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Abstract

The aim of speaker recognition and verification is to identify people’s identity
from the characteristics of their voices (voice biometrics). Traditionally this
technology has been employed mostly for security or authentication purposes,
identification of employees/customers and criminal investigations. During the
last decade the increasing popularity of hands-free and voice-controlled systems
and the massive growth of media content generated on the internet has increased
the need for techniques to automatically and accurately analyse speech signals.

Speaker recognition is thus becoming a fundamental block for the smart
analysis of speech in video and audio content, along with other technologies
like speech recognition and diarization. Examples of useful applications of these
technologies are query-by-voice, automatic subtitling and automatic metadata
generation for movies and television.

In this thesis we evaluate different state-of-the-art techniques for
text-independent speaker verification on a large database of read English speech
(LibriSpeech ASR corpus). The different techniques are compared in terms of
classification accuracy, scalability and robustness to noise.

A classification approach based on discriminatively trained Artificial Neural
Networks (ANNs) is presented, showing superior classification performance to
traditional generative models like Gaussian Mixture Models (GMMs) and I-
vectors.

The core contribution of the thesis is a novel hybrid generative/discriminative
method, using ANNs and a GMM-Universal Background Model (UBM) to ob-
tain state-of-the-art speaker recognition results. The advantage of the new
system is the possibility of using ANNs while maintaining complete scalability:
an arbitrary number of new speakers can be added to the system without the
need of retraining the speaker models. At the same time the system achieves
very good performance, with only 0.23% Equal Error Rate (EER) in verifica-
tion mode and 99.6% classification accuracy on a dataset of 2483 speakers, both
male and female.



Sammanfattning

Syftet med talarigenkénning och verifiering ar att identifiera ménniskors iden-
titet utifran de egenskaper som karakteriserar deras roster (rostbiometri). Tra-
ditionellt har denna teknologi framst anvénts inom sikerhets och autentiser-
ingsomradet for att identifiera anstéllda/kunder eller personer i brottsutred-
ningar. Under det senaste decenniet har den successivt okande populariteten
for handsfree och roststyrda system och den massiva 6kningen av medieinnehall
som genereras pa Internet 6kat behovet av tekniker for att automatiskt och
noggrant analysera talsignaler.

Talarigenkdnning &r dérmed pa vag att bli en grundliggande teknologi for
smart analys av tal i video och ljud, tillsammans med andra teknologier som
taligenkénning och diarieféring. Exempel pa anvindbara tillimpningar av dessa
teknologier ar rostbaserade anvandarinterface, automatisk textning och automa-
tisk generering av metadata for film och TV.

I detta examensarbete utvérderar vi olika state-of-the-art tekniker for text
oberoende talarverifiering pa en stor databas av engelska ljudbocker (LibriSpeech
ASR corpus). De olika teknikerna jamfors i termer av klassificeringsnoggrannhet,
skalbarhet och robusthet for buller.

En klassificeringsmetod baserad pa diskriminativt trénade Artificiella Neu-
rala Natverk (ANN) presenteras. Metoden visar dverldgsen klassificeringspre-
standa Gver traditionella generativt trénade modeller som Gaussiska mixtur-
modeller (GMMer) och i-vektorer.

Huvudbidraget i examensarbetet dr en ny hybrid generativ/diskriminativ
metod som anviander en kombination av en ANN och en GMM-Universal bak-
grundsmodell (UBM) for att uppna state-of-the-art talarigenkénningsresultat .
Fordelen med det nya systemet dr mojligheten att anvinda ANN med bibehallen
skalbarhet: ett godtyckligt antal nya talare kan adderas till systemet utan be-
hov av omtréaning av talarmodellerna. Samtidigt uppnar systemet mycket bra
prestanda, endast 0,23% Equal Error Rate (EER) i verifieringslaget och 99,6%
klassificeringsnoggrannhet pa ett dataset med 2483 talare, bade mén och kvin-
nor.
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Chapter 1

Introduction

1.1 Motivation

The field of machine learning has received significant attention in recent years,
both in academia, where it is raising interesting scientific questions and becom-
ing an important part of artificial intelligence, and in industry, with a large
number of useful applications, from image and speech recognition to recommen-
dation systems.

The latest trend is that of deep learning, or the use of Artificial Neural
Networks (ANNs) with multiple layers of hidden neurons stacked in a hierarchy.
The idea of Deep Neural Networks (DNNs) is a very old and sound one, having
connections with biology and neuroscience. The brain has been shown to process
information through a stacked hierarchy of feature detectors, a nice example
being the mammalian visual system [1]. Unfortunately it was never possible
to really explore the power of deep learning, due to the vast complexity of the
training process and the large number of parameters in the model, requiring a
huge amount of computational power. The field remained then confined to the
use of single layer non-linear neural networks, nowadays referred to as ”shallow
learning”.

The field of deep learning came to life in 2006 with Geoffry Hinton’ seminal
paper [2], in which it was shown that DNNs could be trained effectively, via
an unsupervised pre-training of each inidividudal layer. A wave of renewed
interest in ANNSs followed leading to deep learning state-of-the-art results on
many tasks, in particular huge improvements in object recognition and speech
recognition. Thanks to the larger amount of training data and computational
power, deep learning is flourishing, even making mainstream news when Go
playing AT AlphaGO defeated 18-time Go world champion Lee Sedol [3]. New
successful applications of deep learning are multiplying: despite the fact that we
lack a real theoretical understanding on this technology, it works and is hugely
successful on many tasks.

