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1 Introduction

Boundary element methods are well suited for partial differential equations with
piccewise constant coefficients and for problems in infinite regions. Moreover. domain
decomposition methods are a powerful technique for parallelization and coupling with
other discretization methods like finite elements. The formulation of boundary element
methods for mixed boundary value problems and their use in domain decomposition
methods depends on the boundary integral equations used and their discretizations
as e.g. collocation or Galerkin methods. We discuss a general approach to solve
mixed boundary value problems by preconditioned iterative methods and we give a
preconditioning technique resulting from boundary integral equations. too. Common
examples are problems in potential theory or in linear elasticity.

Let us consider a selfadjoint and elliptic boundary value problem of 2ud order in
a bounded domain Q C IR" (n = 2.3) with a Lipschitz continmous boundary T,
which is decomposed into two distinct parts I'y and I'y. where boundary conditions
of Dirichlet and Neumann type, respectively. are given:

L(x)u(r) = f(r) for r e Q.
Youl(r) = glr) for r € Tp. (1
~ulr)y = hr) forrel'y.
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4 Efficient Preconditioners for Boundary Element Methods

For a non-overlapping domain decomposition
o
2:U L NQ =0, T, =I,nT,

with Lipschitz continuous subdomain boundaries I', = 9€,. we suppose that we
are given fundamental solutions of the differential operator in (1) locally. i.e. for all
i=1...., p there exist functions E'(x, y) satisfying

L(xYE'(r,y) = 8(e —y)-I(r) forr.yecQ,. (2)

Setting
i) = youle), ti(r) =u(x) forrel;

the solution u(-) of (1) is given by the local representation formulae

ule) = /f,(y)‘"u’)E'(-Ix.I/)dS,, - /11;(!/)~7{E'(41'-y) ds, + /f(.l/)-E'(-I'.,t/)(/.l/ (3)

I, r, Q,
for r € Q,, where the densities ¢; and u,; have to satisfy transmission conditions
wir)=wu;(r) =0, t;(r)+t,(r) =0 forrel,; (1)
in addition to the boundary conditions
ti(ry=h{z) foreelinNTy ., w(e)=glr) forrel,NT,.

Associated with the fundamental solutions (2). we define common boundary integral

operators by

(Vit)(r) = / F(y) 2 E (e y) ds, |

I,

(Kiu;)(x) = /u,(y)-ﬁ,iE'(.r.y)(i.S!,.
r,

(Kit)(r) = /t,<y> SV E () ds,
r,

(D) = =t [y~ B e ds,

I,

for r € I'; and the boundary traces of the volume or Newton potentials by

/f r.y) dy (

for r € T; and j = 0.1. By using the Calderon projector. we can write the boundary
integral equations resulting from (3) as the overdetermined system

uilr) \ [ 31— K, 1% i) N
ti(r) ) D, 1+ K] ti(r) - ( NI ) f(r) (6)

ot
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for x € T; and ¢ = 1,...,p. The boundary integral operators V;, K;,D; are
pseudodifferential operators of orders —1,0,1, respectively, and their mapping
properties on Lipschitz domains are well known [Cos88]. The right hand side includes
still volume integrals which require a discretization of 2, too. In this case, the
advantage of dimension reduction by boundary element methods is partly lost. To
overcome this drawback, one can homogenize problem (1). In general, the volume
integrals (5) are to be replaced by boundary integrals, too. We will discuss such
methods in connection with fictitious domain methods coupled with boundary element
methods in [SW].

From (6) we find two explicit representations of a Dirichlet~Neumann map, including
the so—called Steklov—Poincaré operator S;:

t; = Sju;+ Ni
= [GI+E) VT (314 Ki) + D] wi = Nf + (31 + K7) V7' NG,

I

which is a selfadjoint, strongly elliptic pseudodifferential operator of order —1,
corresponding to the solution of the local Dirichlet problem, where u; = ¢ on I
is given. For the inverse operation, the Neumann-Dirichlet map is described by

w—r; = Uity + N
. -1 .
= (31+K) (Vits — N§) (®)
— (A —K) D' [(31 - K) t; + Ni] + Vit; — N,

where Di— ! denotes the pseudoinverse of D; with respect to the rigid motions r;
associated with the differential operator in (1). This map corresponds to the solution
of a Neumann problem, where solvability conditions must be satisfied.

