
Agent Protocols for Social Computation

Michael Rovatsos, Dimitrios Diochnos, and Matei Craciun

School of Informatics
The University of Edinburgh

Edinburgh EH8 9AB, United Kingdom
{mrovatso,ddiochno,s1374265}@inf.ed.ac.uk

Abstract. Despite the fact that social computation systems involve in-
teraction mechanisms that closely resemble well-known models of agent
coordination, current applications in this area make little or no use of
the techniques the agent-based systems literature has to offer. In order
to bridge this gap, this paper proposes a data-driven method for defin-
ing and deploying agent interaction protocols that is entirely based on
using the standard architecture of the World Wide Web. This obviates
the need of bespoke message passing mechanisms and agent platforms,
thereby facilitating the use of agent coordination principles in standard
Web-based applications. We describe a prototypical implementation of
the architecture and experimental results that prove it can deliver the
scalability and robustness required of modern social computation ap-
plications while maintaining the expressiveness and versatility of agent
interaction protocols.

Keywords: Agent Communication, Social Computation, Web Agents

1 Introduction

Most real-world social computation applications that involve large-scale human
and machine collaboration (e.g. collective intelligence [10] or human computa-
tion [8]), are currently implemented using either ad hoc methods or program-
ming frameworks [1, 9] that make no use of agent technology. Within the agents
community, on the other hand, agent communication languages and interaction
protocols [3] have been widely used to design and deploy a wide range of agent
coordination mechanisms, many of which bear close similarity to those needed
in social computation systems. This is at least in part due to the fact that
the architectural proposals for developing real-world agent-based systems mostly
rely on bespoke platforms with custom message passing mechanisms and control
structures. Since the inception of those agent platforms, the architecture of the
Web [5] has given rise to a plethora of massive-scale distributed applications,
almost in complete ignorance of agent-based techniques [13].

The work presented in this paper aims to bridge the gap between agent co-
ordination techniques and social computation by providing a method for map-
ping the principles of agent protocol design to the architecture of the Web. We
describe a data-driven method for defining and deploying agent interaction pro-
tocols that complies with the architecture of the Web, and does away with a
need for point-to-point messaging infrastructures. Also, contrary to many exist-
ing agent platforms, it does not assume ideal conditions regarding liveness of
agent processes and availability of perfect communication channels.

The basic principles of this architecture are simple: It conceives of messages
as entries in persistent data stores accessible via normal HTTP operations, and
models dependencies between these messages through an explicit graph struc-
ture, where causal and temporal links between messages in a protocol are exposed
to agents via Web APIs. This enables avoiding redundant messaging in broadcast
situations, failure recovery and management of “stale” interactions, lightweight
ex post modification of previous interactions, as well as global monitoring and
analysis of coordination processes. Also, it leverages the architecture of the Web
to enable lightweight communication and is oblivious to the degree of centrali-
sation applied in systems design. We describe a prototypical implementation of
our architecture in a typical application scenario that allows us to demonstrate
its benefits. Our experiments with a deployed prototype show that our approach
offers significant advantages in terms of scalability and robustness.

The remainder of the paper is structured as follows: We start by introducing
an example scenario in section 2 that serves to illustrate our framework, and is
also later used in our experiments. Section 3 introduces our formal framework
for modelling conventional agent interaction protocols and their semantics. Our
data-driven architecture is presented in section 4 together with a discussion of its
properties. Experiments are presented in section 5, and after reviewing related
work in section 6, section 7 concludes.

2 Example

A typical social computation scenario that involves large-scale agent collectives,
and which we will use for illustration purposes throughout the paper, is rideshar-
ing (see, for example, blablacar.com and liftshare.com), where travellers
(drivers and passengers) request rides posting location, price, and possibly other
constraints. Ridesharing is a representative example both due to the range of
functions it requires (matchmaking, negotiation, teamwork) and because it ex-
hibits many characteristics of real-world collective collaboration systems (many
users, asynchronous communication, heterogeneity of user platforms).

The team task protocol shown in figure 1 describes a possible coordination
mechanism that could be used in such a system, following a traditional agent-
based model which involves an orchestrator o and task peers p in an 1:n rela-
tionship. In the top section of the diagram, peers ADVERTISE their capability to
play role r in action a, e.g. driving a car, occupying a passenger seat, or paying
a driver in the case of ridesharing. This advertisement is acknowledged simply
to terminate this stage with a definite response. In the subequent matchmaking
stage, peers may REQUEST a task, i.e. a plan that will achieve getting from initial
state I to goal state G, subject to certain constraints C (e.g. a price limit).

Based on requests from various agents and by using the capabilities they
have advertised, o proposes a possible task t that would involve a specific plan
π to be executed, and a role assignment for the participants clarifying which
agent has to perform which actions, or tells p that NO SOLUTIONS can be found.
In the case of ridesharing, the plan would be the ride specification, quoting a
price, time, and possibly other constraints (e.g. whether smoking is allowed). If a
peer AGREEs to a task, this might have become invalid in the meantime because
others have REJECTed it. If the task is still valid, and once all participants agree,
the orchestrator invites participants to START executing the plan, after which p
can UPDATE the execution status st of individual steps ai in the plan (e.g. “we
reached the destination”) or provide feedback reports F regarding the task (e.g.