The goal of speaker recognition and verification is the identification of peo-
ple’s identity from the characteristics of their voices (voice biometrics). Tradi-
tionally this technology has been employed mostly for security or authentication
purposes, identification of employees/customers and criminal investigations. In
the last decade the increasing popularity of hands-free and voice-controlled sys-



tems and the massive growth of media content generated on the internet has
increased the need for techniques to automatically and accurately analyse speech
signals.

Speaker recognition is thus becoming a fundamental block for the smart
analysis of speech in video and audio content, along with other technologies
like speech recognition and diarization. Examples of useful applications of these
technologies are query-by-voice, automatic subtitling and automatic metadata
generation for movies and television.

The dominant approach to speaker verification has traditionally been based
on generative models, in particular Gaussian Mixture Models (GMMs) [4]. More
recently a new appraoch, now called the i-vector method [5], led to state-of-the-
art results on many benchmark datasets. In the i-vector method each speech
utterance is mapped to a low-dimensional fixed-size vector through accumulated
statistics from a GMM-Universal Background Model (UBM) followed by total
factor analysis.

With the majority of papers in speaker verification following generative
learning and the I-vector or GMM paradigm, we felt discriminatively trained
deep ANNs had not been explored in depth for this particular task. Motivated
by the recent success of deep learning, the focus of the thesis has then been on
ANNSs and the possibility of their use to outperform existing generative learning
methods.

The different techniques are compared in terms of classification accuracy,
scalability and robustness to noise on a large-scale database of read English
speech: the LibriSpeech ASR corpus [6].

A novel scalable approach based on ANNs in combination with a GMM-
UBM is presented, showing superior classification performance to traditional
GMDMs while retaining the advantages of generative models in terms of scala-
bility, parallel processing and memory requirements.

1.2 Structure of the report

The report is organized as follows. Chapter 2 gives the necessary background
in speech processing and speaker verification, including a description of the
traditional and state of the art techniques for speaker verification used as a
comparison baseline: GMMs and i-vectors. A brief literature review of related
work carried out in speaker verification is also present in this chapter.

Chapter 3 describes in detail the use of a DNN for speaker identification and
verification, which is necessary to understand the training of the novel method
proposed in the following chapter.

Chapter 4 presents the core contribution of the thesis, which is a scalable
hybrid method for speaker verification using neural networks along with a GMM-
UBM.

Chapter 5 presents and analyses the results of simulations and Chapter 6
concludes the thesis with a discussion and directions for future work.



Chapter 2

Background and Related
Work

In this chapter we provide the essential background in speech processing and
speaker verification/identification needed throughout the thesis. For a more in
depth review of text-independent speaker recognition see [7].

2.1 Speaker Verification and Speaker Identifica-
tion
Speaker recognition technologies can be divided into two major applications.

e speaker verification: the goal is to determine if a test utterance belongs to
a single particular speaker (i.e., determining whether an unknown voice
is from a particular enrolled speaker). It can be thought as a template
matching, thus the decision is binary, the system can accept or reject the
utterance. Examples of this are query-by-voice or voice authentication
systems.

e speaker identification: the goal is to determine an unknown speaker iden-
tity. There is no particular target speaker, so the test utterance is com-
pared with a big set of known enrolled speakers and the identity is recog-
nized as the most likely voice from the set. It is a 1-to-N comparison. An
example of this is identity recognition for forensic investigations, where
the test utterance is compared with all the voice models in the database
of potential criminals.

Another fundamental distinction is between text-dependent and
text-independent speaker recognition. In text-dependent recognition all the ut-
terances must be recordings of the same phrase. Knowledge about the syntactic
content and temporal alignment can thus be used to improve accuracy, but the
system is much more constrained and doesn’t have many applications besides
security authentication.

Tezt-independent recognition is more general, where the utterances can have
variable length and different phonetic content.



2.1.1 Evaluation metrics

Speaker identification is a multi-class classification problem, so the natural eval-
uation metric is the classification accuracy (or error) on an held-out test set.
In case of imbalanced classes, other evaluation metrics can be used, like Pre-
cision, Recall and F-Scores. See [8] for a review of performance measures of
classification problems.

Speaker verification presents a trade-off between False Acceptance Rate
(FAR) and False Rejection Rate (FRR), also called False Positive Rate and
False Negative Rate. Given the number of false positives (F P), false negatives
(F'N), true positives (T'P) and true negatives (T'N), the evaluation metrics of
interest for speaker verification are

FP

FAR = 557N (2.1)
FN

FRE = 5 7p (22)

The classification depends on a threshold above which the utterance is accepted
as the target speaker. Moving the threshold changes the trade-off between FAR
and FRR. The operating point must thus be set depending on the target appli-
cation. To evaluate the accuracy of speaker verification algorithms it is common
to inspect the Detection Error Trade-off (DET) curve [9] and report the Equal
Error Rate (EER). This is the error rate at the operating point for which FAR
and FRR are the same. The only problem with EER is the arbitrary selection of
the threshold, so NIST introduced the Detection Cost Function, using its mini-
mum value as the performance measure for speaker verification. Details can be
found in [7]. Figure 2.1 shows an example comparison of multiple systems using
DET curves.

In this thesis we will focus on text-independent and gender-independent
recognition of English speech. The main focus will be on speaker verification,
but also speaker identification will be discussed, mainly in the context of a
multi-class DNN. Results will be reported in terms of classification error for the
identification task and EER from DET curves for the verification task.

2.2 Literature Review of Machine Learning for
Text-Independent Speaker Verification

A large number of learning algorithms have been applied to speaker recognition.
The dominant approach for text-independent verification is based on GMMs
[4, 10]. A generative type of learning is employed, where each speaker data
is modelled by a probability distribution, in particular a mixture of gaussians
fitted with the Expectation Maximization (EM) algorithm [11].

