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Motivation and Preliminaries

Motivation

Binary classification problems.

Imbalanced datasets (rare events).

The traditional learning framework has a ‘naive’ requirement for
success: make few mistakes on average (low risk).

In situations with extreme class imbalance we can just predict the
majority class and we will have very low risk (error rate);
e.g., predict that an extreme weather event (e.g., a tornado) is not
going to happen in any given location.

But this is not what we really want!
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Motivation

Binary classification problems.

Imbalanced datasets (rare events).

The traditional learning framework has a ‘naive’ requirement for
success: make few mistakes on average (low risk).

In situations with extreme class imbalance we can just predict the
majority class and we will have very low risk (error rate);
e.g., predict that an extreme weather event (e.g., a tornado) is not
going to happen in any given location.

But this is not what we really want!

How can we measure the performance of learning systems
when we want to predict rare events?

We use primarily two metrics beyond low risk:
Recall
Precision
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Motivation and Preliminaries

Representative Related Work

Under-sampling the majority class; e.g., [Liu, Wu, and Zhou, 2009]

Creation of synthetic data and over-sampling the minority class
(SMOTE); [Chawla et al., 2002]

Sampling based on clusters; [Jo and Japkowicz, 2004]

Custom modification of established methods; e.g., SVMs [Wu and
Chang, 2004] or boosting [Sun et al., 2007]

Reweighting; [Wang, Ramanan, and Hebert, 2017]

Margin-based methods; [Cao et al., 2019]

Complex performance measures; [Joachims, 2005; Narasimhan et al.,
2015]
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Motivation and Preliminaries

Probably Approximately Correct (PAC) Learning

There is an arbitrary, unknown distribution D over X .
Learn from poly

(
1
ε
, 1
δ

)
many examples (x , c(x)), where x ∼ D.

The risk is defined as RD (h, c) = Prx∼D (h (x) 6= c (x)).

c h

X

Goal 1 (Valiant, 1984)

PrS∼Dm (RD (h, c) ≤ ε) ≥ 1 − δ .

Definition 1 (Realizable Learning Problem)

A learning problem (X , C,H,D) is said to be realizable, if for any D ∈ D
and any c ∈ C, there exists at least one h ∈ H such that RD (h, c) = 0.
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Motivation and Preliminaries

Recall and Precision

Definition 2 (Recall and Precision)

Given a hypothesis h ∈ H, a target concept c ∈ C, and an underlying
distribution D, we have:

the recall of h is defined by

RecD (h, c) = Prx∼D (h(x) = 1 | c(x) = 1) .

the precision of h is defined by

PrecD (h, c) = Prx∼D (c(x) = 1 | h(x) = 1) .

c h

X
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Motivation and Preliminaries

Empirical Recall and Precision

Definition 3 (Empirical Recall)

R̂ecS (h, c) =
TP

TP + FN
.

Definition 4 (Empirical Precision)

P̂recS (h, c) =
TP

TP + FP
.

c h

FN TP FPTN

X
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Motivation and Preliminaries

PAC Learning in the Realizable Case

Theorem 5 (Blumer et al, 1987)

Let H be a finite hypothesis class. Under the realizability assumption, a
concept class C is PAC-learnable by H with sample complexity

m ≤
⌈

1
ε · ln

(
|H|
δ

)⌉
.

Theorem 6

Let H be a hypothesis class with VC-dim (H) = d < ∞. Under the
realizability assumption, a concept class C is PAC-learnable by H with
sample complexity

m ≤ O
(

1
ε · (d ln (1/ε) + ln (1/δ))

)
[Vapnik & Chervonenkis, 1974;
Blumer et al., 1989]

m ≤ O
(

1
ε · (d + ln(1/δ))

)
[Hanneke, 2016]
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Our Contributions

Summary of our Contributions

1 We extend the Probably Approximately Correct (PAC) model of
learning and also include explicitly high recall and high precision
among its goals at the end of the learning process.

2 We give lower bounds on the recall and the precision of a learned
hypothesis based on its risk and the rate of the minority class.