ACK ADVERTISE(r, a)

po

INFORM INVALID(t)

UPDATE(t, r, ai, st)

ADVERTISE(r, a)

NO SOLUTIONS(I, G, C)

INFORM TASK(t)

REJECT(t)

AGREE(t)

START(t)

ACK UPDATE(t, r, ai, st)

RATE(t, F)

ACK RATE(t, F)

REQUEST(I, G, C)

Fig. 1. The team task protocol

“the driver was driving too fast”). These steps can be repeated depending on how
many steps there are in t in the case of UPDATE, or without limitation in the case
of RATE. If p rejects a task, more tasks might be suggested until no more solutions
exist. Note that the protocol deliberately contains a few “imperfections”: First
of all, once a peer agrees, she will not be notified if other participants reject the
task she agreed too. Secondly, there is no timeout for the negotiation. Hence, a
peer will never be told that the negotiation failed because some participants did
not respond. Below, we will explain how our proposed architecture results helps
address such issues without complete protocol re-design.

3 Formal framework

Before proposing our own approach, we introduce a formal framework that allows
us to capture action and communication semantics in a decentralised agent-based
system. Our formalism is based on a plan-based semantics of communication and
action, i.e. we consider a state transition system where messages and actions (we
use this term to denote non-communicative actions that change the environment
state) modify the values of state variables. While this follows traditional Strips-
style planning formalisms [6], note we are not assuming the use of actual planning
algorithms in the system. The notation just gives us a simple, generic way of
describing a discrete, distributed state transition system.

Let V = {v1, v2, . . . , vk} variables that range over a domain of discourse D1,
and constraints c = {(v1, D1), . . . , (vm, Dm)} denoting that vi ∈ Di ⊆ D, where
all vi are distinct, and {v1, . . . , vm} ⊆ V is called the domain dom(c) of constraint
c. We call a constraint failed if any for any vi ∈ dom(c) we have Di = ∅, and write
c = ⊥ in this case. A substitution θ is a constraint {(v1, E1), . . . , (vl, El)} that can
be applied to c to result in a new constraint cθ = {(v1, D′1), . . . , (vm, D

′
m)} such

that for all vi = vj with vi ∈ dom(c) and vj ∈ dom(θ) we have D′i = Di ∩Ej . A
substitution is called a grounding if |D′1| = |D′2| = . . . = |D′m| = 1. A grounding
is admissible if cθ 6= ⊥, and we write bcc for the set of all possible groundings or
instances of c. Entailment among two constraints is defined as c |= c′ if bcc ⊆ bc′c,
i.e. c is a stricter constraint satisfied by some groundings of c′.

Next, we introduce agents and their actions. Assume agents A = {a1, a2, . . .
an}, and, in slight abuse of notation, let their names also be valid variable values,
i.e. A ⊆ D. We consider a timed system with execution steps T = {t1, t2, . . .}
using a global clock shared by all agents. For any variable v ∈ V , ai may have
a local copy whose value can change over time. We write vji for the value of

v for agent i at time step j (Vi denotes agent i’s local variables, and V ji their
values at time j). We may drop the subscript and write “v = d” for some
variables whenever all agents’ local copies agree on the variable value, i.e. v =
d⇔ ∀i .vi = d. Fluents F = {f1, . . . , fk} ⊆ V are variables that describe system
states, and exclude any auxiliary variables not used to reflect system state, e.g.
the roles denoting senders and receivers of messages in message schemata (see
below). A state specification S is a constraint with dom(S) ⊆ F , and is used
to represent the set of all states s ∈ S with s |= S. A state s can be viewed as
a constraint that is a full variable assignment {(f1, {d1}), . . . , (fk, {dk})} for all

domain fluents in F . When referring to states, we will write sji to denote a full
assignment to concrete values for agent i at time j.

An action ac = 〈{a1, . . . , ak}, pre, eff 〉 is performed by agents {a1, . . . , ak} ⊆
A and is associated with two constraints, its preconditions pre and effects eff
with dom(pre)∪dom(eff) ⊆ F . For any s ∈ S with s |= pre(ac) (ac is applicable
in s), execution of ac results in a successor state succ(s, ac) = s′ where s′ =
s\{(v,D)|v ∈ dom(eff (ac))} ∪ eff (ac). In other words, if ac is applicable in s,
then the successor state results from removing the values of all affected variables
in dom(eff (ac)) from s and adding their new values as per eff (ac). Note that
these actions need not be “ground” in the sense that the fluents they involve need
to have specific single values before or after the action. A plan π = 〈ac1, . . . , acn〉
is a sequence of actions such that ac1 is applicable in the states represented by
the initial state specification I, i.e. I |= pre(ac1), and each aci is applicable in
succ(s, 〈ac1, ac2, . . . , aci−1〉) (where succ is canonically extended to sequences
of actions), for all 2 ≤ i ≤ n and s |= I. Plans provide the definition for any
well-defined sequence of actions that is feasible given the specifications of these
actions and the current system state. A plan π is a solution for a planning
problem 〈I,G,Ac〉 with initial state specification I and goal state specification
G if succ(s, π) |= G for all s |= I, i.e. if its execution from any state that satisfies
I results in a state that satisfies G.

Given this general framework, we can proceed to defining the structure and
semantics of agent protocols.

1 Different types Dj can be used here to accommodate different types of variables.
These are omitted for simplicity.

Definition 1 A message schema µ =MSG(se, re, c, pre, eff) is a structure with
label MSG, where se and re are variables for the sender(s) and receiver(s) of
the message, constraint c denotes the message content, and precondition/effect
constraints pre and eff with dom(pre) ⊆ V and dom(eff) ⊆ V .