If we introduce the skeleton I's by

»
T's = U T; s
i=1
we are able to give variational formulations of the transmission problem (4) in related
Sobolev spaces H*(I'g).
Variational formulation 1. Find u € H/?(T's) with wr,, = g such that

i/Smm(a{:)-v]pi(m) ds; = /h(m)-v(m) ds, —i/Ni(x) -v(z) ds,

i=1p, I'n =1y

holds for all v € HY?*(T's) with v, = 0.

With u; = wp, the first transmission condition in (4) is satisfied strongly, while the
second condition has to be satisfied in a weak sense with ¢; = S;ur, . This formulation
is equivalent to the variational formulation used in domain decomposition methods
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for finite element methods and is therefore well suited for coupling of finite and
boundary element discretization methods [Cos87, Hsi90, Lan94, Wen88]. However, we
can change the meaning of the Cauchy data to get a second formulation corresponding
to nonconforming finite elements [HSW] :

p D .
Variational formulation 2. Find t € [] HY2(L;) with t(x) = h(z) forz € T'x

i=1
such that
§ P .
> / Uitir, (#) - r, (2) ds, = / ORIOLEDY / Ni(x) - () ds,
=17 Tp =1y
P
holds for all T € ] H™Y/2(T;).
i=1
Setting t; = tjr,;,%; = —#jr,; for ¢ < j, the second transmission condition is satisfied

strongly, while the first one with u; = T;t; has to be fulfilled in a weak sense.

The existence and uniqueness of solutions of the variational formulations above
follow directly from the coerciveness of the bilinear forms involved; for the Neumann
problem this is true only with respect to appopriate quotient spaces generated by the
rigid motions r;. Moreover, these variational formulations give us a large variety for
using boundary element methods for the discretization. The second one is well suited
for the macro-element technique using Neumann series for realizing the Poincaré-
Steklov map U; by adaptive strategies as to keep symmetry and H~1/2—¢llipticity also
in the discrete form [HSW, T{ir95].

To discretize the local Steklov-Poincaré operators S; included in the variational
formulation 1, we have to introduce approximate operators

Shuyr, =t} € Hy /*(I;)
by the solution of the local finite-dimensional variational problems
o 1 i ) X _ ,
Vithomidr: = (G + Kiunr, e, Vi € HY2(1) (9)
Due to the properties of the local single layer potential operators V; we have the

quasi-optimal error estimates [Wen83]

I Siunr, — S‘zhuhll“q-HHﬂ/z(ri) <c inf

S:‘ll . Ti -1 e
T,’;EH;”z(Pi)H sunirs = Tl

Then there exists an unique solution iy, of the perturbed variational problem

Z/S:lﬂh(‘n) : 'UII(T) ds, = f(’l;’},) (10)

1—-1ri

and we get the error estimate

Hu_'&h”Hl/Z(I‘s) < C'(ho){ inf

U—v -
'l!hEH;/z(FS)H h”Hl/ (I's)

i=lrieH (T,

P
+ Z inf )”Si“hln _T}I.ll[H“lif?(I‘;')}
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for all h < hg, which ensures the convergence of this approach based on the non-—
symmetric formulation due to the approximation property of the trial spaces used.

The discretization of the variational problem (10) leads now to the discrete system
of linear equations

MVt (%Mh + Kh) u=f, (11)
/
where
Vi = ding (V)

is block diagonal and therefore well suited for the parallel computation of V,~ L
To invert the locally stored blocks V;* one can e.g. use direct methods like LU~
decomposition. This can be done in a previous step of the iteration process. Furtheron,
preconditioned iterative methods itself seems to be an efficient tool to realize the action
of Vih’_l; in this case local preconditioners C?, are necessary. For the global iteration,
due to the non—symmetry we have to use a generalized method of orthogonal directions
like GMRES or BiCGStab, and a preconditioner for the discrete Steklov—-Poincaré
operator is needed, too. However, in any global iteration step we have to solve a local
Dirichlet problem in €2;; involving the whole boundary I';, which may be inefficient.
Setting

1
t= Vhﬂl (‘Q‘Mh + Kh) %,
we get the coupled system

() e

The first row of blocks corresponds to the local approximations in (9), which can
be handled by Galerkin or collocation methods, while the coupling conditions have
to be discretized by Galerkin concepts in any case. For collocation methods we get
almost M, ~ I, whereas for Galerkin methods we have M} = Mj,. This system
can be solved again by preconditioned iterative methods, where we have only three
matrix multiplications per iteration step. As block preconditioners we can use the
same components as above.

