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Pessiland

NP is Hard on Avg No One-Way Functions

Too Great Heudsties (Classic) Cryptx
for SAT,

supnose Our World is Unfortunately Pessiland.
What Can We Do?

Average-Case Inverter for Poly-Time Functions .
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Learning in Pessiland AOWF — Learning

“BI.QB

an 1)

1990 g |

® [Impagliazzo-Levin] No Better Ways to Generate Hard NP Instances

than Picking Uniformly at Random

- High-Level |deas of “Universal Extrapolation”
- No Formal Statements

Which kind of learning tasks can be done 7

SR |Blum-Frust-Kearns-Lipton]
Average-Case PAC Learning

2/28



PAC Learning in Pessiland [BFKL93] #0WF= Avg PAC learning

a conceptclass ¢ ={¢,},.n %, C {f: {0,1}" - {0,1}}
an example distribution & =1{% },..n &, IS over {0,1}"
a distribution over functions % ={%,},.n %, IS OVer €,
- 1 1 m m fN 9”
— (-x 9f(x ))9°-°9(x 9f(x )) xl,”.,megn

carner  whp, YPONESS ¢ Pr[h() # 0] < e

in time poly(n, e ')

[BFKL93] € . efficiently evaluatable, &, % . samplable
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Learning in Pessiland AOWF — Learning

BIQBanQ”
1990 | |
® [Impagliazzo-Levin] No Better Ways to Generate Hard NP Instances

than Picking Uniformly at Random
- High-Level |deas of “Universal Extrapolation”

- No Formal Statements

KT |Blum-Frust-Kearns-Lipton]
Average-Case PAC Learning

2006
® [Naor-Rothblum]

Learning Adaptively Changing Distributions (ACDs)
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Distributional Learning in Pessiland

INRO6] A0WF= Learning known ACDs
ACD ({%,1.D)
Z:. samplable D : poly-time sampler

({%,}, D) Tl ' Internal state s = s
nito

I — Initialization: s, ~ €,
carner X initial state target
w.h.p. l »
distribution 2 ) ! Seg? oly(n) sample

as sampler . r~1{0,1} \D/ x € [0,1}%
e-close to — 7 T ¥
conditional dist of x'*! state  § ¢ -— ¢/ hext state

given x!, ---, x' & initial state s, Y~ T —

INRO6] L uses the knowledge of {£,} and D
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Why is the knowledge of distributions important?

Critical Cases ACD ({%¢,},D)

({ng) ¢. samplable D : poly-time sampler
Internal state s = s,
I Initialization: s, ~ &,
carnet : Initial state target
Whp l : »
distribution 9 I ) E?g?}mlym) OQ . €N )
as sampler #use ’ | \‘D ~__—~ x€{0,1}
e-close to 0 _— U —
conditional dist of x*! state § ., next state
given x', -, x' & initial state s, ~_ ST o~

[INRO6] L uses the knowledge of {€ } and D

to test whether the next sample is predictable
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Improved Learning in Pessiland ?

[BFKL] examples and target function are separately selected

— Q. Average-Case PAC Learning on Joint Distribution?

%Z ~% (D)~ Separated (BFKL) Joint
description of proper learning — DistNP-hard
joint distribution [Fitt-Valiant

Q. Agnostic Learning ?  Pr [A(x) # b] < min Pr [f(x) # D] + ¢
(x,D) €€ (x,b)

[NR] learning known ACDs

— Q. Learning unknown ACDs ?
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Our Results



Our Contribution

Resolve Q. Joint Distribution? Q. Learning unknown ACDs 7

1990
®

2006
®

Q. Agnostic Learning 7

Impagliazzo-Levin No Better Ways to Generate Hard NP Instances
than Plcklng Unlformly at Random

ngh Level Ideas of Unlversal Extrapolatlon “ revisit
- No Formal Statements

Blum-Frust-Kearns-Lipton U.niﬁe.d. &
A - SAC L , Simplified &
verage-Case earning Improved

Naor-Rothblum
Learning Adaptively Changing Distributions (ACDs)
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In this talk...

1. 7 Infinitely Often OWF Adversarle§ c.:an iInvert functions ”
for all sufficiently large parameters

iInfinitely many size n

A (standard) OWF ' accuracy, confidence < 1/poly(n)
fixed as poly-time functions in n

2. No details for the choices of parameters

| do not discuss confidence parameters so much

minimize KYOUr_tIM&the paper | this talk)
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Learning ACDs in Pessiland

Q. Learning unknown ACDs ?

—Thm. 1
A0WF iff 3 poly-time learner for all (unknown) ACDs (¥, D)

with for s-bit initial states and accuracy ¢

improved from O(se™*) [NRO6]
How can we avoid the critical cases?

learner
for unknown (G, D)

at almost all steps

s — g

choose a prediction stage
uniformly at random
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Agnostic Learning in Pessiland