In figure 1, such schemata label the edges connecting the individual boxes on
the swimlanes of the diagram (which represent sender p and receiver o), e.g.
REQUEST(p, o, {(ip, {I}), (gp, {G}), (cp, {C})}). For readability, we omit precon-
ditions and effects and the constraint notation assigning concrete values to p’s
local variables for I, G, and C is not used in the diagram (the request implies,
for example, that p’s local variable ip has value I at the time of sending).

To define the structure of a protocol, we introduce a graph that is “dual” to
that in the diagram, in that is has message schemata for nodes and edges for
decision points:

Definition 2 A protocol graph is a directed graph P = 〈Φ,∆〉 whose node set
includes a set of message schemata uniquely identified by message labels, with
additional root and sink nodes start and end (eff (start) = pre(end) = ∅). Its
edges are given by a mapping ∆ : Φ→ 2Φ. Every edge (µ, µ′) with µ′ ∈ ∆(µ) is
labelled with eff (µ) and pre(µ′).2

We present the protocol graph for part of the team task protocol (preconditions
end effects are only shown for REQUEST):

{(I∗, {I∗ ∩ I}), (G∗, {G∗ ∩ G})}

{(wantsp, {G}), (sp, {I})}

NO SOLUTIONS(o, p, I, G, C)

AGREE(p, o, t)

INFORM INVALID(o, p, t)

REJECT(p, o, t)

INFORM TASK(o, p, t)

REQUEST(p, o, I, G, C)

The example assumes that the precondition for REQUEST is {(wantsp, G), (sp, I)}
for p. The effect for o, who is gathering planning problems from peers to propose
a joint plan that solves all of them, is {(I∗, I∗∩I), (G∗, G∗∩G)} where “∗” denotes
the view o has of all peers. In other words, o’s strategy involves conjunctively
narrowing down initial and goal states before suggesting a plan that satisfies all
of them. To make the plan-based semantics of protocols concrete, we need to
introduce messages as instances of schemata:

Definition 3 A message is a structure m = 〈µ,Se,Re, θ, t〉 where µ is a message
schema, Se ⊆ A and Re ⊆ A are the (non-empty) sets of senders3/receivers of
the message, θ is a substitution for c(µ), and t the time the message was sent.

2 Throughout the paper, we adopt the convention of referring to elements in a structure
x = 〈y, y′, . . .〉 as y(x), y′(x) etc.

3 Allowing many senders in messages may seem counter-intuitive at first, but is use-
ful for situations where a physical sender acts on behalf of a whole group, or to
summarise identical messages received from various peers as one message in the
data-driven model we introduce in section 4.

The following definition defines when a message is admissible, i.e. it is a legal
continuation of an observed interaction:

Definition 4 For any protocol graph P , state st ∈ S, and initial message se-
quence π = 〈start ,m1, . . . , mt−1〉, define:

〈π, st〉 |=P mt :⇔ mt = end ∧ end ∈ ∆(µ(mt−1)) ∨(
θ =θ(m1)θ(m2) · · · θ(mt) 6= ⊥ ∧ µ(mt) ∈ ∆(µ(mt−1))∧
∀i ∈ Se(mt). s

t
i |= pre(µ(mt)θ) ∧

∀j ∈ Re(mt). s
t+1
j |= succ(stj , µ(mt)θ)

)
�

This defines a message mt as admissible in the context of a current message
sequence and state 〈π, st〉, which we call a model for m, if either mt = end and
its immediate predecessor was connected to the end node in P , or if (i) its schema
µ(mt) is a successor to that of the most recent message, (ii) the preconditions
(effects) of that schema are satisfied by all senders (receivers) of the message in
timestep t (t + 1), and (iii) this is subject to the combined substitution θ that
accumulates all the substitutions applied in previous messages (and which must
itself be consistent).4

In other words, an admissible message is interpreted as a planning action
〈Se ∪ Re, pre(µ(m)θ), eff (µ(m)θ)〉, with the additional requirement that it ex-
tends the observed message sequence following P , and respects the substitions
applied to earlier messages on the path that led to it.

To extend this definition to message sequences, we can write 〈π, s〉 |=P π
′ for

any finite π′ = 〈mt+1, . . . , mt+k〉 iff〈
π〈mt+1, . . . ,mt+j〉, succ(s, 〈mt+1, . . . ,mt+j〉)

〉
|=P mt+j+1

for all 0 ≤ j ≤ k − 1. We write s |=P π) iff 〈〈〉, s〉 |=P π.
With this, we can proceed to define the semantics of a protocol through the

set of admissible continuations it gives rise to in a specific state given an observed
execution history:

Definition 5 Let s ∈ S and π a message sequence. If s |=P π, the continuations
JπKs of π are defined as the (potentially infinite) set of sequences messages π′

for which 〈π, s〉 |= π′ holds. We let JπKs := ⊥ if s 6|=P π. �

This completes our account of a simple and fairly generic plan-based semantics
for agent interaction protocols. Our semantics does not make any specific com-
mitment as to the actual semantic language (e.g. mentalistic, commitment-based,
or deontic) used to specify constraints governing the exchange of messages. In-
stead, it specifies what message sequences are admissible under a shared protocol
definition, and how message passing results in a synchronisation among agents’
local variables. For simplicity, we have assumed that no additional agent actions
or exogenous events occur during protocol execution. Note, however, that such

4 Note that different semantics are possible here, which may assume that senders also
have a modified state regarding their perception of receivers’ local variables after
sending a message, or receivers inferring facts about senders’ previous states upon
receipt of a message. Which of these variants is chosen is not essential for the material
provided below.

actions or events could be easily accommodated in the protocol graph as addi-
tional choices between successive messages without requiring additional formal
machinery.