Before discretizing the variational problem 1 we can replace ¢; = S;ur, by the
corresponding expression in the Calderon projector (6) and we arrive at the symmetric
formulation [Cos87, Sir79]:

ik
IS [~

=

Zp:l {(Diur,vie)r, + 2t v, + G Kivere, ) = fi(v)
i=
(Vits, midry — Sy, mo)r, — (Kiwpr, ey = fo(m)
whose Galerkin discretization leads to the skew—symmetric positive definite system
Vi —Kn —3Mj - Ky ¢ Ip
Ky Dy nw Dren uy | = fy |- (13)
iM + K, Dnnc Dy co Uo fe

The vector uy corresponds to all unknowns along the coupling interfaces, whereas u
denotes only the unknowns at the original Neumann boundary.
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2 Iterative solution methods

In this section we want to describe different possibilities to solve system (13)
by iterative methods, which are well suited for parallel computations, too. We
restrict ourselves to the symmetric formulation; however, to solve (12), which can
be transformed into a saddle point problem, we can apply related techniques. Instead

of (13) we solve the transformed system
f
= = 14
) ( 0 (14)

cy* o Vi —Ki cyt? o
o c;* )\ K D o o'’

with K, = (K h|%Mh + Kp); where Cy and Cg are symmetric and positive definite
preconditioners for V3, and S, = Dy + K, ,;'— Vh—lK r, respectively, i.e. we suppose the
inequalities

[P

¢V (Cvt, 1) < (VaL 1) < ¢ (Cvt,t) (15)
&$ (Csu,u) < (Dh+ K Vi Kp)u,u) < o5 (Csu, )

for all ¢ and u. We remark that the new system matrix in (14),

. 0;1/2th,;1/2 _C;l/zf{hcl—)lm
051/21?{0;1/2 C,51/2Dhc,51/2 ’

is of the same structure as the original one in (13).
To solve the skew—symmetric and positive definite system

() (=) (2) <w>

which corresponds to (13) as well as to (14), we introduce a regular transformation
matrix T" and solve the transformed system

18
-

T -Hz=T-f.

Moreover, we suppose the spectral equivalence inequalities

Cfx (Z1,21) < (Azy,z,) < Céq (z1,2;) (17)
¢f (2,z3) < (D+BTA™IB)z,,2,) < cf (25,2,)

corresponding to (15), where we require c{! > 1 by scaling the preconditioner Cy .

For T' = I we still have the original preconditioned system, which can be solved
by generalized methods of conjugate directions, such as GMRES or methods of
biorthogonal directions [Bea92, Stec] . Taking T = H' we arrive at the system of
normal equations with a symmetric and positive definite matrix H ' H, for which we
can use the standard conjugate gradient iteration; but here the spectral condition
number is squared, and therefore this variant may be inefficient.
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Following [BP88], the transformed matrix

W I 0 A -BY\ _ A -B
~\ =BT 1 BT D ) \ B'I-A) D+B'B

is selfadjoint with respect to the specially chosen inner product
[z,2] == ((A—Dzy,2;) + (T2, 2) (18)
due to ¢ > 1 in (17). Moreover, there hold spectral equivalence inequalities
of -min{l,cf} - e, 2] < [Mz,2] < ¢ -max{L,¢5} - [z,2]

with the constants [BP88]

-1
2 1+ 1
c{‘=<1+9+ a—+oe) P SR

2 4

Therefore, a scaling of the preconditioner Cg is necessary, too.

Obviously, this method requires the symmetry of A to define the inner product
(18). We are interested in an approach, which allows a generalization to unsymmetric
perturbations of symmetric matrices as in (12). Therefore we consider the second
transformed matrix

i A=T1 0 A -B)\ A4 (I-A)B
“\ =BT I BT D | \ B'I-A) D+B'B )’
which is symmetric and positive definite. However, the constants in the related spectral
equivalence inequalities are no longer asymptotically optimal for A — I as in the

approach proposed by [BP88]. So we have to find an appropriate preconditioning
technique for M. To this end we follow [HLM92] and consider the symmetric and

positive definite Matrix -
_ A
M = AT
with the factorization
_ I 0 A 0 I A'B
M = BTA ' I o0 D-BTA'B 0 I :