3 An algorithm to obtain a lower bound on the rate of the minority class.

4 C is PAC learnable ⇒ C is PAC learnable with high recall and high
precision.

5 Experimental evaluation by studying two algorithms for learning
monotone conjunctions under the uniform distribution.
(source code: https://github.com/diochnos/pac-imbalanced)
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Our Contributions

PAC Learning Extension

Goal 1 (Valiant, 1984)

PrS∼Dm (RD (h, c) ≤ ε) ≥ 1 − δ .

Goal 2 (Our Extension of the PAC Learning Framework)

PrS∼Dm




(RD (h, c) ≤ ε)
∧ (RecD (h, c) ≥ 1 − γ)
∧ (PrecD (h, c) ≥ 1 − ξ)


 ≥ 1 − δ .
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Our Contributions

Lower Bounds on the Recall and the Precision

Proposition 1 (Lower Bound for Recall)

Let pb be given such that Prx∼D (c(x) = 1) ≥ pb > 0. Let h ∈ H be a
hypothesis with risk RD (h, c). Then, for this hypothesis h it holds

RecD (h, c) ≥ 1 −
RD (h, c)

pb
.

Proposition 2 (Lower Bound for Precision)

Let pb be given such that Prx∼D (c(x) = 1) ≥ pb > 0. Let h ∈ H be a
hypothesis with risk RD (h, c) and for which it holds RecD (h, c) ≥ 1 − γ
for some 0 ≤ γ < 1. Then, for this hypothesis h it holds

PrecD (h, c) ≥ 1 −
RD (h, c)

(1 − γ)pb
.
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Our Contributions

Implications

Theorem 7 (Informal)

Given pb as a lower bound on the rate of the minority class, if C is
PAC-learnable using H then C is PAC-learnable with high recall and high
precision using H.

The theorem is true for both realizable and non-realizable learning
problems.

Accomplished by substituting the risk bound ε in the traditional PAC
learning framework with min{ε, γpb, ξpb/2}.

How can we compute a lower bound pb?
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Our Contributions

Computing a Lower Bound on the Rate of the Minority Class

Algorithm
1 Guess that pb = 1/8.
2 Draw a large enough sample to verify that our guess is correct (whp).
3 If this is true, stop and return pb, otherwise bisect pb and go back to

the previous step.

Lemma 8

Let Prx∼D (c(x) = 1) = p > 0. Let mi ≥
⌈
23+2i ln

(
21+i/δ

)⌉
for

i ∈ {1, 2, . . .}. Then, with probability more than 1− δ, the above algorithm
halts within ⌈lg (3/2p)⌉ iterations and provides a lower bound pb such that
0 < p/8 ≤ pb < p.

Corollary 9

Lemma 8 requires total sample size O
(

1
p2 · ln

(
1
pδ

))
.

(p is the true unknown rate of the minority class.)
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Our Contributions

The Overhead in the Computation of the Minority CLass

Table: Upper bound on the number of examples requested by our algorithm in
order to compute a lower bound (whp) on the rate of the minority class.

Minority Confidence
Rate (p) 0.9 0.95 0.99

20% 13,693 15,356 19,219

10% 61,415 68,069 83,520

5% 272,264 298,881 360,684

1% 8,351,543 9,016,964 10,562,024

0.5% 36,067,831 38,729,516 44,909,758

0.1% 1,056,201,596 1,122,743,726 1,277,249,765

0.05% 4,490,974,869 4,757,143,386 5,375,167,545
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Our Contributions

PAC Learnability Implies High Recall and High Precision

Now that we have an algorithm for computing a lower bound pb on
the true rate p of the minority class, we can revisit Theorem 7 and
waive the requirement that pb is given to us ahead of time.

Corollary 10 (of Theorem 7)

C is PAC-learnable using H =⇒
C is PAC-learnable with high recall and high precision using H.
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Our Contributions

Case Study: Monotone Conjunctions

Monotone Conjunctions/Monomials (Boolean AND of some variables
chosen from {x1, x2, . . . , xn})

e.g., c = x2 ∧ x5 ∧ x8 (sometimes simply write c = x2x5x8)
|H| = 2n VC-dim (H) = n
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Case Study: Monotone Conjunctions

Monotone Conjunctions/Monomials (Boolean AND of some variables
chosen from {x1, x2, . . . , xn})

e.g., c = x2 ∧ x5 ∧ x8 (sometimes simply write c = x2x5x8)
|H| = 2n VC-dim (H) = n

Why use such functions?