4 Data-centric Architecture

4.1 Framework

While conventional specifications of agent interaction protocols such as the ones
considered above provide a very flexible framework for coordinating multiple
agents, the point-to-point message passing they assume can be problematic in
large-scale multiagent systems using potentially unreliable communication in-
frastructures, and operating over long periods of time, so that the contributions
of agents occur at unpredictable points in time.

Consider a real-world deployment of the protocol shown in figure 1 in a web-
based ridesharing application with many users. If we use conventional message
passing, this protocol would require n conversations for n task peers going on
in parallel, and o would need to maintain separate internal data structures to
track which agents have already agreed to the task, which of them may provide
execution updates, etc. Also, these conversations would have to remain “open”
indefinitely, unless strict time limits were imposed on these parts of the pro-
tocol. Another drawback is that many data objects such as identical requests,
suggested tasks, or information about invalid/agreed tasks and initiation of task
execution would have to be sent repeatedly from/to different peers. Finally, if we
wanted to de-couple different parts of the protocol that are not causally linked
to each other in order to allow for a more flexible execution of the different
stages of the protocol (e.g. advertising capabilities is unrelated to negotiation),
this would involve creating separate protocols, and managing synchronisation
among variables that are not local to a single protocol.

AGREE(a2, o, t1)

AGREE(p, o, t)

INFORM TASK(o, {a1, a2}, t1)

INFORM TASK(o, {a2, a3}, t2)

INFORM TASK(o, p, t)

NO SOLUTIONS(o, a3, I, G, C3)
NO SOLUTIONS(o, a4, I

′, G′, C4)

NO SOLUTIONS(o, p, I, G, C)

INFORM INVALID(o, a2, t2)

INFORM INVALID(o, p, t)

REQUEST(a3, o, I, G, C3)

REQUEST(a4, o, I
′, G′, C4)

REQUEST(a2, o, I, G, C2)

REQUEST(a1, o, I, G, C1)

REQUEST(p, o, I, G, C)

REJECT(a3, o, t2)

REJECT(p, o, t)

AGREE(a1, o, t1)

AGREE(a2, o, t2)

Fig. 2. Data-centric model of part of the ridesharing protocol

Before introducing our data-driven architecture to address some of these
issues, we present its instantiation for the negotiation part of our team task
protocol as an example in figure 2. The diagram combines the original protocol
graph (message schemata in rounded boxes, connected with bold grey arrows)
with message stores attached to every schema. These message stores contain

messages exchanged by the participants so far, and links (black arrows) between
messages that were generated in response to each other. As before, we omit
preconditions and effects as well as timestep labels and the details of content
constraints for readability.

Using linked message stores enables us to replace message passing among
agents by inspecting and modifying the contents of persistent message reposito-
ries, which is the key idea behind our approach. We start by introducing protocol
execution graphs (PEGs), which provide the link structure arising from observed
message sequences:

Definition 6 Let Π = {π1, . . . , πk} a set of protocol executions where πi =
〈m1, . . . ,mj , . . . ,mti〉 and πij = mj, and M(Π) = {πij |πi ∈ Π} the set of all
messages in Π. The PEG is a directed graph P (Π) = 〈M(Π), ∆(Π)〉 with edges
∆(Π) = {(m,m′)|∃πi ∈ Π.m = πij ∧m′ = πij+1}.

For any set of messages, we define a mapping ϕ : M → Φ(P) to the nodes
in P , where ϕ(m) = µ if ∃µ ∈ Φ(P).µ = µ(m) and ⊥ else. Given this, πi ∈ Π
is associated with a generating path ϕ(πi) := 〈ϕ(m1), . . . , ϕ(mti)〉 in P . �

A PEG has every two messages connected that correspond to message schemata
connected in the protocol graph the executions followed. Note that whenever the
protocol graph contains cycles, a PEG may contain unfoldings of these cycles
(and thus message schemata may appear repeatedly in a generating path ϕ(πi)).
Furthermore, even though the distinct message schema labels guarantee that
every message has a unique node in the protocol graph assigned to it, identical
messages (sent to or from different agents) appear only once in the graph. On
the other hand, if two messages have identical senders, receivers, and conent,
they would count as different nodes in the PEG if they were part of different
conversations (as they are annotated with different timestamps). In figure 2, the
nodes of the PEG are the entries of the boxes under each message schema, and
its edges are depicted as black arrows connecting these nodes.

As concerns continuations, we can extend our previous definitions canonically
to sets by letting 〈Π, s〉 |=P m iff ∃π ∈ Π.〈π, s〉 |=P m and JΠKs := ∪π∈ΠJπKs.

The final step in our construction is to identify message stores, one for each
message schema µ appearing in the protocol graph (shown as square boxes in
figure 2). These provide a somewhat orthogonal view of the PEG, focusing on
specific message schemata:

Definition 7 A message store is a set of messages Mµ := {m ∈M(Π)|µ(m) =
µ} containing all message instances for a message schema µ. It supports the
following operations given m = 〈µ,Se,Re, θ, t〉:
– get(a,Mµ) = {m ∈Mµ|a ∈ Re(m)}
– add(a,Mµ,m) = Mµ ⇔ a ∈ Se(m) ∧M ′µ = Mµ ∪ {m}
– del(a,Mµ,m) = M ′µ ⇔ a ∈ Se(m) ∧M ′µ = Mµ\{m}
– mod(a,Mµ,m,m

′) = add(a, del(a,Mµ,m),m′)

The operations add, del (and mod) leave Mµ unchanged if their arguments do
not satisfy the above constraints. �

The main reason we define message stores as first-order citizens in our archi-
tecture is that they permit the definition of operations which can be used to
emulate sending and receiving messages. These operations, which are realised

as physical messages over the network (but we distinguish from protocol mes-
sages) allow an agent to create a new message if it is a sender of that message
(aff), and to inspect those messages in a store that have her as receiver (get).
We also permit deletion of previous messages through del for reasons that will
become clear below, and modification of an existing message through mod (a
combination of del and add).

