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Abstract

We are interested in learning rules under class imbalance. In

this direction we extend the traditional model of probably

approximately correct (PAC) learning to also include explic-

itly among its goals high recall and high precision at the end

of the learning process. We establish relationships for the

recall and the precision of a learned hypothesis as a function

of its risk and the rate of the minority class. We then show

that we can PAC learn a concept class with high recall and

high precision by allowing a polynomial increase in the time

and space complexity of traditional PAC learning algorithms

that generate hypotheses with low risk. In sequence, by in-

troducing a pre-processing phase on such algorithms, with a

constant-size overhead on the overall sample complexity, we

are able, with high probability, to compute a lower bound

of the true unknown rate p of the minority class, in the in-

terval [p/8, p). Thus, we extend our positive results on PAC

learning with high recall and high precision by also waiving

the requirement that such a lower bound on the rate of the

minority class is given to the learners by some oracle ahead

of time. We conclude our work by exploring two popular

PAC learning algorithms for monotone conjunctions.

1 Introduction

In the last 40 years data mining and machine learning
have grown to be very rich research fields with many
important theoretical results and a tremendous amount
of successful applications that have changed our daily
lives. During this time of progress, theory and practice
oftentimes have complemented each other and have
caused further inspiration and motivation for additional
results in both directions.

From a theoretical point of view, perhaps the most
popular learning model is that of the probably approxi-
mately correct (PAC) model of learning [30]. The goal
in PAC learning is for the learner to come up with a rule,
that, with high probability, has low risk (error rate) on
unseen data of some underlying problem of interest. In
this model several concept classes have been studied and
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while the original purpose of the model was the produc-
tion of distribution-independent results, there is also a
plethora of results relevant to distribution-specific learn-
ing where one studies the guarantees of certain learning
algorithms under specific distributions, as is, for exam-
ple, a multivariate Gaussian distribution in Rn, a prod-
uct distribution on the Boolean hypercube, or other dis-
tributions that have properties that are appealing to
human (mathematical) intuition.

On the other hand, in several practical situations
we have the issue of class imbalance [6,11,19,27], where
the class that we want to learn is under-represented in
the data that we have access to – this poses additional
difficulties on learning algorithms. For example, some
algorithms expect more samples (higher ratio) from the
class of interest so that they can learn a good predictive
model. Moreover, we might be interested in learning
rare events that occur with probability between 0.02%
to 25%. There are numerous disparate situations along
these lines; e.g., anomaly detection [15], e-commerce [3],
weather phenomena [20,28], and many others. However,
especially in the cases of extreme class imbalance [16]
where the minority class may occur with probability
0.02%-0.1%, generating a model that achieves low risk
is not difficult at all, since, one can always predict that
the rare event will not happen, and such predictions will
be highly accurate. In these situations we are interested
in more detailed information on the performance of the
models that we learn. The relevant metrics are recall
(measuring the rate of correct predictions among rare
events alone) and precision (measuring how accurate
our model is when it predicts a rare event), as well
as combinations of these two, such as the F1 score
(harmonic mean), or the G-measure (geometric mean).

Our work in this paper is motivated by situations
where we would like the learnt hypothesis to have
not only low risk (error rate) but also to be reliable
and satisfy such more delicate metrics as the ones
that are relevant for rare events; i.e., high recall and
high precision. We do so by extending the traditional
framework for PAC learning.

1.1 Related Work Many different approaches have
been designed and are applied in practice in situations
where we have class imbalance. Such approaches in-
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clude, random under-sampling the majority class or ran-
dom over-sampling the minority class, informed under-
sampling the majority class [18], the creation of syn-
thetic data for helping over-sampling [8], sampling
based on clusters [12], re-weighting [33], as well as
methods that rely on well-established notions and tech-
niques such as dealing with the margin of the separation
boundary [7], modifying the solution obtained through
support vector machines [34], using boosting [26], and
a lot of other approaches that inevitably we cannot list
due to space limitations. These methods are primarily
attempting to address the issue of absolute class imbal-
ance that exists on specific datasets.

