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Abstract

This thesis deals with the development of efficient and reliable algorithms and
library software for factorizing matrices and solving matrix equations on high-
performance computer systems. The architectures of today’s computers consist
of multiple processors, each with multiple functional units. The memory sys-
tems are hierarchical with several levels, each having different speed and size.
The practical peak performance of a system is reached only by considering all
of these characteristics. One portable method for achieving good system uti-
lization is to express a linear algebra problem in terms of level 3 BLAS (Basic
Linear Algebra Subprogram) transformations. The most important operation is
GEMM (GEneral Matrix Multiply), which typically defines the practical peak
performance of a computer system. There are efficient GEMM implementations
available for almost any platform, thus an algorithm using this operation is
highly portable.

The dissertation focuses on how recursion can be applied to solve linear
algebra problems. Recursive linear algebra algorithms have the potential to
automatically match the size of subproblems to the different memory hierarchies,
leading to much better utilization of the memory system. Furthermore, recursive
algorithms expose level 3 BLAS operations, and reveal task parallelism. The
first paper handles the Cholesky factorization for matrices stored in packed
format. Our algorithm uses a recursive packed matrix data layout that enables
the use of high-performance matrix–matrix multiplication, in contrast to the
standard packed format. The resulting library routine requires half the memory
of full storage, yet the performance is better than for full storage routines.

Paper two and tree introduce recursive blocked algorithms for solving trian-
gular Sylvester-type matrix equations. For these problems, recursion together
with superscalar kernels produce new algorithms that give 10-fold speedups
compared to existing routines in the SLICOT and LAPACK libraries. We show
that our recursive algorithms also have a significant impact on the execution
time of solving unreduced problems and when used in condition estimation. By
recursively splitting several problem dimensions simultaneously, parallel algo-
rithms for shared memory systems are obtained. The fourth paper introduces
a library—RECSY—consisting of a set of routines implemented in Fortran 90
using the ideas presented in paper two and three. Using performance monitor-
ing tools, the last paper evaluates the possible gain in using different matrix
blocking layouts and the impact of superscalar kernels in the RECSY library.
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Preface

The thesis consists of the following five papers and an introduction including a
summary of the papers.

I. Fred G. Gustavson and Isak Jonsson. Minimal-storage high-performance
Cholesky factorization via blocking and recursion∗. IBM Journal of Re-
search and Development, Vol. 44:6, 2000.

II. Isak Jonsson and Bo Kågström. Recursive Blocked Algorithms for Solving
Triangular Systems–Part I: One-Sided and Coupled Sylvester-Type Matrix
Equations†. ACM Transactions on Mathematical Software, Vol 28:4, 2002.

III. Isak Jonsson and Bo Kågström. Recursive Blocked Algorithms for Solv-
ing Triangular Systems–Part II: Two-Sided and Generalized Sylvester and
Lyapunov Matrix Equations†. ACM Transactions on Mathematical Soft-
ware, Vol 28:4, 2002.

IV. Isak Jonsson and Bo Kågström. RECSY — A High Performance Library
for Sylvester-Type Matrix Equations‡. In Kosch et al. (eds), Euro-Par
2003, Parallel Processing, Lecture Notes in Computer Science, Vol 2790,
Springer-Verlag, 2003.

V. Isak Jonsson. Analysis of Processor and Memory Utilization of Recursive
Algorithms for Sylvester-Type Matrix Equations using Performance Mon-
itoring. Report UMINF-03.16, Department of Computing Science, Ume̊a
University, 2003.

In Paper I, a recursive algorithm for the Cholesky factorization is introduced.
The algorithm uses a recursive packed data format optimized for this algorithm,
together with optimized kernels that provide good performance also for small-
sized problems.

The topic of papers II–V is the efficient solution of Sylvester-type matrix
equations. Paper II and Paper III introduce novel recursive-blocked algorithms

∗Reprinted by permission of the IBM Journal of Research and Development, White Plains,
New York. c© 2000 IBM.

†Reprinted by permission of ACM, New York. c© 2002 The Association for Computing
Machinery.

‡Reprinted by permission of Springer-Verlag, Berlin. c© 2003 Springer-Verlag.
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for one-sided and two-sided Sylvester-type matrix equations, respectively. Paper
IV presents a software library based on the algorithms in papers II–III. Finally,
Paper V provides an in-depth analysis of different performance issues relating
to recursive blocked algorithms using performance monitoring tools.
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Populärvetenskaplig
sammanfattning p̊a svenska

Snabbare rutiner för att lösa stora matematiska

ekvationssystem och matrisekvationer

Syftet med den forskning som ligger bakom denna avhandling, dvs analys och
utveckling av algoritmer för att lösa ekvationssytem och matrisekvationer, är att
bättre utnyttja datorresurser för att kunna lösa stora och komplicerade problem.