If the spectral equivalence inequalities

Il

cf . (@17:7:_1) < (Al’la—a—’l) < cgl . (.-’?.1721)

and ~
Cf . (£2’£2) < ((D - BTA_IB)EmQE_z) < Cg . (Eza@g)

both are satisfied, then the matrix

e (2)(12)
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is spectrally equivalent to M, i.e. we have the inequalities
71 (Cyrz,z) < (Mz,z) < 72 (Cipz, z)

with the positive constants [HLM92]
i s 1
v = min{c, ]} [1 -+ 5 (H — 2+ 4/1.>] ,
i s 1
vz = max{ch,c5 } {1 + 5 (H +/ 2+ 4u)il

and the spectral condition number

p=p ([D —BTA'B] ' [BT(A - DA(AT - I)B’]) .
With A = A% — A, from (17) there follows directly

(cf = Def (21, m) (4% = Azy,zy) < (65 = 1)eg (z1,23)
and a straightforward computation gives

S=D-BTA'B=D+BTA'B;

and therefore c¢f = ¢f,c5 = c5. From

T — BT(A'-DAA'-1)B
= BT U-A((A-DTA-D(A2-A)A ' A-I)y'-1)I-A)B
= BT(A'-A+ID)(A2-A)(A ' -A+]D)B
we conclude, that T' tends to zero for A — I. Because of the stability of the discrete
Steklov—Poincaré operator S we have then asymptotically y — 0 for A — I. We

will discuss this approach in more details in [Steb]. Finally we remark, that we can
generalize this method to the non—symmetric case (12) by choosing the transformation

i AT —-T 0 A -B\ [ ATA-A (I-A)B )\

N -c I c 0 S\ cu-4) CB '
the related system of linear equations can be solved by any preconditioned iterative
method discussed above. Due to the (non—symmetric) discretization of self-adjoint
operators involved, the block matrices A ~ AT and BT ~ (C, respectively, are

perturbations of symmetric matrices, such that the BiCGStab algorithm behaves
asymptotically like the classical conjugate gradient method.

3 The construction of optimal preconditioners

The iterative methods described above are based on preconditioners with respect
to the discrete single layer potential Vj,, the hypersingular integral operator Dp
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and the discrete Steklov—Poincaré operator Sy, respectively. Here these operators
are pseudodifferential operators of order 1. Efficient algebraic preconditioners are
multigrid methods, which in a generalized form can also used for operators of negative
order [Bra93]. In general, if preconditioners are constructed from equivalence relations
of bilinear forms and their matrix representations, then one has to invert spectral
equivalent matrices, where the work for doing this job should be in the same order as
a matrix multiplication. In two-dimensional boundary element methods one can use
periodic Sobolev spaces to construct efficient preconditioners [HKW80, Rja90, Wen80).
For uniform meshes, this approach leads to circulant matrices, which can be handled
by the Fast Fourier Transformation. There are generalizations to adaptive meshes and
to three-dimensional problems [KW92]; in the case of axially-symmetric surfaces,
the discretization leads to block circulant matrices [MR90]. However, generalizations
to three-dimensional problems are restricted to structered surface meshes in a
corresponding ordering. Here we want to give a general concept to construct efficient

preconditioners independent of geometrical properties.
Let us consider strongly elliptic and self-adjoint pseudodifferential operators of

orders +2« in the Sobolev spaces on I,
A: HT)— HI), B: H™*()— H)
satisfying the coerciveness inequalities
C{lHtH%{s(r\) S <At7t>H°'_“ S cgllltHQ s(I) Vi € V= Hﬁ(F)/keI'A
C{B”u”qu~2a(p) < <Bu7 u)H-""“‘ < CZBHUH%IS'—Z‘Y(F) VueW= H‘Q_Zly(r)/kerB '
(19)
For the finite—dimensional ker B we use an orthonormal basis representation
kerB = {ve H*?*(I') : Bv=0} = span{v}j_,

with
(v, ’Ug)Hs—za(r) = 6 forallk,f=1,...,m.

If we introduce the factor space V°(B) by
VUB) = {t € H*(L) : {t,op)gs-~r) =0 forall v, € kerB}
we can define the pseudoinverse operator to B,
B vYB) - W,

which is a selfadjoint operator satisfying the inequalities
1

5 ey < B0 < 5 Wl
for all t € VO(B). Then from the assumptions there follows immediately
Lemma 1. For all t € V NVY(B) there hold the inequalities
A (B ) e ary < (AL gamary < Fo - (B7H O o-a(r) -

. . . « A
with positive constants ¥, = 014 P and jp=c5 - Cg-
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To construct a preconditioner for all w € V' we have to split the space V into an
orthogonal sum