Exhibit inductive bias.

One of the most basic ways of combining features/constraints in a
prediction mechanism =⇒ Explainable/Interpretable functions.

Building blocks for richer classes of functions that are less understood;
e.g., general DNF formulae.

Typical benchmarks as they usually provide interesting, but non-trivial
insights of the definitions, the bounds that we should expect, etc.

Can also be useful in contexts of other disciplines.
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Our Contributions

Setup and Performance Metrics

Test two different algorithms: Find-S and the Swapping Algorithm.

c =
m∧

i=1

xi ∧

undiscovered︷ ︸︸ ︷
u∧

k=1

yk

︸ ︷︷ ︸
good

and h =

mutual︷ ︸︸ ︷
m∧

i=1

xi ∧

wrong︷ ︸︸ ︷
w∧

ℓ=1

zℓ

︸ ︷︷ ︸
bad

Proposition 3

Let D be a product distribution over {0, 1}n where each variable is satisfied
with the same probability λ. Consider a c and an h as above. Then,





RD (h, c) = λm (λu + λw − 2λu+w )
RecD (h, c) = λw

PrecD (h, c) = λu

Uniform distribution obtained for λ = 1/2. (experiments)
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Our Contributions

Summary of Experimental Results

Standard PAC learning framework:

Both algorithms may yield prohibitive low recall.

The Swapping Algorithm in general has better recall, but may have
prohibitive low precision, whereas the precision of Find-S is always 1.
(requiring risk ≤ 0.05, confidence ≥ 0.9.)

Extended PAC learning framework:

Both Find-S and the Swapping Algorithm identify the target precisely
in all the experiments. ⇒ Risk 0, Recall 1, Precision 1.
(requiring risk ≤ 0.05, confidence ≥ 0.9, recall ≥ 0.6, precision ≥ 0.1)
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Our Contributions

Find-S: Uniform Distribution, PAC Learning

Table: The worst case risk as well as the recall of the generated hypotheses using
Find-S under the uniform distribution over 1,000 runs in the traditional PAC
framework, with ε = 0.05 and δ = 0.1. Note that the recall of the generated
hypotheses can be dramatically low in the traditional PAC framework.

Minority Max Recall
Precision

Rate (p) Risk Min Median Mean Max

25.0% 0 1 1 1 1 1
12.5% 0 1 1 1 1 1
6.25% 0 1 1 1 1 1
3.125% 0 1 1 1 1 1
1.563% 0 1 1 1 1 1
0.781% 0.781% 4 · 10−10 1 0.886 1 1
0.391% 0.391% 2 · 10−28 0.25 0.389 1 1
0.195% 0.195% 4 · 10−28 3 · 10−5 0.078 1 1
0.098% 0.098% 8 · 10−28 2 · 10−13 0.001 1 1
0.049% 0.049% 1 · 10−27 2 · 10−27 2 · 10−4 0.063 1
0.024% 0.024% 3 · 10−27 3 · 10−27 1 · 10−5 0.008 1
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Our Contributions

Swapping Algorithm: Uniform Distribution, PAC Learning

Table: The best-case and worst-case risk, the recall and the precision of the
generated hypotheses using the Swapping Algorithm under the uniform
distribution over 1,000 runs in the traditional PAC framework, with ε = 0.05 and
δ = 0.1. Notice that while the recall is better compared to the previous case
(Find-S), nevertheless, both the recall and the precision can still be very low
compared to what we would like to achieve.

Minority Risk Recall Precision
Rate (p) Min Max Min Median Mean Max Min Median Mean Max

25.0% 0 0 1 1 1 1 1 1 1 1
12.5% 0 0 1 1 1 1 1 1 1 1
6.25% 0 0 1 1 1 1 1 1 1 1
3.125% 0 0 1 1 1 1 1 1 1 1
1.563% 1.563% 1.563% 1 1 1 1 50.0% 50.0% 50.0% 50.0%
0.781% 2.344% 3.857% 3.125% 1 70.375% 1 0.781% 25.0% 17.594% 25.0%
0.391% 2.734% 3.491% 3.125% 6.250% 33.494% 1 0.391% 0.781% 4.187% 12.5%
0.195% 2.930% 3.308% 3.125% 3.125% 9.559% 1 0.195% 0.195% 0.597% 6.250%
0.098% 3.027% 3.217% 3.125% 3.125% 5.734% 1 0.098% 0.098% 0.179% 3.125%
0.049% 3.149% 3.171% 3.125% 3.125% 5.216% 25.0% 0.049% 0.049% 0.081% 0.391%
0.024% 3.125% 3.148% 3.125% 3.125% 5.450% 50.0% 0.024% 0.024% 0.043% 0.391%
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Our Contributions