Q. Joint Distribution? Q. Agnostic Learning 7
—Thm. 2

A0WF iff 3 poly-time agnostic learner for & = {f: {0,1}" — {0,1}P°Y")
(with O-1 loss)
(= learning by information theoretically optimal hypothesis)

on avg under a joint dist 2 on samples, where 9 ~ €, ¢ is samplable

with sample complexity O(se™%) (for s = |2 |, accuracy e)

optimal in general

|Previous] |Ours|
PAC Agnostic
Separated Distributions Joint Distributions mproper learning
, (General Hypothesis)
Binary Labels Multi Labels
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Improved Learning in Pessiland
A0WF <  Worst-Case Learning

exp-time in Computational Depth of Secrets

U: universal TM

K(x) = min{p € N : dII € {0,1}” s.t. U(1I) = x}

Q" := dist. of U(w) executed in ¢ steps for w ~ {0,1}

q'(x) := — log Pr[x ~ Q]

q'(x) ~ pK’(x) introduced in [GKLO22]

cd'(x) := g'(x) — K(x)
~ pK'(x) — pK®(x)

pKPYO(x) < ¢(x)
pK'(x) > qP°YO(x)

Optimal coding [Loz22;

Domination

for any samplable distribution Y = {9, }
cdPY(x) = O(logn) W.h.p. x ~ /8

X—

M:PPT

_>x

/

CdO(t+timeM)(x/) 5 Cdt(X) Whp
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Improved Learning in Pessiland

A0WF <  Worst-Case Learning
exp-time in Computational Depth of Secrets

—Thm. 3

The following are equivalent:
1. A OWF

2. learning unknown ACDs in time poly(n, t, ¢!, 2°¢®)), where s, is initial state
(worst case on Initial states)
3. agnostic learning on unknown joint dists & over samples

in time poly(n, t, e !, 2¢4(2D)
(worst case on joint distributions over samples)

Note Thm1 & 2 are implied by Thm3
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Proof Techniques



Our Approach

stepl  State “Universal Extrapolation” formally

Stepll  Translate “Universal Extrapolation” into Learning
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Our Approach

stepl  State “Universal Extrapolation” formally
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Formulating Universal Extrapolation

OQurProposal Universal Extrapolation = Extrapolation under Q'

(Time-Bounded Universal Distribution)

Notation distribution & prefix x € {0,1}* ke N
Nexty(x; Y) = distribution of k bits following x w.r.t. &

prefix x € {0,1}%

\
paramaters — y € {0,1}¥ &~ Nexty(x; Q)

keNreNee Ol within statistical distance e

; Lemma (informal) 4 (io))OWF — 3JUE that works in worst case on x
l in time poly(|x|,k, 1, ¢!, 2°4™) ,

(UE s glven 2 (|n unary) and works for every x With df(x) <'a)
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UE that works in worst case on x |

| lemma (informal) 7 (i0))OWF = o v |
« __intime poly(lx|.kne”, 2 |

| Distributional
Inverting| Inverting
some x’ /
17 X SOme x
/e fla') = fx) 0 pmy |— ) = fx)
(x ~ {0,1}%) (x ~ {0,1}*)

simulate unif sampling
Thm [IL89] from {x": fix") = f(x)}

A (i0))OWF = for every poly-time function = {f,}
ADIny : PPT s.t. Vn,e 1,671 e N

Ay (Dlnv( £.00: 1,17 157, Unif over £ fn(x))) <e

W.p. >1—6over x ~ {0,1}pov
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| Llemma (informal) A (i))OWF = . |
| in time poly(|x|,k,z,e”"!,2°0) |

Distributional Inverting — Distribution-Specific Extrapolation [0st91, OW93, NROG, . . ]

2 = {2, } samplable distribution
extrapolate w.r.t 9, given x

refix
Pretx. —3
[ x ? ~D,

|nRecalcuIate

“._
A

distributionalS
Inverting
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| lemma (informal) A (i0)OWF = "

in time poly(| x|, k, ¢, !, 264 )

Distribution-Specific Extranolation for 0"
JUE : PPT s.t. V1,2, ke !,671 €N the first ¢ bits

| o of Q!
ATV<UE(x),Nextk(x; Qt)) <€ W.p. >21-o6overxn~ Q;f

Based on [AFO9]  E:=E, ,; 5= {x : Agy (UE’(x),Nextk(x; QI)) > 6} error set
6:=27% Qoal: xe E = cd'(x) > a —O(log t/ke™ ')
0 [
2‘“22Pr[XNQ;f] ZZPr[xNQ’] 22 Prix~Ql <1

x€E computable
given UE & parameters
inefficiently computable distribution {&,,,.s} Vx e E Pr[x ~ & = 2°Pr[x ~ Q]

xek xek

Vxe bk K(x) L -logPr[x ~ &] +O(logtlkea) optimal coding
= —a+(=log Pr[x ~ Q]) +O(logtlkex)
q'(x) 19/28




Step 1: Summary

OurProposal  Universal Extrapolation = Extrapolation under Q'
(Time-Bounded Universal Distribution)

prefix x € {0,1}% |

paramaters — y e {0,1}* = Nexty(x; Q")

keNtreN ee(,1) - with statistical distance within ¢

, lemma (informal) % (io)OWF =— 3UE that works in worst case on x J
In time poly(|x], k&, t,e‘l,ZCdt(")) ,

(UE is given 2% (in unary) and works for every x with cd’(x) < a)

Proof Use Distributional Inverter for Q'

0. How can we obtain learners [e.g., agnostic learners)?
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: efficiently &
Step2 UE — Learning offline stream ;alndO%ly :
secret info.