Using these methods, a message such as REQUEST(a1, o, I,G, C2) in figure 2
would be realised as a sequence of calls add(a1,Mµ, REQUEST(a1, o, I,G,C2))→
get(o,Mµ) where Mµ is the message store for REQUEST. This enables a different
way of processing the protocol specification, which is based on an ability to
generate responses to any message contained in a message store without requiring
a control flow that manages every conversation sequence individually:

Proposition 1 Let st ∈ S and m = 〈µ,Se,Re, θ, t〉 a message with 〈Π, st〉 |=P

m. We define
op = get(Re, add(a,M(µ),m)))

where a ∈ Se and get(Re, . . .) is shorthand notation for all receivers executing
the get operation in any ordering. We assume that each get/add operation takes
one timestep. Further, we assume that the add operation is only performed if
sti |= pre(µθ) for all ai ∈ Se, and all aj ∈ Re update their local state stj to

st+1
j = succ(stj , µθ) instantly when they observe any new message m.

Then, if |Re| = k, and no other actions or message store operations are
executed between t and t+ k, it holds that M ′µ = op(M) = M ∪{m} in st+k and

succ(k)(st, op) = succ(st,m).5

Proof. The proof for this proposition requires only straightforward application
of the respective definitions. The operation op on Mµ involves one sender add ing
m to the message store (which implies M ′µ = op(M) = M ∪ {m}), and k re-
ceivers Re getting the result. Since the message is admissible, we would have
sti |= pre(µθ) for all i ∈ Se and st+1

j |= succ(st, µθ) if this message was sent.
We assume that the get message is only sent if the sender can locally satisfy
the preconditions of m, and that receivers incorporate the effects of any new
message observed on a message store locally (though for a given agent this will
only happen at st+l for some 1 ≤ l < k depending on when the receiver per-
forms the get operation). Given this, and under the assumption that no other
action occurs while op is being executed, we have succ(k)(st, op) = succ(st,m). �

The importance of this proposition is twofold: Firstly, it shows how message
store operations can correctly replace any protocol message exchange. Secondly,
it reveals that an additional |Re| get operations are necessary to produce the
same outcome, and that the receivers monitor the contents of each relevant
message store continually. On the other hand, it is sufficient if the time k required
for these updates is less than the time that passes until further messages being
sent to or from the recipients, or other actions are executed that affect their local
state. Our model also allows for more unusual operations on message stores, for
example deletions of past messages. While this might seem counterintuitive, we
discuss in section 4.2 how it can be very useful in real applications. Deletions

5 The superscript (k) is added to the succ function here to indicate that op requires
this number of timesteps.

require a more complex “rollback”, which obviously cannot undo the global state
of the system, but for which we can establish a weaker result:

Proposition 2 For any message m, let next(m,Π) = {m′|(m,m′) ∈ ∆(Π)}
with next∗(m,Π) as its reflexive and transitive closure. Removing next∗(m,Π)
results in a PEG Π ′ = 〈Φ′, ∆′〉 where Φ′ = Π\next∗(m,Π) and ∆′ = ∆(Π)
\{(m′,m′′)|{m′,m′′} ∩ next∗(m,Π) 6= ∅}. It holds that:

1. If ∀m′ ∈ next∗(m,Π). M ′µ(m′) = del(a,Mµ(m′),mi) and ∀m′ 6∈ next∗(m,Π).

M ′µ(m′) = Mµ(m′), then M ′µ = Mµ(Π ′) for all µ and some a ∈ A.

2. For any m ∈ Π ′ we have 〈Πt(m), st(m)〉 |=P mj where Πt(m) and st(m) are
the contents of the original PEG and state at time t(m) when the message
was created.

Proof. Statement 1. claims that deleting all successors of m from the respec-
tive message stores, and leaving all other message stores unchanged will restore
the property that any message store Mµ in the system contains all messages
instantiating a schema µ in Π ′. This is trivially the case, as Π ′ is identical to Π
with the exception of having m and all its successors and their adjacent edges
removed. To see that stement 2. holds, it suffices to observe that all remaining
messages in Π ′ are either a predecessor of m, or occur on paths that do not
contain m or any of its successors. It follows that their validity at the time of
their creation is maintained if we remove m and all subsequent messages. �

The main implication of this result is that when a message is deleted from
a store, then all its successors need to be deleted with it to maintain some level
of consistency (this also assumes that no other messages or modifications on
message stores take place in the meantime). Even with these provisions, the level
of consistency achieved is obviously much weaker than what can be guaranteed
for add operations, as deletions remove paths that were previously available, and
only paths unaffected by the removal of m have identical continuations as before
the removal. Also, the system state may have changed compared to when the
original messages were sent, so that we may not be able to track what interactions
brought it about. Finally, we should note that the two properties we have just
established apply to mod operations as a consequence of those operations being
abbreviations for a composition of del and add calls.