Experiments in the Extended PAC Learning Framework

Goal 2 (Our Extension of the PAC Learning Framework)

PrS∼Dm




(RD (h, c) ≤ ε)
∧ (RecD (h, c) ≥ 1 − γ)
∧ (PrecD (h, c) ≥ 1 − ξ)


 ≥ 1 − δ .

ε = 0.05, δ = 0.1 (as before). Also use γ = 0.4, ξ = 0.9.

Find-S generates solutions with precision 1 ⇒ Large ξ implies that the
value min{ε, γpb, ξpb/2} (needed by Theorem 7 or Corollary 10) is
determined by ε or γpb.

Lemma 8 computes a value such that p/8 ≤ pb < p.
pb ↑ ⇒ min{ε, γpb, ξpb/2} may increase ⇒ the sample size may
decrease. So, use pb = p in the limit in order to make the learning
problem as ‘hard’ as possible. (fewer samples).

Outcome: Both Find-S and the Swapping Algorithm identify the target
precisely in all the experiments. ⇒ Risk 0, Recall 1, Precision 1.
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Summary and Ideas for Future Work

Summary

1 We extended PAC learning to include explicitly high recall and high
precision.

2 We gave lower bounds on the recall and the precision of a learned
hypothesis based on its risk and the rate of the minority class.

3 We gave an algorithm to compute a lower bound on the rate of the
minority class.

4 C is PAC learnable ⇒ C is PAC learnable with high recall and high
precision.

5 Experimental evaluation by studying two algorithms for learning
monotone conjunctions under the uniform distribution.
(source code: https://github.com/diochnos/pac-imbalanced)

NSF AI Institute for Research on
Trustworthy AI in Weather, Climate,
and Coastal Oceanography (AI2ES)
https://www.ai2es.org @ai2enviro
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Summary and Ideas for Future Work

Ideas for Future Work

Understand better the behavior and the quality of the generated
solutions that are obtained by existing PAC algorithms in this new
framework.

Devise new PAC learning algorithms that will have high recall and high
precision by design.

Can we improve the sample size when computing a lower bound on
the minority class?

Connections to other facets of learning; e.g., noise, fairness, ...

Paper: https://doi.org/10.1137/1.9781611976700.4
Supplemental material (omitted discussion and proofs):
http://www.diochnos.com/research/publications/dt-sdm21-supplementary.pdf

Github repository: https://github.com/diochnos/pac-imbalanced
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Backup Slides

PAC Learning

Definition 11 (PAC Learning)

A concept class C is said to be PAC-learnable if there exists an algorithm
A and a polynomial function poly(·, ·, ·, ·) such that for any ε > 0 and
δ > 0, for all distributions D on X and for any target concept c ∈ C, the
following holds for any sample size m ≥ poly(1/ε, 1/δ, n, size(c)):

PrS∼Dm (RD (h, c) ≤ ε) ≥ 1 − δ

If A further runs in poly(1/ε, 1/δ, n, size(c)), then C is said to be
efficiently PAC-learnable. When such an algorithm A exists, it is called a
PAC-learning algorithm for C.

size(c) denotes the maximal cost for the representation of c ∈ C.
Example: Representing a monotone conjunction as a list of the k

variables that pose the constraints, takes space O (k log n).
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Agnostic PAC Learning

Definition 12 (Agnostic PAC Learning)

Let H be a hypothesis space. Algorithm A is an agnostic PAC-learning
algorithm if there exists a polynomial function poly(·, ·, ·, ·) such that for
any ε > 0, δ > 0, for all distributions D over X ×Y, the following holds for
any sample size m ≥ poly(1/ε, 1/δ, n, size(c)):

PrS∼Dm

(
RD (h, c) ≤ min

h⋆∈H
{RD (h⋆, c)} + ε

)
≥ 1 − δ

If A further runs in poly(1/ε, 1/δ, n, size(c)), then it is said to be an
efficient agnostic PAC-learning algorithm.