More recently the use of a Support Vector Machine (SVM) has been inves-
tigated, both as a stand-alone module [12, 13] or in combination with a GMM
to increase accuracy [14].
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Figure 2.1: Example of DET curves comparing various speaker veri-
fication subsystems. Taken from [7].

A recent research trend has been that of supervectors. A supervector is a
high- and fixed-dimensional representation of an utterance, which eliminates the
problem of representing utterances with variable length. A GMM-UBM is used
to map an utterance to the supervector through Maximum A Posteriori (MAP)
adaptation of the means. The stacked adapted means are the supervector repre-
sentation of the utterance. Supervectors in combination with SVM have shown
good performance in [15].

A classic problem in speaker verification is that of intersession variability,
in particular of mismatch between training and test conditions. When the test
utterances are recorded through a different channel or with different environ-
mental backgrounds the performance drops drastically. Various techniques have
been applied in the SVM framework, the most successful one being Nuisance
Attribute Projection (NAP) [16], a transformation that removes the directions
of unwanted session variabilities from the supervector space.

Factor analysis techniques on GMM supervectors have been investigated re-
cently to try to decouple the speaker dependent factors, which are important for
speaker verification, from the channel and noise attributes. Joint factor analy-
sis, first proposed for speaker verification in [17] and refined in [18], has recently



led to the i-vector method [5], where a total variability transformation is used
to map each speaker’s utterances to a low dimensional vector. Each speaker
is modelled by a single vector that can be used as a template for scoring us-
ing cosine distance. The i-vector method represents the current state-of-the-art
method for text-independent speaker verification, in conjunction with various
channel compensation techniques like Within-Class Covariance Normalization
(WCCN), Linear Discriminative Analysis (LDA) and Probabilistic Linear Dis-
criminative Analysis (PLDA) [19].

Finally ANNs have been applied to many patter recognition tasks, including
speaker identification, in particular with the goal of learning features which are
robust to channel variability [20]. They are also being investigated for speaker
verification, usually in conjunction with an i-vector system [21, 22], where a
DNN trained for speech recognition replaces the GMM in the extraction of the
sufficient statistics for the i-vector extraction. A discriminatively trained DNN
can also be used as an extractor of deep bottleneck features which can be used
for speaker verification, as in [23].

2.3 Feature extraction

Speaker verification is fundamentally a classification problem. As in most pat-
tern recognition problems it is necessary to represent the signals in a convenient
space for classification. Speech is a complex time-varying signal containing not
only speech and speaker-related content, but also information about the medium
and channel through which the utterance was recorded. Indeed noise and rever-
beration are often responsible for the degradation of many pattern recognition
systems working on speech signals. There is thus a need to extract features
that retain as much speech-related information as possible, while being robust
to noise. To keep complexity under control it is also desirable to have a low
dimensional feature vector.

In this thesis we decided to use Mel-Frequency Cepstral Coefficients (MFCCs)
[24], the standard feature used in the research community for speech and speaker
recognition. They consist of a compact cepstral representation of the speech sig-
nal which retains the speaker-related characteristics we need (mostly related to
the anatomy of the vocal tract) and in which the channel effects become additive
and can thus be partially compensated by spectral mean subtraction.

The extraction of MFCC features is shown in Figure 2.2. The signal is first
split into frames of 20ms in length with an overlap of 10ms. On such a window
speech is stationary and can thus be analysed reliably in the spectral domain.
An energy-based Voice Activity Detector (VAD) is employed to remove non-
speech frames, and a pre-emphasis filter 1 — (uz~!) with p = 0.98 is applied to
the input speech. Each frame is multiplied with a Hanning window to get rid of
discontinuities at the boundaries of the frames that would create problems in the
spectral domain. Next the signal is mapped to the frequency domain by taking a
Fast Fourier Transform (FFT) and keeping the magnitude of the spectrum. The
magnitude spectrum is passed throguh a Mel-spaced [25] triangular filter-bank
followed by logarithmic compression. The Mel frequency scale is psychoacous-
tically motivated, as is the logarithmic transformation of the amplitude, thus
the log-mel features retain the most perceptually critical information. Finally
a Discrete Cosine Transform (DCT) is performed to compact the energy in a



small number of coefficients.

The 24 lowest DCT AC coeflicients are kept as the cepstral representation
of each speech frame. The resulting feature vectors are mean and variance nor-
malized over the whole utterance to compensate for channel effects, as described
in [26].

Our implementation of MFCC extraction is based on the one in the HTK
toolkit [27]. Through this signal processing front-end, the original time-domain
utterance is transformed into a time sequence of 24-dimensional vectors that are
fed to the input of machine learning algorithms.

Frame .| Hanning
' 'lH I Blocking "l Window FFT

h

Magnitude
Spectrum
Log-Mel ¥
Features Mel
MFCC " »
Features DCT < Log < Fr_equency
Filterbank

Figure 2.2: MFCC features extraction

2.4 Mathematical background

In this section we establish the core mathematical notation and background
needed to understand the speaker verification problem and the learning algo-
rithms presented in the following chapters and also to better interpret the results
of the experiments.

2.4.1 Dataset notation

As described in section 2.3, feature extraction maps each frame of the time-
domain speech signal z(t) to a 24-dimensional vector of MFCCs. Utterance u; is
thus represented by a time sequence of N (u;) vectors: X; = {x;;: 7 =1: Np(u;)},
which is the input to the final trained system at test time.

The utterances are spoken by a set of Ng speakers, both female and male,
each speaker s; having a number Ny (s;) of spoken utterances.