4.2 Discussion

To illustrate the use of our model, let us revisit the example from figure 2 in
more detail: We have six initial REQUEST messages from agents a1, . . . a4, which
result in possible tasks t1 for {a1, a2}, t2 for {a2, a3} and no solution for a4
(maybe because his requirements don’t match those of any other peers). One
immediately obvious advantage of our approach here is that only INFORM TASK
messages need to be “sent” to two agents each (sets {a1, a2} and {a2, a3}).

Next, we have the situation that a2 AGREEs to t2 and a3 REJECTs this task.
We assume that a2 is the driver and needs to agree first (no ride can be taken
without a car), but there is no such restriction regarding rejection, which any
participant of the task can issue at any point. Now if a3 issues the rejection
first, a2 will receive an INFORM INVALID response, as shown in the diagram,
and no agreement on t2 will be possible anymore. If a2 has already agreed,
however, this agent will never be notified of a3’s rejection, a problem we already
mentioned in section 2. One solution to this problem would be to add an edge

from INFORM INVALID to AGREE, which was not included in the original protocol
of figure 1. Since previous INFORM TASK messages also gave a2 the option t1, she
can now agree to this task, and after a1 agrees, too, the next message would be
START to initiate task execution.

This is generally how protocol flexibility has to be accommodated in normal
agent protocols – every possible agent behaviour has to be accounted for by
providing additional paths that enable other agents to respond appropriately. In
fact, the INFORM INVALID→AGREE edge would not work here, as no alternative
possible task t1 would be known to a2 (unless a list of all possible tasks was
sent with INFORM TASK from the outset, which would doubtlessly complicate
the workflow further). So, we would have to backtrack at least to the level of
INFORM TASK (in a “task no longer available, here’s another alternative” fashion)
to allow a2 to make alternative choices. Or we would leave a2’s AGREE message
without response, whereupon we would rely on the decision logic of the agent to
resolve the problem (e.g. by having her assume failure after some time).

Our data-centric view affords us with additional ways of dealing with such
problems. Firstly, because of our protocol semantics, the INFORM INVALID op-
tion is easy to accommodate, as a2 can still AGREE to any task contained in the
INFORM TASK message store. Secondly, the orchestrator could remove INFORM TASK
(o, {a2, a3}, t2) (as owner of this message) after receiving a REJECT from a3, and
a2 would be able to anticipate that its previous AGREE message has become in-
valid (it could even be deleted by o if we used this type of call and gave the
orchestrator appropriate permissions for this operation on messages not created
by herself). Under these circumstances, not even the INFORM INVALID message
itself would be necessary, thus making the protocol even simpler. Finally, we
could give a3 permission to add INFORM TASK messages (for example with pos-
sible alternative tasks that were not generated by o) or post mod ifications to t2
in order to make the task acceptable for her, thus increasing the chances that
successful agreement would be reached.

Thus, even though in principle the possible computations that can be jointly
performed by agents are of course no different from the agent-centric view, our
data-centric view allows much more flexibility in organising the interactions that
lead to those computations, without requiring that the overall protocol needs to
be significantly re-designed to accommodate additional functionality. For ex-
ample, we could have orchestrators post arbitrary new tasks in an asynchronous
way (for the same requests, or incrementally, as more potentially matching agents
join), we could easily allow drivers to agree to several tasks in parallel, or let
peers remove their previous requests if they are no longer interested in them.

5 Experimental Results
To establish whether the scalability and robustness we expect can actually be
observed in a real-world implementation, we have developed a prototypical web-
based system that runs the protocol depicted in figure 1, and evaluated it ex-
perimentally in the ridesharing domain. Our experiments below focus on the
matchmaking and negotiation part of the protocol (from REQUEST to START),
as this involves most dependencies among individual behaviours, and requires
involves solving a complex combinatorial problem for the orchestrator agent o
that involves calculating exponential numbers of possible rides presented to ev-
ery driver and passenger. Instead of trying to get agreement or rejection to a
single potential ride from every peer involved, our architecture enables us to con-
stantly update all rides available to every peer in the system. We also use two

further “non-standard” protocol operations: One is to automatically generate
INFORM INVALID messages for other participants when an agent REJECTS a ride,
and the other is to delete all INFORM TASK messages linked to a peer’s request
once a different ride for that peer has been agreed. Since in practice there is no
global clock for synchronisation, all agents periodically poll the stores they are
interested in (INFORM TASK to check what the currently available rides are, and
START/INFORM INVALID to determine whether a ride has been agreed/can no
longer be agreed). In terms of the execution engine, our implementation involves
a single server which contains all message stores, and exposes operations on them
through a simple RESTful Web API. The server runs Node.js, a non-blocking
event-driven JavaScript library, and has separate processing queues associated
with different message stores, which asynchronously process individual “plat-
form jobs” for different client calls. Note that running the platform on a single
server is not a requirement – in principle every message store could be located
on a different server, including agent nodes that implement an HTTP interface.

