distance ϵ

(  is given  (in unary) and works for every  with )𝖴𝖤 2α x cdt(x) < α
/28
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Lemma (informal)  (io)OWF∄ ⟹
  that works in worst case on ∃𝖴𝖤 x

in time 𝗉𝗈𝗅𝗒( |x | , k, t, ϵ−1, 2cdt(x))

Thm [IL89]
 (io)OWF∄ ⟹ for every poly-time function f = {fn}

 : PPT s.t. ∃DInv ∀n, ϵ−1, δ−1 ∈ ℕ
ΔTV (DInv( fn(x); 1n,1ϵ−1,1δ−1),Unif over f −1

n ( fn(x))) ≤ ϵ

w.p.  over ≥ 1 − δ x ∼ {0,1}poly(n)

Distributional Inverting

Inverting

Inv

( )x ∼ {0,1}*

f(x) some x′￼

f(x′￼) = f(x)

{x′￼ : f(x′￼) = f(x)}
simulate unif sampling  
  from

Distributional 
Inverting

DInv
( )x ∼ {0,1}*

f(x) some x′￼

f(x′￼) = f(x)

/28
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Lemma (informal)  (io)OWF∄ ⟹
  that works in worst case on ∃𝖴𝖤 x

in time 𝗉𝗈𝗅𝗒( |x | , k, t, ϵ−1, 2cdt(x))

 samplable distribution 𝒟 = {𝒟n}

[Ost91, OW93, NR06, . . .]Distributional Inverting → Distribution-Specific Extrapolation

∼ 𝒟n

string

prefix

?x

extrapolate w.r.t  given 𝒟n x

sampler for 𝒟n
distributional 
Inverting

seed

Recalculate

/28



19

Lemma (informal)  (io)OWF∄ ⟹
  that works in worst case on ∃𝖴𝖤 x

in time 𝗉𝗈𝗅𝗒( |x | , k, t, ϵ−1, 2cdt(x))

Distribution-Specific Extrapolation for Q tt

Based on [AF09] E := Et,ℓ,k,ϵ,δ = {x : ΔTV (𝖴𝖤′￼(x), Nextk(x; Qt)) > ϵ} error set

2−α ≥ ∑
x∈E

Pr[x ∼ Qt
≤ℓ] ≥ ∑

x∈E

Pr[x ∼ Qt] ∑
x∈E

2α Pr[x ∼ Qt] ≤ 1
computable  
given  & parameters𝖴𝖤′￼

inefficiently computable distribution {ℰt,ℓ,k,ϵ,δ} Pr[x ∼ ℰ] = 2α Pr[x ∼ Qt]∀x ∈ E

Goal:   x ∈ E ⟹ cdt(x) ≥ α −O(log tℓkϵ−1α)δ := 2−α

 K(x) ≤ −log Pr[x ∼ ℰ] +O(logtℓkϵα)∀x ∈ E optimal coding
  = −α+(−log Pr[x ∼ Qt]) +O(logtℓkϵα)

qt(x)

 : PPT s.t. ∃𝖴𝖤′￼ ∀t, ℓ, k, ϵ−1, δ−1 ∈ ℕ

ΔTV (𝖴𝖤′￼(x), Nextk(x; Qt)) ≤ ϵ w.p.  over ≥ 1 − δ x ∼ Qt
≤ℓ

the first  bits 
of 

ℓ
𝖰t

/28



Step 1: Summary 
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Our Proposal Universal Extrapolation = Extrapolation under Qt

(Time-Bounded Universal Distribution)

Lemma (informal)  (io)OWF∄ ⟹   that works in worst case on ∃𝖴𝖤 x

in time 𝗉𝗈𝗅𝗒( |x | , k, t, ϵ−1, 2cdt(x))

k ∈ ℕ ϵ ∈ (0,1)t ∈ ℕ
paramaters 𝖴𝖤

prefix  x ∈ {0,1}*

y ∈ {0,1}k   ≈ 𝖭𝖾𝗑𝗍k(x; Qt)
with statistical distance within ϵ

(  is given  (in unary) and works for every  with )𝖴𝖤 2α x cdt(x) < α

Proof Use Distributional Inverter for Qt

Q. How can we obtain learners (e.g., agnostic learners)? 
/28



Step2 UE → Learning
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simulate the distribution of yi

 : emptyx  initial stateΠ ≈  : sampleylearning ACDs EX.

agnostic learning 
(with 0-1 loss)

answer the best possible yi

  joint distribution over samples Π ≈
 : examplex  : labely

L
x1, y1, x2, y2… ∈ {0,1}*
 : advice informationx
 : targety

 ?yi

predict

x2y1 y2 ⋯ xi−1 yi−1 xix1

secret info.  
(sampler)  
Π ∈ {0,1}*

randomly
efficiently &

x2y1 y2 ⋯x1 ymxm
offline stream

possibly correlated

/28
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simulate the distribution of yi

 : emptyx  initial stateΠ ≈  : sampleylearning ACDs EX.