De problem som vi försöker lösa hittar man ofta inom reglerteori och re-
glerteknik. Givet en matematisk modell för en process vill man undersöka vilka
egenskaper modellen och den bakomliggande processen har. Ett exempel p̊a en
komplicerad process är en pappersmassaindustri eller ett stort elnät. De stora
strömavbrotten i USA de senaste åren är ett typiskt fall p̊a mycket stora system
(processer) som är sv̊ara att styra. P̊a samma sätt förklarades JAS-kraschen p̊a
L̊angholmen 1993 med att styrsystemet var för instabilt. De rutiner vi utvecklar
kan bland annat användas till att analysera s̊adana system.

Standardmetoderna som idag används för att lösa problemen ovan är ofta
alldeles för l̊angsamma. Anledningen till detta återfinns i dagens datorers upp-
byggnad. Man kan likna en dators minne vid närminnet och l̊angtidsminnet
hos oss själva. Medan närminnet kan ta fram information p̊a ett ögonblick,
rymmer det inte s̊a mycket. L̊angtidsminnet däremot rymmer information fr̊an
hela livet, men det tar lite längre tid att f̊a fram. P̊a samma sätt fungerar
datorer. De snabba registren och cache-minnena fungerar som närminne, och
de l̊angsammare primärminnena och sekundärminnena fungerar som l̊angtids-
minne. Standardalgoritmerna utnyttjar registren och cache-minnena d̊aligt och
måste hela tiden fr̊aga primärminnet eller sekundärminnet efter information,
vilket ger en icke önskad overhead. För att f̊a bra prestanda gäller det att
utveckla metoder och programvara som hanterar och använder minneshierarkin
i dagens datorsystem p̊a bästa möjliga sätt.

Lösningen hittar man genom att dela in problemet i flera mindre delar,
blockning, där varje liten del kan lösas för sig. Data för varje delproblem hämtas
fr̊an primärminnet till cache-minnena, och man löser ett mindre delproblem i
taget. När man är klar med ett delproblem hämtas data till nästa delproblem.
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En av sv̊arigheterna är att det finns många niv̊aer av minnen som problemet
måste blockas för, vilket leder till s̊a kallad hierarkisk blockning.

De artiklar som ing̊ar i den här avhandlingen beskriver hur man kan använda
rekursion för att automatiskt hitta rätt storlek p̊a delproblemen. Man löser
uppgiften genom att dela problemet i tv̊a delproblem som är ungefär lika stora.
Dessa problem delas ytterligare en g̊ang, och s̊a vidare tills dess att delproblemen
n̊ar en minsta storlek. Genom denna delning hittar man automatiskt en storlek
som passar det minsta cache-minnet (level 1 cache), en annan storlek som passar
nästa niv̊a i datorns minneshierarki (level 2 cache) och s̊a vidare.

De nya algoritmer och programvara som presenteras i avhandlingen är ofta
flera g̊anger snabbare än de metoder och rutiner som används idag. Detta
innebär att man kan använda dem för att lösa större problem svarande mot mer
realistiska matematiska modeller, vilket i sin tur kan leda till bättre styrning av
komplicerade processer s̊asom elnät.
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Chapter 1

Introduction to
high-performance
computing and software

Already in 1965, Intel co-founder Gordon Moore [15] presented the law that
would permeate the conditions for developments in high-performance comput-
ing: the number of transistors that fit on a die will grow exponentially with
time. The coefficients of the law were later adjusted to a doubling every second
year. There are several interpretations; one is that the speed of a microprocessor
also grows exponentially. This interpretation should not be taken for granted,
though. While it is relatively easy to reach the maximum performance of an
integrated circuit from 1965 – much easier than actually finding a working I.C.
from 1965, it is harder to get close to the maximum performance of a super-
scalar, super-pipelined, multi-core processor chip of today, almost 40 years later.
Part of the explanation to this phenomenon can be found in Moore’s article, as
he sees into the future: “For example, memories built of integrated electronics
may be distributed throughout the machine instead of being concentrated in a
central unit”.