However, relative class imbalance is still an impor-
tant issue in datasets where we have an abundance of
training examples, but in which the distribution of the
different classes might be severely skewed. It is this lat-
ter situation that we are interested in this paper, where
one can have access to enough examples from the mi-
nority class, even if the frequency of the minority class
is very small, as long as the total number of examples
is sufficiently big. For this reason we will embed these
requirements into the definition of PAC learning explic-
itly. During the submission the only work that we were
aware of that provided generalization guarantees on the
minority class, in a probabilistic sense, was the work
of [7]. Another direction that was pointed out to us
by one of the reviewers was that of learning algorithms
that satisfy complex performance measures; i.e., algo-
rithms whose goal is to optimize arbitrary functions on
the entries of the confusion matrix, e.g., [13]; where we
may also find probabilistic results in the spirit of our
proposed framework, e.g., [23].

1.2 Contributions and Organization of the Pa-
per In Section 2 we present basic definitions, the tradi-
tional model of PAC learning and some known complex-
ity results (referring to realizable learning problems).

In Section 3 we extend PAC learning to situations
where we care about learning rare events. This formal-
ization is our first contribution as such an extension, to
the best of our knowledge, is missing from the litera-
ture and can motivate further work on algorithms that
not only generate hypotheses (models/rules) that have
low risk but also provide guarantees on their recall and
precision.

In Section 3.1, our second contribution is to provide
lower bounds on the recall and precision of a learned hy-
pothesis by bringing together the risk of the hypothesis
as well as the rate of the minority class. While the lower
bound on the recall depends on only these two parame-
ters, the lower bound for the precision also depends on
(a lower bound of) the recall. Using these lower bounds

on recall and precision, we then show in Section 3.2 that
in order to achieve PAC learning with recall at least 1−γ
and precision at least 1− ξ, it is enough to learn a hy-
pothesis to risk at most min {ε, γpb, ξpb/2}, where ε is
the usual risk bound that we want to achieve and pb is
a lower bound on the rate of the minority class.

The above result assumes that a lower bound pb on
the rate of the minority class is given to the learner. In
Section 3.3 our next contribution is to require a ‘pre-
processing’ step, that allows us to waive this require-
ment of a priori knowledge, by finding, with high prob-
ability, an appropriate lower bound pb on the rate of
the minority class through a constant-size overhead of
training examples.

In Section 4 we explore experimentally two algo-
rithms for monotone conjunctions and study the quality
of the generated solutions in the traditional, as well as
in the proposed, PAC framework.

We conclude our work in Section 5 with a summary,
as well as ideas for future work.

Omitted discussion and proofs are available in the
supplementary material.

2 Preliminaries

We study binary classification problems. We denote
with 1 the label of positive examples and with 0 the
label of negative examples. With 1A we denote the
indicator function of a probability event A. That is,
1A is 1 when the event A holds, whereas 1A is 0 when
the event A does not hold. We will use the definition
for the conditional probability of two events; i.e., if A
and B are two probability events such that Pr (B) > 0,
we have Pr (A | B) = Pr (A ∩ B) /Pr (B). With lg(a)
we denote the logarithm of a in base 2, whereas with
ln(a) we denote the natural logarithm of a. With
logb(c) we denote the logarithm of c in base b. We use
the ∧ connective to denote conjunctions (logical AND
functions).

2.1 Probably Approximately Correct Learning
The probably approximately correct (PAC) model of
learning that was introduced by Valiant in [30] is per-
haps the most well-studied and most extensively used
learning framework. Learning problems in this frame-
work can be specified as tuples of the form (X , C,H,D),
where X is the set of instances, C ⊆ 2X is the con-
cept class, H ⊆ 2X is the hypothesis space, and D is
a set of distributions over X . The goal of the learner
is to be able to learn approximately an unknown func-
tion c that is drawn from the known concept class C,
using the functions that are available in the hypothesis
space H, and such a guarantee can be provided with
high probability, regardless of the underlying distribu-
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tion D ∈ D that is induced over X . This is why we
have the name of probably approximately correct learn-
ing and we will start formalizing these notions in the fol-
lowing paragraph. When the set of distributions D can
be any distribution over X , we talk about distribution-
free (or distribution-independent) learning and in fact
in this case learning problems are usually specified us-
ing the triple (X , C,H), where now D is omitted from
the original tuple. In the other extreme, we can have
the case that D is a singleton, e.g., the only distribu-
tion found in D is the uniform distribution over {0, 1}n,
where we now discuss about distribution-specific learn-
ing. In between these two extremes one can still allow
lots of diversity and study learning problems; e.g., D is
the set of all product distributions over {0, 1}n.