Remark 1

We have a more general scenario (stochastic) since D is defined on X × Y.
(The label of the point is not unique.)
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PAC Learning Extension

Definition 13 (PAC Learning Extension)

A concept class C is said to be PAC-learnable with high recall and high
precision by a hypothesis space H, if there exists a learning algorithm A
and a polynomial function poly(·, ·, ·, ·, ·, ·), such that for any ε > 0, δ > 0,
γ > 0, and ξ > 0, for all distributions D ∈ D over X , for any target
concept c ∈ C, for any sample S of size
m ≥ poly(1/ǫ, 1/δ, 1/γ, 1/ξ, n, size(c)), algorithm A outputs a hypothesis
h ∈ H, such that:

PrS∼Dm




(RD (h, c) ≤ ε)
∧ (RecD (h, c) ≥ 1 − γ)
∧ (PrecD (h, c) ≥ 1 − ξ)


 ≥ 1 − δ

Furthermore, if A runs in time poly(1/ǫ, 1/δ, 1/γ, 1/ξ, n, size(c)), then C is
said to be efficiently PAC-learnable with high recall and high
precision by the hypothesis space H.
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The Vapnik-Chervonenkis Dimension

Definition 14

A set of instances {x1, . . . , xd} is shattered by H, if for every possible
labeling y1, . . . , yd , there exists an h ∈ H such that h(xi ) = yi for every
i ∈ {1, . . . , d}. That is, there are 2d distinct classifications of the instances
{x1, . . . , xd} that can be realized by hypotheses in H.

Definition 15 (VC dimension)

The Vapnik-Chervonenkis dimension (or VC dimension) of H is defined as
the largest integer d for which there exists a set of instances {x1, . . . , xd}
that is shattered by H.
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Configurations of 3 Points in 2D
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Halfspaces Shatter 3 Points in 2D
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Question 1

Can we shatter 4 points ?
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Can Halfspaces Shatter 4 Points in 2D?
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Halfspaces cannot Shatter 4 Points in 2D

−

?

+
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+

+

+

−

Theorem 16 (Radon)

Any set of d + 2 points in Rd can be partitioned into two (disjoint) sets
whose convex hulls intersect.

Corollary 17

VC-dim (HALFSPACES) = 3 in 2 dimensions.

VC-dim (HALFSPACES) = d + 1 in d ≥ 1 dimensions.
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The Algorithm Find-S

1 Initialize the hypothesis to be the full conjunction of all the variables.
2 Request m examples (per a PAC bound) and look at the positive ones.
3 Delete the variables that are falsified in the positive examples.

(H = C ⇒ proper learning ⇒ realizable case)

A Study of Thinking [Bruner, Goodnow, Austin, 1956], Machine Learning [Mitchell, 1997]

Example 1

Let X = {0, 1}10 and c = x2 ∧ x4 ∧ x5.

example hypothesis h

x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 ∧ x7 ∧ x8 ∧ x9 ∧ x10

((1101111101),+) x1 ∧ x2 ∧ x4 ∧ x5 ∧ x6 ∧ x7 ∧ x8 ∧ x10

((0101111101),+) x2 ∧ x4 ∧ x5 ∧ x6 ∧ x7 ∧ x8 ∧ x10

((1101110111),+) x2 ∧ x4 ∧ x5 ∧ x6 ∧ x8 ∧ x10

((0101110100),+) x2 ∧ x4 ∧ x5 ∧ x6 ∧ x8
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The Swapping Algorithm (on Monotone Conjunctions)

Local search method; the neighborhood is defined by:
Adding, removing, or swapping a variable in the hypothesis.

The learner cannot see individual training examples, but instead,
based on a sample S receives as input the value

PerfD (h, c , S) =
1

|S |

∑

x∈S

h(x)c(x) .

This is an approximation of the true correlation that the
hypothesis h has with the target c :

PerfD (h, c) =
∑

x∈X

h(x)c(x)D(x) = 1 − 2 · Pr (h(x) 6= c(x))

Using a threshold t the neighborhood is partitioned into three parts:
Beneficial, Neutral, and Deleterious.