Memories in modern computer architectures are organized in a hierarchy. At
the top of the hierarchy are the registers, with virtually zero access time. The
registers, however, usually only holds 8–128 numbers. Below the registers are
cache memories: small but fast memories. There are typically several levels of
cache memories, where the smallest (level 1 cache) – but fastest one – is closest
to the processing unit. Below the cache memories is the primary memory. In
a multi-processor computer, the primary memory may either be shared by the
processors, or each processor has a local primary memory (called distributed
memory). Below the primary memory are the secondary memories (hard disks,
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2 Chapter 1

tape) and remote memories. The reason for this large hierarchy is two-folded.
One cause is the cost for developing different memory types. Fast memories
are expensive, so they tend to be small. Another cause is technology issues. In
order for a memory to be fast, it has to be very close to the processor. In fact,
the first levels of cache memories are usually on the same die as the processing
unit. Obviously, there is a physical limit on the size of these cache memories.

With this background, the motivation for the work in this thesis is almost
completely defined. Given this complex hardware organization, how to solve
large matrix equations fast and with sustained precision and stability?

1.1 High performance linear algebra software li-

braries

The ever-growing demand of solving larger problems puts requirements on the
software used. In order to make the software run near the peak performance
of the target architecture, it is necessary to optimize the code (i.e., tune) for
the machine. However, this task is both tedious and requires detailed knowl-
edge about the memory architecture, the register set, and the behavior of the
functional units of the processor.

Linear algebra operations and equations are distinctive building blocks that
can be implemented or solved using a series of matrix transformation primitives.
This is where BLAS, or the Basic Linear Algebra Subprograms, appears on the
scene. BLAS is a set of matrix transformation routines, available for Fortran 77∗

programs. By using BLAS, the complexity of the architecture is encapsulated
in simple building blocks.

The first set of BLAS routines, level 1 BLAS [38] includes vector–scalar and
vector–vector operations. This was the logical choice of building blocks given
the fact that most computers at the time of introduction were vector computers
with specialized vector instructions. However, the level 1 BLAS operations only
execute a small number of operations every access to memory, and thus do not
come close to peak performance on machines with deep memory hierarchies.
With the introduction of level 2 BLAS [9] for matrix–vector operations and
later level 3 BLAS [10, 35] for matrix–matrix operations, the building blocks
approached the theoretical peak of the computer. The level 3 BLAS routines
are dissimilar to the other sets, as level 3 BLAS routines, e.g., matrix multipli-
cations, involves O(n) times more operations than data elements. For the other
two sets, the complexity of the operations and the number of data elements are
of the same order.

Given a high-performance implementation of BLAS, the task is then to uti-
lize level 3 BLAS operations in a great extent. This is done for important
linear algebra operations in the standard libraries (LAPACK [2], SLICOT [41],

∗Most BLAS libraries are also available for C, C++, and Fortran 90 programs.



Introduction to high-performance computing and software 3

ESSL), but not all. The algorithms and implementations presented in this thesis
fill gaps in these libraries, and show that recursion is a means to create software
libraries which are efficient, portable, and easy to maintain.

By making an effort to create algorithms that perform close to the practical
peak, the expectation is that more users will find the routines worthwhile to use
in their applications.

1.2 The equations

In Table 1.1, the factorization and equations considered in this thesis is listed.
The Cholesky factorization is a central tool in linear algebra, and is a key el-
ement in matrix inversion, symmetric definite generalized eigenvalue problems
etc. Among the applications are finite-element methods. The Sylvester-type
matrix equations appear in different control theory applications, e.g., stabil-
ity problems, model reduction, balancing, H∞ control. The first three matrix
equations in Table 1.1 are called one-sided and the five last matrix equations are
called two-sided (see Chapter 2 for the motivation for this classification). The
acronyms CT and DT are used for continuous-time and discrete-time systems,
respectively.

Name Matrix equation/factorization Paper
Cholesky A = LLT A = AT positive definite I
Standard Sylvester (CT) AX − XB = C II
Standard Lyapunov (CT) AX + XAT = C II
Generalized coupled Sylvester (AX − Y B, DX − Y E) = (C, F ) II
Standard Sylvester (DT) AXBT − X = C III
Standard Lyapunov (DT) AXAT − X = C III
Generalized Sylvester AXBT − CXDT = E III
Generalized Lyapunov (CT) AXET + EXAT = C III
Generalized Lyapunov (DT) AXAT − EXET = C III

Table 1.1: Cholesky factorization, one-sided (top) and two-sided (bottom)
Sylvester-type matrix equations.