agnostic learning 
(with 0-1 loss)

answer the best possible yi

  joint distribution over samples Π ≈
 : examplex  : labely

x2y1 y2 ⋯ x1, y1, x2, y2… ∈ {0,1}*
 : advice informationx
 : targety

xi−1 yi−1 xi  ?yix1

secret info.  
(sampler)  
Π ∈ {0,1}*

randomly
efficiently &

x2y1 y2 ⋯x1 ymxm
offline stream

possibly correlated

Cheating Learner

L𝒪

𝒪
condition

yi

w.r.t. Π
yi yi

by outputting yi ∼ 𝒪

by collecting yi, yi′￼, … ∼ 𝒪

h𝒪

/28
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x2y1 y2 ⋯ x1, y1, x2, y2… ∈ {0,1}*
 : advice informationx
 : targety

xi−1 yi−1 xi  ?yix1

secret info.  
(sampler)  
Π ∈ {0,1}*

randomly
efficiently &

x2y1 y2 ⋯x1 ymxm
offline stream

possibly correlated

UE → Learning

L𝒪

𝒪yi
condition

w.r.t. Π
yi yih𝒪

𝖴𝖤

≈

w.h.p. when i ∼ [m]
for statistical distance within ϵ

m = O( |Π |ϵ−2)

time complexity: exp in  |Π |sample complexity: linear in  |Π |

Q. Why ?
learning ACDs agnostic learning (with 0-1 loss)

/28



24

Solomonoff’s Inductive Inference [Sol64, LV19]

Domination + Chain Rule for KL divergence 

When extrapolating symbols, attach a higher probability for a more precise 
hypothesis, particularly, with an exponential rate on the description size 

Π ∈ {0,1}*
randomly

efficiently &

x2y1 y2 ⋯x1 ymxm

When t ≫ time(Π)

(Domination)Pr [x1y1…xmym ∼ Qt] ≥ 2−O(|Π|)Pr [x1y1…xmym ∼ Π]
  log

Pr [x1y1…xmym ∼ Π]
Pr [x1y1…xmym ∼ Qt]

≤ O( |Π | )

Taking the expectation over x1, y1, …, xm, ym ∼ Π

  KL (Π Qt) ≤ O( |Π | )
/28

  or q𝗉𝗈𝗅𝗒( ⋅ | ⋅ ) 𝗉𝖪poly( ⋅ | ⋅ )
( )∵ 2−qpoly = Qpoly by conditional coding 

[HILNO23]



25

Solomonoff’s Inductive Inference [Sol64, LV19]
  KL (Π Qt) ≤ O( |Π | )

L Qtx2y1 y2 ⋯ yi−1 xi yix1 ⋯ ymxm

Π ∈ {0,1}*
true distribution

x2y1 y2 ⋯ yi−1 xi yix1 ⋯ ymxm

𝖴𝖤

X1 Y1 Xm Ym

X̃1 Ỹ1 X̃m Ỹm

O( |Π | ) ≥ KL (X1Y1⋯XmYm X̃1Ỹ1⋯X̃mỸm)

≥
m

∑
i=1

KL ((Yi |X1Y1⋯Yi−1Xi) (Ỹi | X̃1Ỹ1⋯Ỹi−1X̃i))

=
m

∑
i=1

KL ((Yi |X1Y1⋯Yi−1Xi) (Ỹi | X̃1Ỹ1⋯Ỹi−1X̃i))
+

m

∑
i=1

KL ((Xi |X1Y1⋯Xi−1Yi−1) (X̃i | X̃1Ỹ1⋯X̃i−1Ỹi−1))
(Chain Rule)

𝖴𝖤

𝒪

i i

ignore the statistical error

/28
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Solomonoff’s Inductive Inference [Sol64, LV19]

                       O( |Π | ) ≥
m

∑
i=1

KL( ∥ )i 𝖴𝖤 i

                        O( |Π | )
m

≥ Ei∼[m][KL( ∥ )]i 𝖴𝖤 i

m ≫
|Π |
ϵ2

⟹                       Ei∼[m][KL( ∥ )] ≪ ϵ2
i 𝖴𝖤 i

                      KL( ∥ ) ≪ ϵ2
i 𝖴𝖤 i w.h.p. over i ∼ [m](Markov)

                      ΔTV( , ) ≤ ϵi 𝖴𝖤 i(Pinsker) w.h.p. over i ∼ [m]

/28



Remarks
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x2y1 y2 ⋯ xi−1 yi−1 xi  ?yix1

L𝒪

𝒪yi
condition

yi yih𝒪 𝖴𝖤≈

when i ∼ [m] for stat dist within ϵ
m = O( |Π |ϵ−2)

Tasks poly-time cheating learners can do
= Tasks poly-time learners can do with UE

Not sample optimal in agnostic learning

for optimal sample complexity

Why? query complexity 
of cheating learneraccuracy

Extend universal prediction [MF98] to computational cases
(statistical cases)

/28
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Summary
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Thm.
The following are equivalent:
1.  OWF∄

2. learning unknown ACDs in time ( ), where  is initial state𝗉𝗈𝗅𝗒 t, ϵ−1, 2cdt(s0) s0

3. agnostic learning on unknown joint dists  over samples 
                                                                           in time ( )

𝒟

𝗉𝗈𝗅𝗒 t, ϵ−1, 2cdt(|𝒟|)

OWF  Learning/∃ ⟹

L

x1 xi−1y1 yi−1⋯ xi ?
𝖴𝖤

x ∈ {0,1}*
prefix next  bitsk

under Qt 𝖴𝖤

Q. weakest assumption for learning in time ?𝗉𝗈𝗅𝗒(cd) AIOWF or HSG or …?