Learning occurs by drawing a sample S of m in-
stances (x1, . . . , xm) i.i.d. according to D ∈ D and then
each one of those instances is labeled by the unknown
concept c ∈ C giving (c(x1), . . . , c(xm)). These two se-
quences are then put together in terms of instance-label
pairs, and provide the tuple T = ((x1, y1), . . . , (xm, ym))
which contains m training examples, where for each la-
bel yi with i ∈ {1, . . . ,m}, it holds yi = c(xi). These
training examples T are presented to the learner and the
learner now has to identify a hypothesis h ∈ H that has
low risk against c when evaluated under the distribution
D; i.e., learning an h and evaluating h occurs under the
same distribution. This evaluation is measured by the
risk of the learnt hypothesis h and is defined as follows.

Definition 2.1. (Risk) Given a hypothesis h ∈ H, a
target concept c ∈ C, and an underlying distribution D,
the risk of h is defined by

RD (h, c) = Prx∼D (h(x) &= c(x)) = Ex∼D

[
1h(x) "=c(x)

]
.

The underlying distribution D ∈ D may, or may
not, be known to the learner - for example, it is always
the case that the learner does not know the underlying
distribution when we discuss PAC learning results in
a distribution-free sense. In any case however, the
labeling function c is always unknown to the learner as
this is the function that one wants to approximate well.
As a consequence, the risk of any hypothesis h ∈ H
is not directly known to the learner since it involves at
least one unknown quantity. Thus, the learner is usually
using as a proxy the empirical risk of a hypothesis.

Definition 2.2. (Empirical Risk) Given a hypothe-
sis h ∈ H, a target concept c ∈ C, and a sample
S = (x1, . . . , xm), the empirical risk of h is defined by

R̂S (h, c) =
1

m
·

m∑

i=1

1h(xi) "=c(xi) .

As learning ultimately has to deal with representa-
tions, we typically use n for the dimension of the in-
stances; e.g., each instance x ∈ X is a truth assignment
in {0, 1}n, or a vector in Rn. Furthermore, with size(c)
we denote the computational cost for representing the
true target c that we want to learn. We are now ready
to define PAC learning.

Definition 2.3. (PAC Learning) A concept class C
is said to be PAC-learnable by a hypothesis class H, if
there exists a learning algorithm A and a polynomial
function poly(·, ·, ·, ·), such that for any ε > 0 and
δ > 0, for all distributions D ∈ D over X , for
any target concept c ∈ C, for any sample S of size
m ≥ poly(1/ε, 1/δ, n, size(c)), algorithm A outputs a
hypothesis h ∈ H, such that:

PrS∼Dm (RD (h, c) ≤ ε) ≥ 1− δ .

Furthermore, if the algorithm A runs in time
poly(1/ε, 1/δ, n, size(c)), then C is said to be efficiently
PAC-learnable by the hypothesis class H.

For a broader, but still brief, exposition of PAC
learning and related models and results, a good source
is [29]. However, there is a plethora of recent and older
books around PAC learning and the interested reader
can find lots of useful information there; e.g., [14,22,25].

2.2 Known Results Several results in the frame-
work of PAC learning are obtained using the realizabil-
ity assumption.

Definition 2.4. (Realizable Learning Problem)
A learning problem (X , C,H,D) is said to be realizable,
if for any D ∈ D and any c ∈ C, there exists at least
one h ∈ H such that RD (h, c) = 0.

Theorem 2.1. ( [4]) Let H be a finite hypothesis class.
Under the realizability assumption, a concept class C
is PAC-learnable by H with sample complexity m ≤⌈
1
ε · ln

(
|H|
δ

)⌉
.

The Vapnik-Chervonenkis dimension VC-dim (H),
is a combinatorial parameter that characterizes the
richness of a class of functions H [32]. In particular,
VC-dim (H) is the size of the largest set of instances such
that for any possible labeling on these instances, there
is at least one function in H that admits the particular
labeling. This parameter allows us to prove an analog of
Theorem 2.1 when |H| =∞ but VC-dim (H) = d <∞.

Theorem 2.2. ( [5]) Let H be a hypothesis class with
VC-dim (H) = d < ∞. Under the realizability assump-
tion, a concept class C is PAC-learnable by H with sam-
ple complexity m ≤

⌈
4
ε · (d lg (12/ε) + lg (2/δ))

⌉
.