1.3 Algorithm techniques

In this section, we describe the different techniques used to reach close to peak
performance.
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1.3.1 Recursive blocked algorithms

In the first section of the chapter, the memory hierarchy was described. From
the characteristics of the memory hierarchy follows the importance of a good
memory reference pattern. If an algorithm keeps the memory accesses confined
to a small number of elements at the time, the algorithm obtains good perfor-
mance, as most accesses will be carried out by the cache memories. On the
other hand, if the memory accesses are disperse, a large part of the accesses will
reach the primary memory, and the algorithm will suffer from access latencies,
called cache miss penalties.

In order to manage a complex memory system we apply hierarchical blocking.
The traditional technique is called explicit multi-level blocking. Typically, loop
nests are split into several nests explicitly, each loop nest matching one level of
the memory hierarchy. While it is possible to match every level of the memory
hierarchy in this way, it requires deep knowledge of the host architecture. For
example, a matrix multiplication routine, which is explicitly blocked to match
three levels of cache memories requires twelve nested do-loops. Each of these
loops needs to be tuned for the specific architecture.

Instead of using explicit blocking to achieve good memory access patterns,
recursive blocking is used in the papers in this thesis. Recursion is an old yet
powerful technique which uses self-similarities to divide the problem into smaller
parts. In order to reformulate a problem using recursion, the following must be
defined:

• How to split the problem; i.e., where is the natural splitting point (divide).

• How to calculate the answer to the large problem given the answers to the
smaller problems (conquer).

• What is the base case, and how to solve it (use kernels).

We call a set of answers to these problems a recursive template. As an
example of a recursive template, consider again matrix multiplication C = A·B,
where A, B are dense matrices. Now, define the recursion as follows. Split A
and B in the middle into submatrices [A1, A2] and [B1; B2] (Matlab notation),
where A1 and A2 differs at most by one column. The same goes for the rows
of B1 and B2. Now, recursion can be applied to calculate A1 · B1 and A2 · B2.
The base case is reached when A is a single column (and B is a single row).
The answer to the base case is the outer product of column A and row B. The
answer to the large problem is to add A1 · B1 and A2 · B2. This example, used
for illustration only, will not give a good memory access pattern, as only one
out of three problem dimensions is split. In the recursive templates given in the
papers, we always divide the largest dimension, or several at the same time. By
doing this, smaller problems are kept squarish, and good temporal locality is
obtained.
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In practice, continuing recursion down to a single element or column dam-
ages performance. For small problems, the overhead of the recursive function
calls becomes considerable compared to the actual operations. Also, when the
problem fits in the level 1 cache, the temporal locality is irrelevant. For that
reason, the base case is defined as when the problem fits into level 1 cache. The
problem is then solved using a superscalar kernel, see Section 1.3.3.

For the matrix equations solved in this thesis, there is also another bene-
fit from the recursive formulation. It effectively reveals matrix-matrix level 3
BLAS operations [10]. Thus, most of the work in the recursive algorithm will
be performed by efficient BLAS library routines, optimized for the user’s host
architecture.

Historically, the use of recursion has led to several algorithms with lower com-
plexity than the standard algorithms. The most famous are the Fast Fourier
Transform (FFT) by Cooley and Tukey [8] and Strassen’s algorithm for ma-
trix multiplication [42]. Both these algorithms have lower complexity than the
standard algorithms for these computational tasks. On the other hand, blocked
linear algebra routines sometimes lead to higher complexity (larger coefficients
of the leading terms) due to computation of larger temporaries, typically level
3 operations. Examples of this are shown in Paper III. Note that this is not
due to recursion itself, but has to do with the blocking of the algorithm. By
choosing the splitting point, this amount of overhead can be adjusted, on the
expense of the blocking features. For an example of such a modification of a re-
cursive algorithm for the QR factorization, see Elmroth and Gustavson [11]. In
[29], Jonsson and Kågström show that the recursive blocked one-sided Sylvester
solvers have lower complexity than the standard methods.

1.3.2 Recursive blocked data formats

The recursive blocked algorithms mainly improve on the temporal locality, which
means that blocks (submatrices) that recently have been accessed will most
likely be referenced soon again. For some problems, we can further increase the
performance by explicitly improving on the spatial locality as well. The goal is
now to match the algorithm and the data structure so that blocks (submatrices)
nearby the recently accessed blocks will also be referenced soon. In other words,
the storing of matrix blocks in memory should match the data reference pattern
of the blocks, and thereby as much as possible avoid unnecessary data transfers
in the memory hierarchy.