Our first experiment examines the overall scalability of the platform. We
create artificial “groups” of size k in a population of n agents such that all the
requests inside a group match, and we can artificially control how many rides will
be created. Our first experiment involves up to 10 groups of 6, 9, and 12 agents,
i.e. a total of 60, 90, 120 agents, where the ratio of drivers d to passengers p is 1/2
(i.e. p/d ∈ {2/4, 3/6, 4/8} for each group size). Note that the respective number
of possible rides generated in each group is (2p − 1) ∗ d as there is a different
proposal for every subset of passengers, and the rides different drivers may offer
to a group overlap. This means that 30/189/1020 rides have to be created for
each group, i.e. the system has to deal with up to 10200 rides overall as we keep
adding groups. Note also that, since all ride requests and agreements to rides
occur in very close succession, the load of this system is similar to a real-world
system that would experience this level of usage every few minutes (in reality,
of course, users take much much longer to check updates and respond), so it
is in fact representative of a very large scale real-world application. Finally, to
maximise the amount of messages exchanged and the duration of negotiation,
drivers accept only the maximally sized ride, and passengers accept all rides. The
top two plots in figure 3 show the average time taken in seconds (across all agents,
and for 20 repetitions for each experiment, with error bars to indicate standard
deviations) for matchmaking (REQUEST and INFORM TASK) and negotiation (all
further messages up to and including START), respectively. As can be seen from
these plots, even though every agent has a built-in delay of 2 seconds between any
two steps, even when when there are 120 agents in the system, the average time
it takes an agent to get information about all rides acceptable to her/complete
the negotiation of a ride is around 50s/80s even in the largest configurations.

In the second experiment, we investigate the cumulative effect of adding de-
lays and message failures on the total execution time of an entire negotiation
for a ride, in order to assess how robust the system is. For this, we artificially
increase the delay between any update an agent receives and its successive op-
eration from 2s to 5s, 10s, and 20s. We use these artificial delays also to emulate
failure, e.g. when network resources are temporarily unavailable. The bottom
plot in figure 3 shows the results for this experiment, for a group size of 9 and
5 groups (45 agents in total), showing measurements for matchmaking, negotia-
tion, and the total lifespan of an agent (from creation to agreement). As can be
seen, the overall lifespan of an agent increases by a factor of 3 to 4 here when

Fig. 3. Experimental results

the delay increases by a factor of 10, which is a good indication that the system
degrades gracefully under increasing perturbation. Moreover, what is interest-
ing is that the time taken for negotiation, which involves the highest number of
messages to the orchestrator (as all passengers accept all rides) only increases by
a factor between 1.5 and 2. This is because the larger delays require less effort
for matchmaking and computing rides, and the orchestrator has more time to
process negotiation-related messages during these gaps. This nicely illustrates
how separating the processing of different message stores leads to effective load
balancing for any agent that has to engage in different interactions concurrently.

6 Related Work
The idea of coordinating distributed processes through a shared coordination
medium is not new. It can be traced back at least to the blackboard systems
[4] used in early distributed knowledge-based systems. In distributed comput-
ing, similar ideas led to coordination languages like LINDA [7]. While these
systems initially involved either fixed sets of coordination primitives or built-in,
application-dependent coordination strategies, they were later used in platforms
like TuCSoN [11] to develop programmable behaviours for the coordination data
structures. Our approach differs from this line of work in that we do not attempt
to replace the protocol-based interaction models used in mainstream agents re-
search. Instead, we maintain their advantages in terms of supporting complex
specifications of sequential interactions and agent communication language se-
mantics. Mapping these onto a data-driven architecture gives us the “best of both
worlds”, as it allows us to capture complex agent interactions while separating
coordination from computation.

An architecture that takes a similar protocol-centric approach to the regula-
tion of agent behaviours is OpenKnowledge [12], which allows declarative speci-
fications of interaction protocols to be directly executed in an open, peer-to-peer
platform. While its automation of executing protocols from their specification is
more advanced here than in our approach, it involves agents effectively handing
over control to coordinators that “run” the agent processes (the agent can still
make autonomous decisions regarding different choices available in the protocol,
but the platform executes the protocol by invoking these local decision methods
from outside). The difference to our approach is that we do not provide an execu-
tion platform that includes the agent processes themselves, but prefer to restrict
the computational coordination process only to what is absolutely necessary.

Previous work most closely related to ours, however, is at the intersection
of agents and service-oriented computing research. The authors of [2] present
a method for mapping complex agent conversations to web services, without
providing, however, a formal framework or a concrete implementation. Only
very recently Singh [14, 15] addressed the service-based view of agent protocols
by proposing a formal language and a computational architecture that supports
it. His approach bears close resemblance to our work: It considers protocols in
terms of information schemas without any additional control flow constructs,
defines semantics in terms of histories of past message exchanges, and proposes
an architecture that enables agents to asynchronously and atomically process
individual messages, supporting distributed interactions that have multiple loci
of enactment. The main difference to our approach is that the semantics provided
in this model does not take account of non-message actions and local state
transitions, instead focusing more on protocol verification. Also, no quantitative
performance results for an implementation of this system are presented.

It is worth mentioning, that, with the exception of [14], all of the above
approaches involve some kind of middleware that relies on a bespoke communi-
cation architecture and platform that the agents must comply with. Moreover,
while these platforms could be exposed, at least in principle, over normal Web
APIs, agent designers would still have to be familiar with the specific languages
used by them. In our framework, we do not only do away with such specific mid-
dleware. We also reduce the language specification for messages and constraints
to a very general form, through constraints that are general variable restrictions,
and messages with simple pre- and postconditions. As long as ontological agree-
ment can be assumed regarding the semantics of individual variables and their
domains (which is also a prerequisite for all of the above approaches), our APIs
should be straightforward to use. In these respects, our work is heavily influ-
enced by the REST paradigm [5], in that it uses ordinary Web resources as the
means of exposing state to peers in order to coordinate the workflow between
them. To our knowledge, there have been no attempts to formalise the semantics
of this paradigm, and while our work does not aim to provide such semantics
for the general case, it can be seen as a contribution toward a better overall
understanding of REST itself.