The complete notation for the dataset is summarized in table 2.1.

2.4.2 Speaker recognition with Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is a Probability Density Function (PDF)
given by the weighted sum of Gaussian densities, called the components of
the GMM. It is used to model the distribution of the feature vectors of each
speaker in the MFCC space. It is the most used model in speaker recognition,
thanks to its good modelling of a large class of sample distributions. One of
the nice properties of the GMM is its ability to form smooth approximation of
arbitrarily shaped PDFs. The parameters of the model are learned from the



S={s;:i=1:Ng}

Set of Speakers.
The speakers, both male and female,
are indexed from 1 to Ng.

Ui = {’U/iy]' ] = ]. . NU(SZ)}

Sequence of Utterances for speaker
S;.

Total number of utterances for
speaker s; is Ny (s;)

U:{ui:izlzNU}

Sequence of Utterances.
Total number of utterances is Ny .

Xi={zij:j=1:Np(w)}

Sequence of Feature Vectors for ut-
terance u;.

The number of feature vectors in ut-
terance u; is Np(u;) and the length
of each feature vector is L.

Xi — {m; tj=1: NF(Si)}

Sequence of Feature Vectors for
speaker 1.

This is the complete sequence of all
feature vectors over all utterances of
speaker s;, where the total number
of feature vectors for speaker s; is

Ny (si
Np(si) = X095 Np(u;).

XZ{SCi:iZI:NF}

Sequence of Feature Vectors.

This is the complete sequence of all
feature vectors over all utterances,
where the total number of feature
vectors is Np = Zf\g’l Nr(u;).

Table 2.1: Dataset Notation

training data via the Expectation Maximization (EM) algorithm [28], which
achieves Maximum Likelihood (ML) estimation with an iterative process.
A GMM with M components is defined as

M
p(x|A) = Z We N(l‘luc, 3e) (2.3)

where x is a D-dimensional feature vector, w.,c = 1, ..., M are the mixture
weights and N (z|pe, Xe),c = 1,..., M are the component Gaussian densities,
each of them distributed according to a D-variate probability density function

of the form,

1
N(:B“l’ca Ec) =

(27T)D/2‘20|1/2

L (x — uc)*EC_l(m — uc)} (2.4)

with mean vector . and covariance matrix .. The mixture weights must
satisfy the constraint that Zivil we = 1. The complete GMM is parametrized by




the mean vectors, covariance matrices and mixture weights from all components.
These parameters are collectively expressed as,

A= A{we, e, Be} c¢=1,..., M. (2.5)

There are many possibilities in the parametrization of the GMM. The co-
variance matrices can be made diagonal to reduce the number of parameters,
or a full rank covariance matrix can be shared between all components. Also
the number of components must be chosen a priori. Usually the choice is made
based on the amount of training data.

It must be noted that using diagonal covariances doesn’t limit the represen-
tational power of GMMs. A large number of diagonal mixtures can fit compli-
cated distributions presenting correlation between features. Usually the use of
a GMM with full rank covariances or a diagonal covariance GMM with more
components lead to similar results.

The aim of ML estimation is to find the model parameters A that maximize
the likelihood of the GMM given the training data. Given a sequence of Np
training vectors X = {@1, ..., xn, } the likelihood of the data under the model,
assuming independence between training vectors, can be expressed as

Np
p(X[A) = Hp(wjlk) (2.6)

Direct maximization is not possible, but the ML parameters can be obtained
iteratively using a special case of the EM algorithm. An initial model A is ini-
tialized using Vector Quantization (VQ) and at each iteration a new model X
is estimated, such that p (X\S\) > p(X|A). The following are the EM update
formulas for a GMM with M components and diagonal covariance matrix. They
have to be applied for all mixtures (¢ = 1,..., M) and guarantee a monotonic
increase in the model likelihood. The iterative process is repeated until conver-
gence.

Mixture Weights

We = ~— > 7e(xy) (2.7)
Np =
Means
N
[Te = Z]‘:F1 Ye(@5) @5 (2.8)
c N .
Zj:Fl Yel5)
Variances
N . *
_ 92 Zj:F1 Ye(z4) diag(zjz;™) _9
5.2 = o - i (2.9)
Zj:l Ye(T;)



Where 7.(x;) is the a posteriori probability of component ¢ given vector x;,
also called responsibility of component ¢

_ We N(:Bj‘/»llcvzc)
Soaly wi N (@] e, )

Ye(xj) = Priclzj, A) (2.10)

For further readings on the EM algorithm see [11, 29].

The first step in developing the speaker verification system is to train one GMM
for each speaker s;, with ¢ = 1, ..., Ng. The EM algorithm is applied on each set
of feature vectors X’ separately, obtaining Ng speaker models.

Another key component is the Universal Background Model (UBM), a GMM
trained over all the feature vectors pooled from all speakers (or a large enough
number of speakers). This bigger GMM models the average distribution of
speech in the feature space, across a large population of speakers with many
different voice biometrics (pitch, vocal tract length, gender, age). The UBM is
necessary to normalize the scores of each speaker and it can be thought of as a
common reference against which each speaker is discriminated.

There are many approaches to training a UBM. The simplest one is to pool
together all the training data coming from all speakers and fit the UBM to it
using the EM algorithm (Fig 2.3a). It’s important to make this pooled training
data balanced over the different classes present in the dataset. For example
there should be the same amount of male and female speech when training a
gender-independent UBM.