In general, and similar to the splittings of a recursive algorithm, the recursive
data format should not be repeated down to a single element. This is because
calculating the address of an element is more expensive with a recursive data
format. Instead, the matrices should be divided into fixed size submatrices,
where the elements in the submatrices are stored in standard order. The mutual
order of these submatrices is then resolved using recursion. For an example of
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a recursive data format, see Figure 1.1.
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Figure 1.1: The mapping of an 8× 8 block matrix in linear block column order
and recursive block row order. The three levels of recursive splitting are labeled
1-2, 3-4 and 5-6.

The recursive data format has two penalties that must be considered. The
first is the overhead of data transformations. In general, this results in longer
code, some extra execution time and memory requirements for the transforma-
tion between input/output data and the internal blocked data format. However,
for large-scale matrix computations this issue is only marginal. The second is
the limitation of using standard linear algebra operations (BLAS), such as ma-
trix multiplication. From the recursive templates above, we obtain algorithms
that do most of its work in large, efficient calls to general matrix multiply and
add (GEMM) operations. With the recursive blocked data format, there are no
large submatrices that can be passed to a GEMM routine. Instead, there are
several calls to BLAS routines, each with small-sized data blocks chosen to fit
the level 1 cache.

1.3.3 The base case: superscalar kernels

Recursion is one of several ways of handling blocking and obtaining good cache
memory reuse on a high level but may make a poor job at the bottom of the
recursion tree where matrices are small or even single elements. There are a
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number of reasons for this. One is the overhead for the actual recursive call.
Setting up the stack and passing arguments takes much more processor cycles
than the actual floating point operation. Another cause is that most compilers
make a poor job of generating assembler instructions that match a superscalar
architecture with several registers and a long instruction pipeline. Because of the
performance impact of pursuing the recursion to a single element, the algorithms
in this thesis end the recursion when the acquired subproblem is smaller than a
certain size.

In Paper I, the base case is reached and recursion is ended when the problem
size is less than 32. Problems smaller than this size are solved using a superscalar
kernel that implements an iterative algorithm with outer loop unrolling which
enables a high utilization of all different floating point units in the processor.

Paper II and Paper III also introduce specialized kernels for the respective
problems. Here, we introduce fast matrix multiplication kernels, which with low
overhead handles small matrix multiplications. This enables us to do recursion
further, down to blocks of size 4 × 4, when the Sylvester-type matrix equation
kernels solve the small-sized equation.
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Chapter 2

Contributions

This chapter gives a brief summary of the papers in this thesis. Three of the
papers (I–III) are published in well-known scientific journals, one is a refereed
conference proceeding paper (IV), and the last contribution is a technical report
(V).

Moreover, results in the thesis and earlier results related to the topic of
the thesis have been presented at several international conferences, e.g., see
[18, 19, 20, 21, 26, 29].

2.1 Paper I

In this contribution, which continues work from Anderson et al. [3], a recur-
sive algorithm for the Cholesky factorization is presented. The algorithm com-
putes A = LLT for a symmetric positive definite A, where A is stored in packed
format. The factorization is used for solving symmetric positive systems of
equations Ax = b, or for computing the inverse of A. While the packed format
saves half of the memory compared to full storage, it precludes the use of stan-
dard level 3 BLAS operations. Instead, packed format algorithms use level 1
and level 2 BLAS operations, and hence perform much worse than full storage
algorithms.

The recursive algorithm in paper I uses a recursive format that requires the
same memory footprint as the packed format. The format is constructed by
dividing the triangle into three parts: two smaller triangles and one rectan-
gle. The triangles themselves are divided down to single elements, whereas the
rectangle is stored in standard format. Hence, operations on the rectangle can
use level 3 routines. The paper describes the recursive Cholesky algorithm and
how it relates to the recursive data format. Also, recursive symmetric rank-k
and recursive triangular matrix solve routines for the recursive data format are
presented, as they are level 3 building blocks for the factorization. The paper

9



10 Chapter 2

gives details on how to transform A from packed to recursive data format, using
a small temporary buffer. The data transformation also makes use of the sym-
metry to change the orientation of the equation. Then, the fastest variant of
the matrix multiply operation, where elements are accessed with stride 1, can
be used throughout the algorithm.

Another contribution in paper I is the superscalar kernels for factorization,
rank-k update and triangular matrix solve. By terminating recursion prema-
turely, it is shown analytically that the overhead from recursion is negligible.
However, as the format is recursively constructed all the way to element level,
the superscalar kernels need to work with non-linear addressing. In the paper,
three different methods that handle this addressing are presented, and their re-
spective advantages are discussed. The most ingenious solution is look-up maps,
which are calculated before the recursion takes place and stored very efficiently.