The constants in Theorem 2.2 are obtained from [2].
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3 PAC Learning with High Recall and High
Precision

Throughout the rest of the paper we use the label
1 for the label of the minority class. In order to
address the issues of class imbalance we want to learn
a hypothesis that not only has low risk, but also has
high recall and/or high precision. However, dealing with
imbalanced data implies that we are working under the
assumption of Prx∼D (c(x) = 1) > 0 and hence we can
have the following definition.

Definition 3.1. (Recall) Given a hypothesis h ∈ H,
a target concept c ∈ C, and an underlying distribution
D, the recall of h is defined by

RecD (h, c) = Prx∼D (h(x) = 1 | c(x) = 1) .

Similarly, for a hypothesis h where we have the
guarantee that Prx∼D (h(x) = 1) > 0, we can define
the following.

Definition 3.2. (Precision) Given a hypothesis h ∈
H, a target concept c ∈ C, and an underlying distribu-
tion D, the precision of h is defined by

PrecD (h, c) = Prx∼D (c(x) = 1 | h(x) = 1) .

We can now introduce the constraints of high recall
and high precision into Definition 2.3.

Definition 3.3. (PAC Learning Extension) A
concept class C is said to be PAC-learnable with high
recall and high precision by a hypothesis class H, if
there exists a learning algorithm A and a polynomial
function poly(·, ·, ·, ·, ·, ·), such that for any ε > 0, δ > 0,
γ > 0, and ξ > 0, for all distributions D ∈ D over
X , for any target concept c ∈ C, for any sample S of
size m ≥ poly(1/ε, 1/δ, 1/γ, 1/ξ, n, size(c)), algorithm
A outputs a hypothesis h ∈ H, such that:

PrS∼Dm




(RD (h, c) ≤ ε)

∧ (RecD (h, c) ≥ 1− γ)
∧ (PrecD (h, c) ≥ 1− ξ)



 ≥ 1− δ .

Furthermore, if the algorithm A runs in time
poly(1/ε, 1/δ, 1/γ, 1/ξ, n, size(c)), then C is said to be
efficiently PAC-learnable with high recall and high pre-
cision by the hypothesis class H.

In Definition 3.3 one can drop the reference to the
notion of recall, or to the notion of precision, and obtain
a version of PAC learning where one focuses only on
precision, or only on recall, respectively. Of course, by
dropping the dependence on both the recall and the
precision we obtain Definition 2.3, which is about the
traditional variant of PAC learning.

3.1 Lower Bounds on Recall and Precision The
following propositions show that if we have a lower
bound on the rate of the minority class, then we can
obtain a lower bound on the recall and the precision
of a hypothesis h by incorporating the risk RD (h, c) as
well.

Proposition 3.1. (Lower Bound for Recall)
Let pb be given such that Prx∼D (c(x) = 1) ≥ pb > 0.
Let h ∈ H be a hypothesis with risk RD (h, c). Then,
for this hypothesis h it holds

RecD (h, c) ≥ 1−
RD (h, c)

pb
.

Proposition 3.2. (Lower Bound for Precision)
Let pb be given such that Prx∼D (c(x) = 1) ≥ pb > 0.
Let h ∈ H be a hypothesis with risk RD (h, c) and for
which it holds RecD (h, c) ≥ 1− γ for some 0 ≤ γ < 1.
Then, for this hypothesis h it holds

PrecD (h, c) ≥ 1−
RD (h, c)

(1− γ)pb
.

3.2 Implications Having the lower bounds of Sec-
tion 3.1 we can now prove a positive result for PAC
learning with high recall and high precision.

Theorem 3.1. Let L be a learner such that, for every
0 < ε, δ < 1, L can produce an h ∈ H that achieves
the PAC criterion (Definition 2.3) when learning c ∈ C
using hypotheses from H under a set of distributions D
over X . Let pb be an input parameter that is known
to the learner such that Prx∼D (c(x) = 1) ≥ pb > 0.
Then, for any 0 < ξ < 1 and any 0 < γ ≤ 1/2,
using L to generate an h ∈ H for which it holds
RD (h, c) ≤ min {ε, γpb, ξpb/2} implies for the same h
that RecD (h, c) ≥ 1−γ as well as PrecD (h, c) ≥ 1−ξ.
That is, L PAC learns C with high recall and high
precision using H.

Theorem 3.1 refers to situations where we may or
may not be dealing with realizable learning problems.
For realizable learning problems, by combining Theo-
rem 3.1 and Theorem 2.2, we can obtain the following.