V=V (B)e V(B .
If we define the Bessel potential operator
J @ H?(T) — H3(T)
such that the relation
<.]’I.L, 7}>Hs—-rx(1“) = (u, ’U> Hs—20a(T)
holds for all v € H*~2*(T'), we can formulate the basic result [Steal:

Theorem 2. The operator defined by the bilinear form

m
C(t,’T) = <B_1t0,T[)>Hs-—m(I‘) + Z<t7vk)HS"“(I‘)<Tvvk>HS‘“(F) (20)
k=1

with

to(z) = t(z) = Y (t,v5) go-o(y(Jvy)(z) € VO(B)
=1

is spectrally equivalent to A, i.e. there hold the inequalities
T - elt, t) < <At,t>H.s~a(1j\) < g -e(t,t).

with positive constants v = cf - min{1,cP} and y2 = c5' - max{1,cf}.

Let a finite approximation space Vj, C V be given by

Vi = span {0} () ooy

with the trial functions @Y%, e.g. smoothest splines of polynomial degree v, and the
discretization parameter N. Then it follows directly from Theorem 2, that the matrices
Ay, and Cj, defined by their elements

AIL[£7 k] = <AQDZ~> W?)H*‘“(F) s Ch[f, k] = C(YOZ’py)

are spectrally equivalent, i.e. the spectral coundition number of the preconditioned
system is bounded by

cg -max{l,cP}

¢ - min{1,cP}

and therefore independent of all bad parameters like mesh adaptivity or the degree
of trial functions. Moreover, there are no restrictions to the space dimension of the
problem considered. However, to use the proposed preconditioner, one has to realize
the action of C} Yin a very efficient way.

For the map Jvy of the functions vy, € ker B we have to suppose a representation in
terms of the basis of V}, Le.

k(C;1AL) <

N
(Jue)(@) = Y vl ¢}(a)

=1
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then we find by partial Gram-Schmidt orthogonalization the transformed basis

Vi = span{ey,...,o%} = span{cp;'o,...,c,o}’\}o_m,,]vl,...,.]vm}
with

m

o (@) = Qf(z) = D (e vidme-aqr) - (Ju;)(@) € VO(B) .

i=1
For a given function t,(z) € V}, we find the basis transformation by
N N-m m
th(@) =Y te-of(@) = Y b op@) + D Inompn - (Jus)(@)
k=1 k=1 k=1
with the relations

- m - N-—m -
ty + Z’Uéc EN—me — Z <S0_lj/7vl>H$—°‘(I‘)tj , k=1,...,N—m,
=1 j=1

J=1

be = N—m
’Ué’ (EN—m+E -3 <S0;{,U[>Hs—a(1“)£j) , k=N-m+1,...,N

I0s

or in matrix representation
t=T"%.

If we denote by f the vector of the right hand side generated by
fu = Flek)

corresponding to the linear form of the original variational problem, we find for the
discretization with respect to the transformed basis, i.e. for

Fe= (@0 fork=1,...,N-m
and 5
INemtr = f(Jug) fork=1,...,m

the matrix representation

[=Tf,

which ensures the symmetry of the proposed preconditioner.
Due to the orthonormal basis representation of V4, discretization leads now to the

Ch = (COO 3) (21)

Coll, k] = (B_1¢Z’O»¢Z’O>Hs—a(r)

decoupled stiffness matrix

with the block

forall k,£=1,..., N —m. We still have to discretize the pseudoinverse operator B~ 1,
which is in general not given in explicit form. Hence we have to find an approximation
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uf of the exact function ug = B~'t, € W for any function o € V9(B). This can be
done by solving the finite-dimensional variational problem

(Bull, v gro-ary = (to, V) ae-o()

for all test functions v) € W. From the assumptions for B there follows, that this
problem has an unique solution and that we have the quasioptimal error estimate

l[uo — ultllgre-za(ry < e(B) inf [lug — vglpa—2ery -
vy €W
This estimate implies
<B_1t0, to)HH—(x‘(I‘) — <ug,t0>Hs—a(p) < C(B) ) %réfl‘/v HB_ltO — U(})LHHS“Z“(F)HtOHQHS(F)
)

and therefore we have the spectral equivalence inequalities
c1(B, ho) - (B Yo, to) gre—a(ry < (B Mo, to) ge—ary < c2(B, ko) - (By Mo, to) me—a(r)

for all mesh parameters h < hg, where hg is determined only by constants depending
on B. Hence we can replace the block matrix Cyg in (21) by the spectrally equivalent
discretization based on the approximation uft. This leads to the discrete representation