The routines developed in this contribution later became part of the IBM
ESSL library.

2.2 Paper II

Paper II presents recursive blocked algorithms for solving one-sided Sylvester-
type matrix equations. These equations include the continuous-time Sylvester
equation AX−XB = C, the continuous-time Lyapunov equation AX +XBT =
C, and the generalized coupled Sylvester matrix equation (AX − Y B, DX −
Y E) = (C, F ). One-sided matrix equations include terms where the solution
is only involved in matrix products of two matrices, e.g., op(A)X or Xop(A),
where op(A) can be A or AT . The solvers are of Bartels–Stewart-type [4] and
contains three main steps: (i) reduce the problem to quasi-triangular form; (ii)
solve the quasi-triangular problem; (iii) retransform the solution to the original
problem. The novel algorithms presented all concern the second step.

In the paper, we give an analysis of the impact of the performance of the ker-
nel operations by modeling the amount of work of level 2 and level 3 operations.
The analysis shows that poor performance of these kernels spoils the overall
performance even for large problems. At first, this looks somewhat unexpected,
as the kernels only count for O(n2) operations out of the total O(n3) work, so
the weak performance of the kernels should not be noticeable. However, since
the kernels perform more than 100 times slower than the matrix multiply, it has
an impact even for large problems. In order to minimize the negative impact,
we have developed new kernels that are more suitable for superscalar processors.
These new kernels do not include scaling and complete pivoting. However, if
a near-singularity is detected, the algorithm backtracks and uses another more
robust but slower kernel which includes both scaling to avoid overflow and com-
plete pivoting. In this way, the stability of the algorithm is maintained as well
as the accuracy of the results.

As mentioned earlier, the recursive method reveals large level 3 operations,
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which are easily parallelized on a shared memory machine using an SMP BLAS
library. Moreover, by splitting several dimensions of the problem simultane-
ously, independent tasks suitable for shared-memory parallelization become ap-
parent. In the paper, we show how the algorithms can be parallelized using
OpenMP. Although the triangular solve is only one step in the solution process,
performance results in Paper II show that the overall performance of solving
unreduced matrix equations is also improved a lot, and especially in connection
with condition estimation.

Uniprocessor and SMP parallel performance results of our recursive blocked
algorithms and corresponding routines in the state-of-the-art libraries LAPACK
and SLICOT are presented. The performance improvements of our recursive
algorithms are remarkable, including 10-fold speedups compared to standard
algorithms.

We remark that the recursive blocked algorithms allow sliding splittings,
with the splitting points varying between the second and the penultimate row
and/or column. By not splitting in the middle, the algorithms exhibit different
memory access patterns and non-square updates, which in general degrade the
performance. In the extreme cases we obtain the standard algorithms.

A more detailed version of this paper is available as [27].

2.3 Paper III

In this paper, the work from Paper II is extended and generalized to solve two-
sided matrix equations. These equations include the discrete-time Sylvester
equation AXBT −X = C, the discrete-time Lyapunov equation AXAT −X =
C, and generalized Sylvester and Lyapunov equations. Examples of the latter
include the continuous-time and discrete-time generalized Lyapunov equations
AXET + EXAT = C and AXAT + EXET = C, respectively.

All these equations are called two-sided, since they include matrix product
terms of type op(A)Xop(B), where as before op(A) can be A or AT . Some of
these matrix equations can be seen as special cases of other formulations. In
practice, all matrix equations are treated separately, since either these equiva-
lences include matrix inversion (when transforming a generalized matrix equa-
tion to a standard counterpart), or the matrix equations have symmetry struc-
ture that we want to take advantage of in the algorithms. The recursive blocked
algorithms for two-sided equations require both extra workspace and extra com-
putational work, which we briefly discuss below.

The computation of matrix triple product updates op(A)Xop(B) can be
done in two ways, namely (op(A)X)op(B) or op(A)(Xop(B)). These two ma-
trix products may need different number of floating point operations and we
choose the order which minimizes the computational work. We also remark
that the computation of a matrix triple product requires temporary workspace
for storing intermediate matrix products of two (sub)matrices. In the recursive



12 Chapter 2

algorithms, the transformed A and B may turn out to be triangular, quasi-
triangular, rectangular, trapezoidal, or quasi-trapezoidal. If X = XT , even
more clever algorithms are used which utilize the symmetry structure.