Corollary 3.1. Let H be a hypothesis class with
VC-dim (H) = d < ∞. Let pb be an input
parameter that is known to the learner such that
Prx∼D (c(x) = 1) ≥ pb > 0. Under the realizability
assumption, a concept class C is PAC-learnable with
high recall and high precision by H with sample com-
plexity m ≤

⌈
4
r

(
d lg

(
12
r

)
+ lg

(
2
δ

))⌉
. where, this time,

r = min {ε, γpb, ξpb/2}.
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Corollary 3.1 above is presented using the VC-
dimension so that we can provide statements and
bounds for the more general case, as for every finite hy-
pothesis space H, VC-dim (H) ≤ lg (H). Of course one
can prove an analog of Corollary 3.1 for finite concept
classes, by invoking Theorem 2.1 directly.

3.3 Lower Bound on the Minority Class Rate
Here we discuss how to compute a lower bound pb for
the quantity Prx∼D (c(x) = 1) so that we can waive
the requirement that such a lower bound is provided
to Theorem 3.1. Our idea for obtaining such a lower
bound pb is along the lines of bisecting an initial
estimate, until we are confident, with high probability,
that we have indeed computed the desired lower bound.
Our approach resembles how [1, 17] identify an upper
bound of the true, unknown, noise rate in the random
misclassification noise model of PAC learning.

Briefly, in round 1 we guess that the minority class
occurs with probability larger than 1/8. If our guess
appears to be correct, we stop and use pb = 1/8.
Otherwise, in each round, we are halving our guess for
the lower bound that corresponds to the minority class
rate, until we are correct. Algorithm 1 has the details.

Algorithm 1 Computing a lower bound on the minor-
ity class rate.

i← 1 and pb ← 2−3

while true do
Draw mi ≥

⌈
23+2i ln

(
21+i/δ

)⌉
examples and let ki

of those belong to the minority class
p̂i ← ki/mi

if p̂i ≤ 2−(1+i) then
i← i+ 1 and pb ← pb/2

else
break

end if
end while
return pb

Lemma 3.1. Let Prx∼D (c(x) = 1) = p > 0. Let
mi ≥

⌈
23+2i ln

(
21+i/δ

)⌉
for i ∈ {1, 2, . . .}. Then, with

probability more than 1 − δ, Algorithm 1 halts within
+lg (3/2p), iterations and provides a lower bound pb such
that 0 < p/8 ≤ pb < p.

Corollary 3.2. Lemma 3.1 requires total sample size

O
(

1
p2 · ln

(
1
pδ

))
.

Table 1 shows an upper bound on the sample size
provided to Algorithm 1 that would be enough for suc-
cessful termination, in various cases of the minority rate
as well as on the probability of successful termination.

Table 1: Upper bound on the number of examples
requested by Algorithm 1 (Lemma 3.1) in order to
compute a lower bound, with high confidence, on the
rate of the minority class.

Minority Confidence
Rate (p) 0.9 0.95 0.99

20% 13,693 15,356 19,219
10% 61,415 68,069 83,520
5% 272,264 298,881 360,684
1% 8,351,543 9,016,964 10,562,024
0.5% 36,067,831 38,729,516 44,909,758
0.1% 1,056,201,596 1,122,743,726 1,277,249,765
0.05% 4,490,974,869 4,757,143,386 5,375,167,545

We can now waive the requirement that a learner is
fed with a lower bound pb for the minority class rate p, as
this will be computed using Algorithm 1 with associated
failure probability δ/2. Then we can use pb and proceed
as before but now requiring failure probability at most
δ/2 for the second part of the learning process. By
the union bound, both phases terminate successfully
except with probability at most δ. Also, since pb
satisfies pb ≥ p/8, we can argue about the statistical
complexity of various learning methods by using directly
the unknown probability p = Prx∼D (c(x) = 1). Below
we extend Theorem 3.1.

Theorem 3.2. Let L be a learner such that, for every
0 < ε, δ < 1, L can produce an h ∈ H that achieves
the PAC criterion (Definition 2.3) when learning c ∈ C
using hypotheses from H under a set of distributions D

over X . Using Algorithm 1, with O
(

1
p2 ln

(
1
pδ

))
ex-

amples we can compute, except with probability at most
δ/2, a lower bound pb of the true unknown rate p of the
minority class, such that p/8 ≤ pb < p. Then, for any
0 < ξ < 1 and any 0 < γ ≤ 1/2, we use L to generate,
except with probability at most δ/2, an h ∈ H for which
it holds RD (h, c) ≤ min {ε, γpb, ξpb/2}. For the gener-
ated hypothesis h it also holds that RecD (h, c) ≥ 1− γ
as well as PrecD (h, c) ≥ 1− ξ. That is, L PAC learns
C with high recall and high precision using H, even when
a lower bound on the true rate of the minority class is
not known in advance.