The other approach is to fit separate UBMs over the sub-populations present
in the dataset, for example training one UBM for male speech and another one
for female speech (Fig 2.3b). The two models are then combined after training.
This approach is slightly more complicated, but one advantage is that different
amounts of data can be used for training the UBMs, and the balance between
them can be tuned after training when combining them in a single model.

Given the test utterance u; and the sequence of its frames X;, we test the ut-
terance against two mutually exclusive hypothesis

Hy:  wuy; is spoken by the hypothesized target speaker.
Hy:  wu; is not spoken by the hypothesized target speaker.

The optimal decision between the two hypothesis is given by the likelihood ratio
test
p(Xi|Ho) ] >©, accept Hy (2.11)
p (X, |H) < O, reject Hy '

where O is the decision threshold, usually a speaker-independent parame-
ter set after testing the system to obtain the desired trade-off between False
Acceptance and False Rejection.

The target speaker GMM models the positive hypothesis, p (X;|H;), while
the UBM models the negative hypothesis, p (X;|H1).
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Figure 2.3: Data and model pooling approaches for creating a UBM.
(a) Data from sub-populations are pooled prior to training the UBM
via the EM algorithm. (b) Individual sub-population models are
trained and then combined (pooled) to create final UBM. Taken from
[10].

In practice the frames X; of the utterance u; are assumed independent over
time and the log-likelihood is used to accumulate the scores and obtain the
log-likelihood of the whole utterance.

N (u;
logp (X;|\) = Z logp (x;]\) (2.12)
The log-likelihood ratio is defined as
A (X;) = logp (Xi|Am,) — logp (Xi[Am,) (2.13)

and the decision, given the threshold 6§ = log ©, is taken according to

A(X)) = >0, accept Hy (2.14)
Y <, reject Hy '

The same system can be used to perform closed-set speaker identification, in
which case the most likely speaker for test utterance u; is given by

§ = arg max log p (X¢|)\sj) j=1,...,Ng (2.15)
J
where Ay, is the GMM of speaker j.

Much research has been conducted in order to improve the performance of
the GMM-UBM system for speaker verification. In particular MAP adaptation
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of speaker models from the UBM has been shown to be promising [10]. Also

many different scoring techniques have been tried to compensate for channel

variability and other mismatched conditions between training and test data.
For further reference on these techniques and GMMs for speaker recognition

we refer to [4, 30-32].

Figure 2.4 and Figure 2.5 show the scoring of a speech utterance in speaker

verification and speaker identification mode respectively.

Targeted
Speaker
Model
+ AX) AX)= 0
Features — Accepted

—_— Extraction / z ———3  Decision
UBM A(X)<8

Rejected

Figure 2.4: GMM-UBM based speaker verification

GMM
Speaker 1

L ]
Feature | %1 %2%- . | SELECT |, Speaker
"*H‘ Extraction > : ARG MAX Identity

GMM
Speaker Ng

Figure 2.5: GMM based speaker identification

In our case we trained a GMM-UBM following the data pooling approach
of Figure 2.3a. We created a balanced training set, taking 10 to 15 utterances
per speaker from a set of 330 speakers with same amount of female and male
speakers. The pooled training data for the UBM consisted of approximately 20
hours of speech. We chose a GMM-UBM with 1024 components and diagonal
covariances.

For the individual speaker models we decided to use GMMs with 32 com-
ponents and diagonal covariances ¥;, resulting in around 80 training examples
per parameter.

2.4.3 Speaker recognition with i-vectors

The goal of the i-vector method is to represent each speaker with a fixed-
dimensional vector and perform classification with a simple distance measure in
the i-vector space.

This is achieved by performing factor analysis on the supervectors, map-
ping each utterance to a low-dimensional space. This space is named the to-
tal variability space because it models both speaker and channel variabilities.
Techniques like LDA and WCCN are used to obtain features with strong inter-
speaker variability and low sensitivity to other factors like channel conditions
or within speaker variabilities.
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The first step is to use the GMM-UBM to extract Baum-Welch statistics
for each utterance. These statistics are necessary to construct the super-vectors
and are defined as

Ne(ui) = Y el@iyg) (2.16)
j=1
NF(uL)
Fo(w) = Y ve(®@ij)zig (2.17)
j=1
Se(u;) = diag Z Ve(Ti,j)Ti, 55 4 (2.18)
j=1

with 7.(x;,5) as the posterior probability that feature vector x; ; (j-th vector
for utterance i) is generated by the mixture component ¢ calculated with the
UBM, as shown in equation 2.10.

N, F, and S, are the 0", 15 and 2°¢ order Baum-Welch statistics respectively.

The 1% order statistics, relative to the mean-values of the feature vectors under

soft alignment with each UBM component, are stacked to form the super-vector
representation. The super-vector for utterance ¢ is defined as:

Fy(u;)

M; = | F.(u;) (2.19)

_FNC (ul)_

The dimension of the supervectors is Ny, = NoLp.

The i-vector method models the supervectors for the different utterances as
a linear combination of latent variables (the total factors) from a subspace of
much smaller dimensionality, thus achieving a great dimensionality reduction.
The decomposition of supervector M; is:

M; = M + Tw; (2.20)

where M is the speaker and channel-independent supervector, which can be ob-
tained from the UBM by stacking the mean vectors of each mixture component.
M; and M are supervectors of dimension Ny, x 1.