As a result, the recursive blocked algorithms for the two-sided matrix equa-
tions require more floating point operations than the standard column-wise algo-
rithms, e.g., up to 56% more operations for the two-sided Lyapunov equations.
Despite this overhead, the recursive blocked algorithms perform much faster in
practice, which is an effect of their better data locality and higher level 3 BLAS
ratio, and the use of new superscalar kernels.

Also in paper III, parallel algorithms are presented using OpenMP and par-
allel BLAS. A more detailed version of this paper is available as [28].

2.4 Paper IV

In paper IV, the software library RECSY is presented. RECSY contains serial
and parallel implementations of the algorithms for solving one-sided and two-
sided Sylvester-type matrix equations described in Paper II and Paper III. The
library is written in Fortran 90. The use of Fortran 90 has the effect that con-
structs such as recursion and dynamic memory allocation can be implemented
using basic language constructs, which simplify the code and make the library
more user-friendly. In total, 42 different cases of eight equations (three one-sided
and five three-sided) are solved by the library, either in serial or in parallel using
OpenMP. The library includes superscalar kernels, much faster than traditional
SLICOT or LAPACK kernels. However, the new kernels do no overflow and
near-singularity checking. If the problem is ill-conditioned, the routine as an
alternative backtracks and falls back to kernels that carry out complete pivot-
ing. RECSY also includes a superscalar matrix multiplication routine with low
overhead and setup cost, designed for the small- matrix multiplications done in
the lower part (branches) of the recursion tree.

The RECSY routines including all of the kernels is written entirely in Fortran
90, so it is portable on a wide range of platforms, including Unix and Windows.
In order to make the library easy to use, wrapper routines for SLICOT and
LAPACK are included, so the user can keep his/her original code and simply
link with RECSY. This means that the user calls the SLICOT routine for solving
an unreduced problem, and the transformed quasi-triangular matrix equation
is automatically solved by RECSY.

The RECSY library together with building instructions can be downloaded
from http://www.cs.umu.se/~isak/recsy. For an overview of the routines in
RECSY and its relation to routines in other libraries see Figure 2.1.
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2.5 Paper V

Even though the work with RECSY has been rewarding with very good perfor-
mance results, there is always an urge to save a few more cycles of the running
time. As more detailed information was needed for proceeding with the de-
velopment of recursive algorithms, a more thorough study of the behavior of
the software on a given target architecture was needed. In the final paper of
this thesis, performance monitoring tools are used to examine the properties of
the recursive blocked algorithms in the RECSY library. While standard timing
routines fail to give high resolution, performance monitoring tools use hardware
registers to give low-latency results down to nanosecond precision. The tools
can also give information not available by other methods, such as cache miss
counts.

The paper looks into the aspects of data storage formats, and comparisons
between using recursive blocked, linear blocked, and standard Fortran data for-
mats are presented, including the cost of converting the input matrices to the
blocked data formats. One result of the analysis shows the necessity of the
superscalar matrix multiplication routine in the RECSY library.



14 Chapter 2

R
E

C
S

Y
C

T
/_

P
R

E
C

LY
C

T
/_

P
R

E
C

G
C

S
Y

/_
P

R
E

C
S

Y
D

T
/_

P
R

E
C

G
S

Y
L/

_P
R

E
C

LY
D

T
/_

P
R

E
C

G
LY

C
T

/_
P

R
E

C
G

LY
D

T
/_

P

R
E

C
S

Y
_G

E
M

M

R
E

C
S

Y
_S

C
A

L

R
E

C
S

Y
_A

X
B

R
E

C
S

Y
_M

U
LT

_L
E

F
T

R
E

C
S

Y
_M

U
LT

_R
IG

H
T

D
S

Y
R

2K
M

B
01

R
D

D
S

Y
M

M

D
T

R
M

M
R

E
C

S
Y

_T
R

M
M

_Q
2

D
G

E
M

M
D

A
X

P
Y

R
E

C
S

Y
C

T
_T

R
0.

.7
R

E
C

G
C

S
Y

_T
R

0.
.7

R
E

C
S

Y
D

T
_T

R
0.

.7

R
E

C
S

Y
C

T
R

E
C

LY
C

T
R

E
C

G
C

S
Y

R
E

C
S

Y
D

T
R

E
C

G
S

Y
L

R
E

C
LY

D
T

R
E

C
G

LY
C

T
R

E
C

G
LY

D
T

R
E

C
S

Y
C

T
_P

R
E

C
LY

C
T

_P
R

E
C

G
C

S
Y

_P
R

E
C

S
Y

D
T

_P
R

E
C

G
S

Y
L_

P
R

E
C

LY
D

T
_P

R
E

C
G

LY
C

T
_P

R
E

C
G

LY
D

T
_P

R
E

C
S

Y
_S

O
LV

E
_1

1/
_2

2/
_3

3/
_4

4/
_N

N

R
E

C
S

Y
_S

O
LV

E
_C

P

D
G

E
T

C
2/

D
G

E
S

C
2

R
E

C
G

S
Y

L_
T

R
0.