7 Conclusions
In this paper, we have presented a data-driven architecture for coordinating
agent collectives on the Web that is aimed at bridging the gap between work
on agent interaction protocols and modern Web-based applications used com-
monly in areas such as social and collective computation. We presented a formal
framework that allows us to specify the semantics of our architecture, and which
allowed us to introduce functionality that is not available in normal agent-based
systems platforms. Our experimental results with a prototypical implementation
show that it can handle complex interactions in a lightweight way, producing
minimal overhead while providing good scalability and robustness properties.

We summarise the main benefits of our approach: Firstly, there are no sequen-
tial distributed processes that need to rely on a standing line of communication,
since all data operations are atomic, and can be easily repeated in case of fail-
ure. As our experiments show, the overhead of the additional link structure that
has to be stored and the frequent “pull” operations from agents do not seem to
affect performance significantly. Secondly, in a real Web deployment, we could
directly benefit from the standard caching facilities of Web servers that can store
frequently reused resources. Thirdly, coordination platforms can cross-check par-
allel interactions and apply global constraints to the overall interactions flexibly.
Fourthly, since all operations are atomic, the decision logic can be devolved to
components processing data in parallel whenever different steps are independent.
This also provides guidance for designing agents’ internal reasoning mechanisms,
or for “splitting” functionality into several agents. Finally, message stores and
the linkage between them provide a direct “data” view to the ongoing interac-
tions at a global level, thus facilitating analysis, prediction, and ease of mapping
to other structures such as provenance information. In fact, all operations in our
architecture can easily be captured using standard formats like PROV6, and our
implementation supports this through full integration with a live PROV server.

As regards future work, on the practical side, we plan to focus on develop-
ing an automated procedure for generating implementations of our architecture

6 See http://www.w3.org/TR/prov-overview/

directly from a given protocol specification. On the more theoretical side, we
would like to develop formal procedures to detect and decouple different parts
of a coordination protocol where these are not causally linked.

8 Acknowledgments
The research presented in this paper has been funded by the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
n. 600854 “SmartSociety – Hybrid and Diversity-Aware Collective Adaptive Sys-
tems: Where people meet machines to build smarter societies” (http://www.smart-
society-project.eu/).

References

1. Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.D.: The Jabberwocky Programming
Environment for Structured Social Computing. In: Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology (UIST 2011). pp. 53–
64. Santa Barbara, CA (2011)

2. Ardissono, L., Goy, A., Petrone, G.: Enabling conversations with web services. In:
Rosenschein, J.S., Sandholm, T., Wooldridge, M., Yokoo, M. (eds.) Proceedings of
the Second International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2003). pp. 819–826 (2003)

3. Chopra, A.K., Artikis, A., Bentahar, J., Colombetti, M., Dignum, F., Fornara, N.,
Jones, A.J.I., Singh, M.P., Yolum, P.: Research Directions in Agent Communica-
tion. ACM Transactions on Intelligent Systems and Technology 4(2), 1–23 (2013)

4. Englemore, R., Morgan, T. (eds.): Blackboard Systems. Addison-Wesley, Reading,
MA (1988)

5. Fielding, R.T., Taylor, R.N.: Principled Design of the Modern Web Architecture.
ACM Transactions on Internet Technology 2(2), 115–150 (2002)

6. Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3-4), 189–208 (1971)

7. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
munications of the ACM 35(2), 97–107 (1992)

8. Law, E., von Ahn, L.: Human Computation. Synthesis Lectures on Artificial Intel-
ligence and Machine Learning, Morgan & Claypool Publishers (2011)

9. Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: TurKit: Human Computa-
tion Algorithms on Mechanical Turk. In: Proceedings of the 23nd Annual ACM
Symposium on User Interface Software and Technology (UIST 2010). pp. 57–66
(2010)

10. Malone, T.W., Laubacher, R., Dellarocas, C.: The collective intelligence genome.
Sloan Management Review 51(3), 21–31 (2010)

11. Omicini, A., Zambonelli, F.: Tuple centres for the coordination of internet agents.
In: Proceedings of the 4th ACM Symposium on Applied Computing. San Antonio,
TX (February 1999)

12. Robertson, D., Barker, A., Besana, P., Bundy, A., Chen-Burger, Y.H., Dupplaw,
D., Giunchiglia, F., van Harmelen, F., Hassan, F., Kotoulas, S., Lambert, D., Li,
G., McGinnis, J., McNeill, F., Osman, N., Pinninck, A.P.D., Siebes, R., Sierra,
C., Walton, C.: Models of interaction as a grounding for peer to peer knowledge
sharing. In: Dillon, T.S., Chang, E.J., Meersman, R., Sycara, K. (eds.) Advances in
Web Semantics I. Lecture Notes in Computer Science, vol. 4891. Springer-Verlag,
Berlin, Heidelberg (2007)

13. Rovatsos, M.: Multiagent systems for social computation. In: Lomuscio, A., Scerri,
P., Bazzan, A., Huhns, M. (eds.) Proceedings of the 13th International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2014). Paris,
France, 5th-9th May (2014), second prize for best challenge paper.

14. Singh, M.P.: LoST: Local State Transfer - An Architectural Style for the Dis-
tributed Enactment of Business Protocols. In: Proceedings of the 9th International
Conference on Web Services (ICWS). pp. 57–64. Washington, DC (2011)

15. Singh, M.P.: Semantics and Verification of Information-Based Protocols. In:
Conitzer, V., Winikoff, M., Padgham, L., van der Hoek, V. (eds.) Proceedings of
the Eleventh International Conference on Autonomous Agents Multiagent Systems
(AAMAS 2012). pp. 1149–1156. Valencia, Spain, June 4-8 (2012)