4 Case Study: Monotone Conjunctions

One of the most fundamental classes of rules that have
been explored in the theory and practice of data mining,
is the class of rules that can be formed by taking a
conjunction, without allowing negations, of some of
the available (Boolean) variables. In terms of Boolean
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functions, this class of rules is known as the class of
monotone conjunctions and this is the concept class
C that we want to study in this section. Below we
may omit repeating the word monotone, but it is only
monotone conjunctions that we study.

A function in C can be, for example in a space
where we have n ≥ 4 Boolean variables, c = x1 ∧
x2 ∧ x4, indicating that c(x) = 1 if the first, second
and fourth attribute of x are simultaneously all 1’s;
otherwise c(x) = 0. This particular c depends on 3
Boolean variables and for this reason we say that the
size (or, the length) of c is 3 and we denote this by
writing |c| = 3. Therefore, the concept class C contains
|C| = 2n monotone conjunctions since every subset of
{x1, . . . , xn} corresponds to a different function in C and
in fact this mapping is a bijection. Now consider the
case where our hypothesis space is H = C and let us
compare an arbitrary h ∈ H against an arbitrary c ∈ C
as shown below:

(4.1) c =
m∧

i=1

xi ∧
u∧

k=1

yk and h =
m∧

i=1

xi ∧
w∧

#=1

z# .

That is, there is a mutual part between h and c and
beyond that, the two functions may include different
variables. For this reason we will call the variables that
appear in c but not in our hypothesis h as undiscovered,
while we will call the variables that appear in h but
not in c as wrong. Hence, in (4.1) there are m mutual
variables, u undiscovered and w wrong. Also, we will
call the variables that appear in c as good, otherwise
bad. Based on the decomposition that is shown in (4.1)
we can observe the following.

Proposition 4.1. Let D be a product distribution over
{0, 1}n where each variable is satisfied with the same
probability λ. Consider a target c and a hypothesis h as
in (4.1). Then,






RD (h, c) = λm (λu + λw − 2λu+w)
RecD (h, c) = λw

PrecD (h, c) = λu

4.1 Two Algorithms We study the learnability of
this class of functions C using two different learning
methods: the algorithm that is known as Find-S
in [21], as well as the Swapping Algorithm from the
framework of evolvability [31].

4.1.1 The Algorithm Find-S starts from
the full monotone conjunction and as positive examples
are received during training, the learner drops from
the hypothesis those variables whose entries are zeros
in the positive examples. Our hypothesis class is

H = C and therefore we are dealing with a realizable
learning problem. During the learning process Find-S
maintains a hypothesis that is consistent with all the
training examples seen thus far. Hence, in order to
satisfy the PAC criterion (Definition 2.3), it is enough
if the learner obtains m examples as m is dictated by
either Theorem 2.1 or Theorem 2.2. In the first case
(Theorem 2.1) we can use the fact that H is finite and
in particular |H| = |C| = 2n, while in the second case
(Theorem 2.2) we can use the fact that VC-dim (H) = n.
Either way, it follows that a polynomial sample m is
enough for PAC learning C. Furthermore the algorithm
is efficient as it processes each training example only
once, potentially removing some variables that appear
in the hypothesis as each example is being processed.

4.1.2 The This algorithm
performs a local-search approach on forming a hypoth-
esis, by swapping in and out of the hypothesis some
variable(s) as the correlation of the hypothesis with the
target function is approximated based on training ex-
amples that become available to the learning process.
See [10] for the uniform distribution over {0, 1}n and [9]
for product distributions where each variable is satis-
fied with the same probability λ ∈ (0, 1). As the results
where largely similar for various values of the parameter
λ, below we report only on the results obtained for the
uniform distribution.

The hypothesis space of this algorithm is Hs ={
f | f ∈ C and |f | ≤

⌈
log1/λ (3/(2ε))

⌉}
, where λ char-

acterizes the underlying probability distribution.
Therefore, in particular, under the uniform distribu-
tion the generated hypotheses have at most +lg (3/(2ε)),
variables. The algorithm proceeds in iterations and as
new batches of training examples are received, the hy-
pothesis is updated by either adding a variable, or re-
moving a variable, or swapping a variable for another
variable, or finally by leaving the hypothesis unchanged.