Loyl 2 2 0 xm Y™
XLy xt Y X (sampler)
possibly correlated I1e {0,1}%

Loyl 2 32 o il yiml i | i 2
Xy x°V X Y X b xl,yl,xz,yz... e {0,1}*

- predict x . advice information

y . target

EX. learning ACDs [T ~ initial state x:empty y:sample
simulate the distribution of y’

agnostic learning 171  joint distribution over samples

(with O-1 loss) x : example vy : label

answer the best possible y’
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. efficiently &
Cheatlng Learner offline stream randomly :
o - secret info.
X5y X YT e XT YT« (sampler)
possibly correlated I[1e {0,1}%
1 12 2 il il L P
. XV X )’ X Yy X Y x1,y19x2,y2“. e {0,1}*
/\ / condition ;, x . advice information
10 iy i «—0O| & v ) y : target
& -~ w.r.t. 11
EX. learning ACDs [1 ~ initial state x :empty y:sample

simulate the distribution of y’
& by outputting y' ~ 6
agnostic learning [1 ~ joint distribution over samples

(with O-1 loss) x : example y : label

answer the best p033|ble y
® Dy collecting y',y',... ~ 0 22/28



. efficiently &
UE — Learnlng offline stream randomly

secret info.

Loyl 2 32 00 xm ™

XLy xt Y X (sampler)
possibly correlated I[1e {0,1}%

xylxfyt e {0,1}%
x . advice information
y . target

/ COndIthn
yioyl oy <—

@ gwrtn

w.h.p. when i ~ [m]

for statistical distance within ¢
0.Why? m=0(\H\€_2)

learning ACDs & agnostic learning (with O-1 loss) @&

sample complexity: linear in|IT|  time complexity: exp in |IT]
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Solomonoff’s Inductive Inference [soi64, Lv19]

When extrapolating symbols, attach a higher probability for a more precise
hypothesis, particularly, with an exponential rate on the description size

qPoY(-|-) Or pKPY(.|.)
Domination + Chain Rule for KL divergence (279 = Q) by conditional coding

efficiently & [RILNOZ3]
randomly

xboyl x2 92 o Xy I1e{0,1}%

When r > time(I)
Pr [xlyl...xmym ~ Qt] > 2~ 0(HDpy [xlyl. Xy~ H] (Domination)
Pr :xlyl...xmym ~ H]
Pr :xlyl...xmym ~ Qf]

log < O([I1])

Taking the expectation over x!,y!, ..., x™ y" ~ 11

KL (1] Q) < o(11])
24 /28



Solomonoff’s Inductive Inference [soi64, Lv19]

KL (n]|Q) < o) true distribution

- IT € {0,1}*

S L UL Q'

m ignore the statistical error

_ ZKL ((Y’\XlYl YIX) | (7 X7 1Xl)) (Chain Rule)

+ZKL ((Xl‘XlYl Xl IYl 1) || (Xl‘XlYl Xl 1Yl 1))
- =1
> Z ((Y’\XlYl Y- 1xi) (Yi‘)’zlflu.?i—l)’zi))

i= 2 |
| @;0%1' j 25 /28




Solomonoff’s Inductive Inference [soi64, Lv19]

oqnp > Y ki i@ LE]; )
=1

O(|11]) &2 |
I > E; [ KL( @;df@i | i )]

m

11 o2 -
m >> 1 —  Ej KL @;"%i | i )] < €

€2

(Markov) KL( ?@f’@i l i ) < e’ w.h.p. over i~ [m]

2 '
(PInsker) A @9@ CH i )< € w.h.p. over i ~ [m]
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Remarks —1yiml i |y 7

xl yl x2 yz coe xl y X
e ~ condition (D |
i’ o ok g - [E]
S
when i ~ [m] for stat dMe

m= O(|II|e”

Tasks poly-time cheating learners can do
= [asks poly-time learners can do with UE

Not sample optimal in agnostic learning
query complexity

Why? accuracy —— .
of cheating learner

for optimal sample complexity

Extend universal prediction [MF98] to computational cases

(statistical cases)
21/28



Conclusion



AO0WF = Learningh\

)] y1 i1 yi—lxi EI
: /—/
— [ ] ==

Summary /
prefix UE _ hextk bits
x € {0,1}* under Q'
—Thm.

The following are equivalent:
1. 4 OWF

2. learning unknown ACDs in time poly(z, ¢!, 2¢¢®)), where s, is initial state

3. agnostic learning on unknown joint dists & over samples

in time poly(z, e, 2¢4(2D)

Q. weakest assumption for learning in time poly(cd)? AIOWF or HSG or ---?
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