Cg = M, thlM }‘LI' .
For this discretization we have to use a subspace

0 .0
Wr = span{p?”, ..., 0N .} CW

—m

with the transformed trial functions

(x) = Q@) = Y (Pl vy - vi(z) €W
Jj=1

for k=1,..., N — m. Then we get the discrete representation of the operator B by
Bult, k] = (Bol®, o Y gomairy = (Boh, o) go-or

using the original trial functions ¢4 (-). For the modified mass matrix we find

k143

Mull, k] = (@, @) aromaqry = (05> v5) mory * (95, 05) Homary »
j=1

i.e. a rank—m pertubation of the original mass matrix Mj,. Since we can choose the trial
functions ¢(-) in an appropriate way, we may assume, that the inverse matrix M, '
exists. Algorithms to compute this inverse are based on Sherman—Morrison-Woodbury
formulae [OR70] using the inverse matrix M, ,:1, which is more suitable, because A}

is almost sparse and diagonally dominant.
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Now we are in the position to present the proposed preconditioner in a compact
form, where the action to realize C; ! is given by

M'ByM;' 0
hoERER )T (22)

C’IIITT( 0 I

In the next section we give an example, which is important for applications in
potential theory as well as in linear elasticity. Using the symmetric formulation to
handle mixed boundary value problems or domain decomposition methods numerically
with boundary elements, we will see, that this approach is optimal for an efficient
preconditioning, since we can choose the operators A and B in such a way, that the
additional work for the realization of the proposed preconditioner is neglicable.

4 Examples

We want to demonstrate the proposed preconditioning technique for the potential
problem with the differential operator

L(z)u(z) = —dive(z)Vu(z) ,
where we suppose piecewise constant coefficients
a(z) = o; forz e Q.
Therefore, the local fundamental solution for the Laplacian is given by

1 { —loglz—y| forn=2,

E'(z,y) = D

T forn=3.
The local single layer potential operators

(WM@=/mew@wy

and the hypersingular operators

a

(Dsui)(z) = ’%/%Ei(%y)'w(y) dsy
r;

for z € T; satisfy all assumptions of the previous sections with A =V, B = D and
s = —1/2,2a = —1. Moreover, the ratios of the constants in the inequalities (19) are

independent of the local material parameter a;.
Further we have kerV = {0} and kerD = {1}. From

n(z) = 1= ¢kl
k=1
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we find the basis transformation 1" by

N

N -1
un(@) = S urgf(@) = D ey (2) +w- i (2)
k=1 k=1

with v
m v
6i°(e) = i) = Tk ote) mud i = [ b
r

Therefore we have the representation

~ 1
My, = My — —=m"(m*)’
Tl
for the modified mass matrix, where the inverse is given by the Shermann—Morrison
formula

~ 1

Mh_l — M}:1 - mMﬂlmu(mu)TMil , o= (mp,)TMh—lml/ .

Note that there are situations, where M’ ! and therefore M, h ! does not exist; e.g. in
three dimensions, if we choose for the flux piecewise constant trial functions, which are
defined with respect to elements, and for the potential piecewise linear trial functions
defined with respect to nodes, and in general, if the numbers of elements and nodes
differ, then the mass matrix will be rectangular. Therefore, one has to be very careful
to select the exact trials to discretize B. If we choose piecewise linear trial functions
with v = g = 1 , My will be a strongly diagonally dominant sparse matrix, where
the inverse M, ! can be computed very efficiently. In the two—dimensional case, M
is tridiagonal, where we can use a Cholesky factorization with O(N) multiplications.
In general, this preconditioner needs O(N?) multiplications to apply By to a vector
and some operations of lower order to realize the basis transformations T and the
computation of M, L

Because the hypersingular operator D is positive definite with respect to the
| |f1/2(ry semi-norm, i.e.

<DU7U>L2(I‘) 2 C? [uﬁqlﬂ(r) )

there follows immediately

D
((er - T+ D)u, U>L2(I‘) 2 c? ”u”%lﬂ(r)
?vith the modified pseudodifferential operator c¢P - I + D, where a basis transformation
is no longer rec%un;ed..Thls seems to be quite useful for applications in linear elasticity.
For the multiplication of the discrete operator D}, one should use fast multiplication

algorithms like the panel clustering [HIN89, Sau92] for developping more efficient
algorithms.
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