Briefly, the idea is that when |c| ≤
⌈
log1/λ (3/(2ε))

⌉
,

then c is identified precisely (so, RD (h, c) = 0, and
consequently RecD (h, c) = PrecD (h, c) = 1), while if

|c| >
⌈
log1/λ (3/(2ε))

⌉
, then there is at least one h ∈ Hs

for which it holds RD (h, c) ≤ ε and the algorithm gener-
ates such a hypothesis at the end of the training process.
Note that by the nature of the hypothesis space, this is
not a realizable learning problem in the general case
(and in particular in our setting). As such, requiring
high recall and high precision on the solution, one now
needs to invoke Theorem 3.1 or Theorem 3.2 directly,
and not corollaries of the well-established Theorems 2.1
and 2.2. This contrasts Find-S where one, for example,
can invoke Corollary 3.1 directly.
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4.2 Experiments For the experiments we skip the
process of identifying a lower bound on the rate p of the
minority class and we use the fact that at the end of such
a process we will identify a lower bound pb satisfying
p/8 ≤ pb < p. Due to Theorem 3.1, in the extended
version of PAC learning (Definition 3.3), we want to
bound the risk by a quantity that depends linearly on
pb (and hence the sample size inversely depends on
pb), it follows that the closer pb is to the true rate p,
then the fewer examples are needed for achieving the
same guarantee. Hence, even if Algorithm 1 technically
computes a pb strictly less than p, we will use pb = p
so that the augmented sample size that is fed to the
learning process, is as small as possible based on the
results that we discussed earlier (e.g., Corollary 3.1).

Getting along, we fix the bound on the risk of
the learned hypothesis to be at most 5%; that is, we
set ε = 0.05. Also, we fix the confidence level to
be δ = 0.1. As imbalanced datasets typically range
anywhere between 0.02% and 25%, we explore target
functions that induce rates for the minority class in this
range. Therefore, under the uniform distribution (λ =
1/2), we explore the cases where the target monotone
conjunction has size |c| in the set {2, 3, . . . , 12}, which
in turn implies rates p for the minority class in the
set

{
2−2, 2−3 . . . , 2−12

}
; that is, rates as large as 25%

and as small as about 0.024%. In addition, we fix
the dimension of the instances to be n = 100; that
is, we work in a space where there are 100 Boolean
variables. Moreover, we perform 1,000 experiments for
each different minority class rate.

The source code is available at the following url:

https://github.com/diochnos/pac-imbalanced

4.2.1 Experiments with It holds that
|H| = 2n = 2100. Hence, in order to PAC learn a hy-
pothesis that has risk at most 0.05, due to Theorem 2.1,
m =

⌈
1

0.05 (100 ln(2) + ln (10))
⌉
= 1, 433 training exam-

ples are enough and this is the sample size that we use
for Find-S in the vanilla version of PAC learning (Def-
inition 2.3). Table 2 has details on the solutions that
we obtained. We can see that for targets with at most
6 variables (p = 2−6 ≈ 1.563%), the generated hypoth-
esis identified the target precisely in each of the 100
runs. Beyond that point, we can see that the worst case
risk of the generated hypothesis can be non-zero and in
particular almost identical to the rate of the minority
class. Furthermore, as Find-S never deletes good vari-
ables from the hypothesis, the solutions obtained always
have precision equal to 1 and hence we do not comment
on the precision in Table 2.

We then performed experiments in the proposed
framework of PAC learning with high recall and high

Table 2: The worst case risk as well as the recall
of the generated hypotheses using Find-S under the
uniform distribution over 1,000 runs in the traditional
PAC framework (Definition 2.3). Note that the recall
of the generated hypotheses can be dramatically low in
the traditional PAC framework.
Minority Max Recall
Rate (p) Risk Min Median Mean Max
25.0% 0 1 1 1 1
12.5% 0 1 1 1 1
6.25% 0 1 1 1 1
3.125% 0 1 1 1 1
1.563% 0 1 1 1 1
0.781% 0.781% 4 · 10−10 1 0.886 1
0.391% 0.391% 2 · 10−28 0.25 0.389 1
0.195% 0.195% 4 · 10−28 3 · 10−5 0.078 1
0.098% 0.098% 8 · 10−28 2 · 10−13 0.001 1
0.049% 0.049% 1 · 10−27 2 · 10−27 2 · 10−4 0.063
0.024% 0.024% 3 · 10−27 3 · 10−27 1 · 10−5 0.008