Then the learner selects a hypothesis at random from the most
promising non-empty set.
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The Swapping Algorithm

x ∧ y

0.5

t = 0.1 q
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The Swapping Algorithm

x ∧ y

x y

0.5

0.25 0

t = 0.1 q
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The Swapping Algorithm

x ∧ y

x y x ∧ y ∧ z x ∧ y ∧ w

. . .

. . .

0.5

0.25 0 0.88 0.69

t = 0.1 q
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The Swapping Algorithm

x ∧ y

x y x ∧ y x ∧ z w ∧ y x ∧ y ∧ z x ∧ y ∧ w

. . .. . .

. . .. . .

0.5

0.50.25 0 0.440.63 0.88 0.69

t = 0.1 q
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The Hypothesis Space for the Swapping Algorithm
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Convergence of the Swapping Algorithm

Uniform distribution over {0, 1}n [Valiant, 2009], [D & Turán, 2009]

Product distributions where all variables are satisfied with the same
probability λ [D, 2016]
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Example 1: Short Initial Hypothesis and Short Target

goodgood bad good bad bad

(a) u ≥ 2 (b) u = 1 (c) u = 0

Let X8 = {0, 1}8 such that {g1, g2, g3, b1, b2, b3, b4, b5}, the target be
c = g1 ∧ g2 ∧ g3, and require ε = 1/5. (q = 4)

Step i u Hypothesis hi Performance Neighborhood Class
0

≥ 2

∅ −3/4 N+

Bene

1 b1 0 N+ ∪ {swaps: b → g}
2 b1 ∧ b2 3/8 N+ ∪ {swaps: b → g}
3 b1 ∧ b2 ∧ b3 9/16 N+ ∪ {swaps: b → g}
4 b1 ∧ b2 ∧ b3 ∧ b4 21/32 {swaps: b → g}
5 b1 ∧ g3 ∧ b3 ∧ b4 22/32 {swaps: b → g}
6 1 g1 ∧ g3 ∧ b3 ∧ b4 24/32 {swaps: b → g}
7 0 g1 ∧ g3 ∧ g2 ∧ b4 28/32 {remove b}
8 0 g1 ∧ g3 ∧ g2 1 {h8} Neut
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Example 2: Short Initial Hypothesis and Long Target

Let X13 = {0, 1}13 such that {g1, g2, g3, g4, g5, g6, g7, b1, b2, b3, b4, b5, b6},
the target be c = g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 ∧ g6 ∧ g7, and require ε = 1/5.
(q = 4)

Step i u Hypothesis hi Performance Neighborhood Class
0

≥ 2

∅ −63/64 N+

Bene
1 b1 0 N+ ∪ {swaps: b → g}
2 b1 ∧ b2 63/128 N+ ∪ {swaps: b → g}
3 b1 ∧ b2 ∧ b3 189/256 N+ ∪ {swaps: b → g}
4

≥ 2

b1 ∧ b2 ∧ b3 ∧ b4 425/512 {all swaps} ∪ {h4}

Neut
5 b1 ∧ b6 ∧ b3 ∧ b4 425/512 {all swaps} ∪ {h5}
6 b1 ∧ b6 ∧ b3 ∧ b5 425/512 {all swaps} ∪ {h6}
7 b1 ∧ b6 ∧ b3 ∧ b5 425/512 {all swaps} ∪ {h7}
8

≥ 2
g1 ∧ b6 ∧ b3 ∧ b5 426/512 {swaps: b → g}

Bene9 g1 ∧ b6 ∧ b3 ∧ g4 428/512 {swaps: b → g}
10 g1 ∧ b6 ∧ g6 ∧ g4 432/512 {swaps: b → g}
11

≥ 2

g1 ∧ g3 ∧ g6 ∧ g4 440/512 {swaps: g → g} ∪ {h11}

Neut
12 g1 ∧ g3 ∧ g5 ∧ g4 440/512 {swaps: g → g} ∪ {h12}
13 g1 ∧ g3 ∧ g5 ∧ g4 440/512 {swaps: g → g} ∪ {h13}
14 g2 ∧ g3 ∧ g5 ∧ g4 440/512 {swaps: g → g} ∪ {h14}
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