The assumption is that for a randomly chosen utterance w;, M; is Gaus-
sian distributed with mean M and covariance matrix B. Since M is completely
determined by the UBM, the problem is how to estimate the supervectors co-
variance matrix B. Despite having very high dimensionality, in practice B is
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a low rank matrix (the rank is bounded by the number of training speakers),
which allows to derive an exact solution to the estimation problem.
For any i, it must hold that

M; ~ N (M, B) (2.21)

If Ny is the rank of B, we can approximate it with a rectangular matrix of
smaller dimensionality as follows:

B=TT* (2.22)

where T is defined as the total variability matrix of dimension Nj; x Ny and
rank Ny, where Ny is much smaller than Ny, typically 200-300. This implies
there is a unique vector w; such that equation 2.20 holds true. The assumption
of equation 2.21 is equivalent to saying that w; is a random vector of size Ny x 1,
having a standard normal distribution A(0, I). Its elements are the total factors
and we refer to this new vector as the identity vector of utterance 4 (i-vector for
short).

Let us now define ¥ as a diagonal covariance matrix of dimension Ny; X Ny,
which models the residual variability not captured by the total variability matrix
T. To explain this further, if X; is a feature vector from utterance u; and mixture
component ¢, we have that

X;=M;.+E (2.23)

where the residual E follows the distribution N (0, X.). The subscript ¢ refers to
subvectors corresponding to mixture component c. ¥ is therefore a bock matrix
composed of diagonally stacking the submatrices ..

The goal in training the i-vector model is to get ML estimates of the matrices
T and X, which can then be used to extract the i-vectors w; for each utterance
u;. The objective function to be maximized over (7, X) is the log-likelihood of
the data X;, denoted as:

[[Pr=(x) (2.24)

where the product extends over all utterances in the training set. A closed form
expression for this likelihood, as well as the complete derivation and the proofs
of the EM algorithm to maximize it, is given in [33]. We will now focus on
presenting the notation and core equations that are necessary to implement this
EM algorithm, in order to train the matrix 7" and extract the i-vector w; for
each utterance.

Given [ the Lp-dimensional identity matrix, let us define a new vectorized no-
tation for the Baum-Welch statistics.
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[Ny ()T ]

NN(u;) = No(ug)I (2.25)
i N (ui) ]
Ry

FE(u) = F.(us) (2.26)
[ Fve(w)

[S1(us) |

55(u;) = Se(us) (2.27)

I Sve (ui)]

NN (u;) is a diagonal matrix of dimension Nas X Nas, while vector F'F'(u;) and
matrix SS(u;) are obtained from the centralized Baum—Welch statistics Ft.(u;)
and S¢(u;), defined as

li:‘c(ui) = F.(u;) — Ne(ug)me (2.28)
Se(ui) = Se(ui) — diag (Fe(ui)mg + meFe(ui)® — Ne(ui)meme) (2.29)

where m,. is the mean of UBM mixture component c.

Given an initial random estimate for the total variability matrix T', the i-vector
for utterence i is obtained as a MAP estimate using the following equations:

Li=1+T*S"'NN(u)T (2.30)

w; = L7 T*S 7 FF (u;) (2.31)

Given the i-vectors w; for the complete set of utterances, the total variability
matrix T can be updated, where each row of T is estimated through a least
squares estimation as explained in Proposition 3 in [33]. First some additional
statistics are accumulated across the whole set of utterances:
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Ny
Ao = Y Ne(w)L;! (2.32)
1=1

Nu

© = Y FF(u) (L;7'T*Sy FF(u)) (2.33)
Zii

NN = > NN(u) (2.34)

Then the T matrix estimate is updated as follows

] [ A7 ey [, |
T=|T. | =| A;'®, where &= | @, (2.35)
[ Tne]  [AnL®ne ] [P e |

Optionally, the covariance matrix of the residuals ¥ can also be updated

Ny
Y =NN"! (Z S8 (u;) — diag (@T*)) (2.36)

or it can be kept constant, after initializing it by diagonally stacking the covari-
ance matrices of the UBM.

By iterating between the update of T' and w; the estimate of T" will converge in a
few iterations, after which the final i-vectors for each utterance can be extracted
using equations (2.30) and (2.31). It can be proven that this process iteratively
solves the least-squares problem defined as

min || FF (u;) — Twl|” (2.37)

After obtaining one i-vector for each utterance, a single speaker model can be
built by averaging all i-vectors of the same speaker. The target and test i-vectors
can then be compared using a similarity score called cosine distance:

(wy, ws)
deos (W1, ws) = ————— = c08( Ay, w 2.38

If the two i-vectors point in the same direction the cosine distance takes the
highest possible value of 1, while when they point in opposite direction it takes
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the minimum value of —1. The score is therefore sensitive only to the angle «
between the two i-vectors, regardless of their length.

The scoring of i-vectors is usually preceded by channel compensation tech-
niques. LDA, followed by WCCN and length normalization has shown to lead
to highest verification accuracy, as described in [5]. A good visualization of the
effect of these techniques is shown in fig 2.6. The i-vectors become much more
compact in the feature space, ideally being sorted by angle on a hypersphere
around the origin (fig. 2.6b), which is ideal to discriminate between speaker
models using the cosine distance.
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Figure 2.6: I-vector transformations for channel compensation. Taken
from [5].

(a) I-vectors of five speakers after two dimensions LDA projection.
(b) I-vectors of five speakers after two dimensions LDA /WCCN pro-
jection and length normalization.

Denoting with w; and ws the channel-compensated i-vectors of the test and
target speaker respectively, the verification decision is taken according to

>0 t H
dcos (Wt,ws) =<7 aC,Cep 0 (239)
<6, reject Hy
where 6 is a speaker-independent threshold.
The formula for speaker recognition is
§ = argmax deos (we,wj) j=1,...,Ng (2.40)

J

More work has been carried out to improve the i-vector extraction and speed-up
the training of the 7" matrix. Also PLDA for channel compensation has been
proposed in [34] and led to state-of-the-art performance on many benchmark
datasets.