precision. In this direction we set γ = 0.4 and ξ = 0.9.
As we discussed earlier Find-S generates solutions that
have precision equal to 1, and for this reason we selected
a high value for ξ, so that when we look at the quantity
min {ε, γpb, ξpb/2}, the term ξpb/2 is always larger than
the term γpb and as a result make the sample size
depend only on ε or on the term γpb. In all of our
experiments, the solutions that we obtained identified
the target precisely and as a result all the solutions
had risk 0, recall 1 and precision 1. This happened
even though γ was set in such a way so that we did
not require a very large value on the recall. Therefore,
the increase in the sample size due to the knowledge
of a lower bound on the rate of the minority class this
time resulted in the creation of perfect hypotheses in
every run. Regarding the sample size, for the cases
where p = 25% or p = 12.5% it holds that ε ≤ γpb
and therefore the sample size there was 1, 433 as in the
previous case. Then, as the minority rate gets halved,
the number of examples double in each case, so we need
2, 865 examples when p = 6.25%, 5, 730 examples when
p = 3.125%, etc. These sample sizes are obtained by
replacing ε in Theorem 2.1 with min {ε, γpb, ξpb/2}, due
to Theorem 3.1, as we discussed that this is a possibility
at the end of Section 3.2.

As a last remark, for the case with high recall and
high precision, we note that we did obtain some imper-
fect solutions for other values of the parameters. For
example, this was the case when we set λ = 0.99 and
n = 500 and moreover the target had size k = 200 corre-
sponding to a minority rate p ≈ 13.4%. It is a question
if this can be observed in practice for lower minority
rates, when min {ε, γpb, ξpb/2} will not be determined
by ε. For example, consider hypotheses that have all the
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good variables plus some bad variables. For any such
hypothesis h it holds RD (h, c) ≤ Prx∼D (c(x) = 1) = p.
Moreover, if we investigate cases where p ≤ ε, it follows
that RD (h, c) ≤ ε. In addition, for any such hypoth-

esis h that has w ≤
⌊
log1/λ (1/(1− γ))

⌋
bad variables

in excess to the |c| good variables, by Proposition 4.1
it holds that RecD (h, c) ≥ 1 − γ. Therefore, it is a
question if such solutions can be returned by Find-S
(or some other empirical risk minimization process).

4.2.2 Experiments with the
In the case of the Swapping Algorithm we

use similar parameters; i.e., ε = 0.05, δ = 0.1, γ =
0.4, ξ = 0.9. The algorithm identifies the target pre-
cisely, when the target has size |c| ≤

⌈
lg
(

3
2·0.05

)⌉
= 5,

corresponding to minority rates 25%, 12.5%, 6.25%, and
3.125%. The rest of the cases for learning in the tradi-
tional PAC framework are shown in Table 3. We observe
that as the rate p of the minority class decreases, so does
the recall and the precision of the generated hypotheses.

In the case where we also want high precision and
high recall, for target sizes k ∈ {6, 7, . . . , 12} corre-
sponding to minority class rates

{
2−6, 2−7, . . . , 2−12

}
,

we have that min {ε, γpb, ξpb/2} = γpb = 0.4 · 2−k.
Therefore, the solutions returned by the algorithm can
have at most

⌈
lg
(
3/(2 · 0.4 · 2−k)

)⌉
= k + 2 variables,

and as a result in every case the algorithm identifies the
target, achieving risk 0, recall 1, and precision 1.

5 Conclusion

We extended the framework of PAC learning to also
include high recall and high precision among its goals
so that we can have a better theory for imbalanced
datasets. We described how traditional PAC algorithms
can be adapted to this new setting and also extended
basic results on PAC learning in this new setting. We
proposed a method to compute a lower bound on the
true unknown constant rate p of the minority class.
Eventually we studied the solutions obtained by two
algorithms for learning monotone conjunctions in both
PAC frameworks.

Our new framework poses traditional algorithms
under new light and urges us to explore directions
of designing new and intuitive algorithms that have
explicitly the notions of recall and precision in mind.
The need for new intuitive algorithms is sought for in
other situations as well; see, e.g., [24].
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