.7

D
T

R
S

Y
L

D
T

G
S

Y
L

S
B

03
M

X
S

B
03

M
Y

S
B

03
A

X
S

B
03

A
Y

R
E

C
S

Y
C

T
_M

A
C

H
IN

E

U
S

E
R

 P
R

O
G

R
A

M

O
ve

rlo
ad

ed
S

LI
C

O
T

/L
A

P
A

C
K

 r
ou

tin
e,

 
pa

rt
 o

f R
E

C
S

Y
 p

ac
ka

ge
S

LI
C

O
T

/L
A

P
A

C
K

/B
LA

S
 r

ou
tin

e

A
A

 c
al

ls
B

B

R
ec

ur
si

ve
ca

ll

R
E

C
S

Y
 r

ou
tin

e

Figure 2.1: Call graph of the RECSY library. Overloaded SLICOT and LA-
PACK routines are shown as hexagons. Level 3 BLAS functions and auxiliary
BLAS, LAPACK, and SLICOT routines used by RECSY are shown as crosses.
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[20] F. Gustavson, I. Jonsson, B. Kågström, and P. Ling. Peak Performance on
Hierarchical Memory Architectures – New Recursive Blocked Data Formats
and BLAS’s. In Hendrickson et al. (eds), Proceedings of the Ninth SIAM



REFERENCES 17

Conference on Parallel Processing for Scientific Computing, PPSC99, San
Antonio, TX, USA. 1999. SIAM.

[21] F. Gustavson and I. Jonsson. High Performance Cholesky Factorization
via Blocking and Recursion that uses Minimal Storage. In Bjorstad et al.
(eds), Applied Parallel Computing, New Paradigms for HPC Industry and
Academia, Lecture Notes in Computer Science, 1947, pp. 82-91, Springer-
Verlag, 2000.

[22] W.W. Hager. Condition estimators. SIAM J. Sci. Comput., 5:311–316,
1984.

[23] S.J. Hammarling. Numerical solution of the stable, non-negative definite
Lyapunov equation. IMA J. Num. Anal., 2:303–323, 1982.

[24] A. Henriksson and I. Jonsson. High-performance matrix multiplication on
the IBM SP high node. Master’s thesis, UMNAD-98.235, Department of
Computing Science, Ume̊a University, SE-901 87 Ume̊a, 1998.

[25] N.J. Higham. Perturbation theory and backward error for AX −XB = C.
BIT, 33:124–136, 1993.
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[37] B. Kågström and L. Westin. Generalized Schur methods with condition
estimators for solving the generalized Sylvester equation. IEEE Trans.
Automat. Control, 34(4):745–751, 1989.

[38] C.L. Lawson, R.J. Hanson, D.Kincaid, and F.T. Krogh, Basic Linear Al-
gebra Subprograms for FORTRAN usage, ACM Trans. Math. Soft., 5, pp.
308–323, 1979

[39] T. Penzl. Numerical solution of generalized Lyapunov equations. Advances
in Comp. Math., 8:33–48, 1998.

[40] Valsalam V., and Skjellum A. A framework for high-performance matrix
multiplication based on hierarchical abstractions, algorithms and optimized
low-level kernels. Concurrency and Computation: Practice and Experience,
14(10):805–839

[41] SLICOT. The SLICOT library and the numerics in control network
(NICONET) website. www.win.tue.nl/niconet/.



REFERENCES 19

[42] V. Strassen. Gaussian elimination is not optimal. Numerisch. Math.,
13:354–356, 1969.

[43] Whaley, R., Petitet A., and Dongarra J. Automated Empirical Optimiza-
tion of Software and the ATLAS Project. Parallel Computing, 27(1–2):3–25.

[44] D.S. Wise, G.A. Alexander, J.D. Frens, and Y.H. Gu. Language support
for Morton order matrices. ACM Sigplan Notices, 36(7):24–33, 2001.

[45] Q. Yi, V. Adve, and K. Kennedy. Transforming loops to recursion for
multi-level memory hierarchies. ACM Sigplan Notices, 35(5):169–181, May
2000.



20


		2003-11-26T08:39:56+0100
	Umea University Library