For further reading on the i-vector model we refer to [5, 35, 36]. For more
advanced scoring techniques and improvements of PLDA see [37, 38] and [39]
for optimized i-vector extraction.
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Chapter 3

Deep Neural Network for
Speaker Recognition

Motivated by the recent successes of deep learning on many classification tasks,
we decided to explore the use of a DNN to solve the speaker identification
problem.

3.1 Overview of the Field

ANNs are a family of models inspired by the brain which can learn how to
approximate arbitrary multi-dimensional functions that may present complex
non-linear relationships between input and output. The history of ANNs dates
back to 1958, when Frank Rosenblatt created the perceptron [40], but it’s only
with the introduction of the backpropagation algorithm [41] by Paul Werbos
in 1974 that ANNs could be trained effectively and started to be applied to
many real-world pattern recognition tasks. In 1991 Kurt Hornik showed that
the standard multilayer feedforward network with as few as a single hidden layer
is a universal function approximator, provided this layer has a sufficient number
of hidden units [42]. A graphical representation of a feedforward ANN with a
single hidden layer is given in fig 3.1.

Most researchers believed that using a larger number of hidden layers could
be advantageous. This is strongly motivated also by findings in neuroscience,
where it is well known that the brain processes information through a stacked
architecture of layers organized in a hierarchy. In the example of the mammalian
visual system, the brain processes information with 6 layers of neurons, named
V1 to V6. V1 contains simple receptive fields, detecting features like oriented
edges, while neurons in the deeper layers V5 and V6 fire when presented with
more abstract and specific patterns, for example faces or a particular object [1].

Despite this knowledge, it remained a challenge to train DNNs. There were
two main problems:

e The non-convexity of the cost function to be minimized during training.
These had long been one of the main theoretical disadvantages of ANNs
and in particular it was really hard to make DNNs converge to a good
local minima.
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e The huge number of parameters and thus computational power needed to
train the models on real-world datasets. Also bigger and deep networks
require more training data in order to learn useful mappings without over-
fitting.
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Figure 3.1: Feedforward ANN with one hidden layer

It was only around 2006 that the poor local minima problem was solved and
deep learning was revived, mainly due to the work of Geoffry Hinton and his
group. They showed that very deep nets could be conditioned towards a good
local minima by unsupervised pre-training of one hidden layer at a time [2].
Hinton used Restricted Boltzmann Machines trained in an unsupervised fashion
for the pre-training of the parameters in each layer, after which supervised
training of the network converged much faster to a good local minima. From
that year on, also thanks to larger computational power through the use of
GPUs, deep learning has produced state-of-the-art results on many machine
learning tasks, from computer vision to speech recognition and natural language
processing.

Interestingly, when applied for vision and object recognition tasks, it was
found that the features learned in deep architectures resemble those observed in
the first two layers of the mammalian visual cortex (areas V1 and V2) [43], and
that they become increasingly invariant to factors of variation (such as camera
movement) in higher layers [44].

Another important finding was that the use of rectifier non-linearities in the
hidden units, also called reLUs (Rectifier Linear Units), speeds up the learning
of DNNs and can achieve good results even without pre-training [45].

Also the introduction of Dropout [46] and other advanced regularization
techniques to prevent overfitting contributed to the success of DNNs on many
real-world datasets with limited amount of training data.
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3.2 Mathematical formulation

Informed by these recent findings, we present now the architecture and tech-
niques we used to train a DNN for speaker identification.

One powerful property of an ANN is that it can solve a multiclass classifi-
cation problem with a single discriminatively trained model. In particular the
network can be trained to directly estimate the Bayesian a posteriori probability
for each class, namely p (C;|X). Following the minimum-error bayesian frame-
work, classification is performed by assigning the input to the class with the
highest Bayesian posterior probability. Also interpretation of network outputs
as Bayesian probabilities allows outputs from multiple networks to be combined
for higher level decision making, simplifies creation of rejection thresholds and
makes it possible to compensate for differences between pattern class probabil-
ities in training and test data [47].

The architecture we decided to use is therefore a multiclass DNN with
two/three hidden layers. The hidden units have reLU activation function and
the architecture is fully connected. The output layer has as many units as classes
(the target speakers) and uses the softmax function to estimate posterior prob-
abilities.

Let’s define some mathematical notation in order to better define these concepts.
We refer to the input units as x; with ¢ = 1,..., Lp. At each time frame the
network receives one MFCC feature vector as input and feedforwards it through
the network. Hidden unit j in layer [ will be referred to as y](.l) with j =1, ..., D;.
The matrix of connections modelling the synapses between neurons of layer [ — 1
and [ is W, Its entries are w;i, the synaptic weight between neuron ¢ in
layer [ — 1 and neuron j in the following layer I. The output units are z; for
k =1,...,Ng and they have to be as close as possible to the real target of the
network og, which is 1 for the target class and 0 for all the other speakers.
Equivalently the notation can be written using vectors, for example o is a one-
hot vector! of target posterior probabilities. The input to each hidden (or
output) unit j, for all layers from 2 to the number of layers L, is a linear
combination of all the units in the previous layer plus a bias term, and we will
refer to it as net;:

D
2 2 2
et = S ulfa o )
Dy_1
net(l) = Z w] lyz (l) l = 27 ceey L (32)

Given this notation, the activation of hidden neuron j in layer [ is:

3\ = max (0, net§l>) 1=2,..,[—1. (3.3)

n one-hot vectors all the components are 0 except the one corresponding to the target
class, which takes the value of 1.
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where we applied the reLU non-linearity max (0, z). reLUs are more plausible
activation functions for modelling the firing of a neuron, being unbounded for
x — oo and also having true zero activation when x < 0. They naturally lead to
sparse representations in the hidden layers of the network, which again is more
in-line with what is observed in the brain, where only 1% to 4% of neurons fire
at the same time [48]. Sparsity is also an advantage from a computational and
mathematical perspective, as explained in [45]. In particular computation is
linear in the subset of active neurons, since the gradient is always 1 for active
neurons there is no vanishing gradient problem during backpropagation (while
the gradient is 0 for saturating neurons using traditional activation functions
like sigmoid or tanh). We chose reLUs also for their faster training time and
ability to find good local minima even without pre-training.

The softmax output function for output unit j is defined as:

enetj

Zj = ————— 3.4
o (3.4

Where we omitted the superscript L, which indicate that net; refers to the last
layer L.

This output function is a generalization of the sigmoid function to many
outputs and guarantees that the outputs are bounded in [0, 1] and sum up to 1,
as is supposed to be for the posterior probabilities of all target speakers.

With these network architecture we have a powerful non-linear predictor that
outputs the posterior probability p (si|z;) for each speaker s, given the input
feature vector x;. In order to obtain a single score for utterance u; we have
to aggregate the scores coming from all its frames X;. Assuming independent
frames over time we can compute the following

Np(ui)
logp (sl X;) = Y logp(sklz;) (3.5)
j=1

The utterances have different length, thus to achieve comparable scores between
different utterances we decided to normalize the scores dividing by the number
of frames Np(u;) in the utterance. This leads to a score which is the average
log-likelihood of the speaker over the utterance frames.

The classification decision for speaker identification is then taken with the
following rule:

L log p (sx|X;)
§ = argmax —————*

k=1,..,N 3.6
I Ny () s (3.6)
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And since the score does not depend on the length of the utterance, we can
use the trained network also for speaker verification, by setting a speaker-
independent threshold 6 and using it to reject or accept an utterance looking at
only one output unit k& of the network (one speaker).

(3.7)

logp (sk|Xi) _ )20, accept Hy
Np(u;) <6, reject Hy

Where Hj is the hypothesis that u; is spoken by sg.

3.3 Learning with backpropagation and related
tricks

In order to train the ANN we have to update all its parameters, which is up-
dating all the matrices of weights W) and biases b;l) forl=2,..., L.

To do this we use an optimization approach. Given a training set
{(az(i), o(i)) i=1: NF} composed of N feature vectors with the correspond-
ing speaker target, we define the negative log-likelihood cost function over the
training set as:

Np
1 . .
L(W)= N, E 0 log z(® (3.8)

Where we highlighted the dependency of the cost from the whole set of weights
W, which are the free parameters of the network we can update during training.
We use the notation W to refer to all the free parameters, both the weights w; ;
and the biases b;.

For every training frame x(® the cost is given by the estimated negative
log-likelihood of the target speaker. In the ideal case the output is 1 for the
target speaker leading to a cost of 0, but the cost increases exponentially as the
estimated posterior probability gets smaller than 1.

Our goal is to minimize this cost function by updating W. Direct mini-
mization cannot be performed, but through the iterative optimization process
of gradient descent we can get closer and closer to a local minima. The gradient
descent equation is:

Wt = Wtfl - (39)

where 7 is the learning rate, an hyperparameter that must be set a priori and
controls the speed of the updates of W. If 7 is set too high the update can
become too big and the loss can start to oscillate inside a local minima or even
diverge. On the other hand, if i is too small, the descent in the space spanned
by W will take a very long time, with W changing just a little at every update
and moving very slowly towards a local minima.
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3.3.1 Stochastic gradient descent

The gradient for a particular training vector is computed using the backpropa-
gation algorithm [41], where the training vector is forward-propagated through
the ANN and then the error is back-propagated from the output towards the
input layer, in order to compute the gradient of L with respect to all the free
parameters w;,; and b;. For a good tutorial and mathematical explanation of
the backpropagation algorithm we refer to chapter 2 of [49].

If we want to optimize the learning over the whole training set, we need to
combine the gradients from all training examples. This leads to an estimate of
the gradient 887va after a full sweep through the whole training data. This method
is called full batch gradient descent and ensures that the cost is monotonically
decreasing with every update. The opposite strategy is to update W as often
as possible, using a single training example to estimate 68—‘%,. This approach is
called online learning, and leads to much more zig-zag on the loss surface due to
many updates with poorly estimated gradients that optimize only for a single
training example.

The best strategy, which combines frequent updates with better gradient
estimates, is called stochastic gradient descent, in which we update W after
estimating the gradient on a mini-batch of Np randomly selected training ex-
amples. Each training example is used only once until all of them have been
seen and one epoch of learning has been completed, after which the process is

repeated. We can summarize the three learning paradigms as follows:

e Full-Batch: only one update per epoch. Monotonically decreasing cost,
but slow learning.

e Online: Np updates per epoch. Cost oscillates a lot as a function of time,
but updates are very frequent.

e Stochastic/Mini-Bacth: Np/Np updates per epoch. Good trade-off be-
tween learning speed and accuracy in decreasing the cost.

Stochastic gradient descent is by far the most used training method for deep
learning. Especially when the training set is large and contains redundant train-
ing examples, it is hugely convenient to use mini-batches to speed up the learning
of the ANN.

3.3.2 Random weights initialization

The outcome of gradient descent depends on the initialization of W. If all
the weights were initialized equally the optimization would fail, because all the
neurons would be learning the same feature. The biases b; can all be set to zero,
but it is necessary to have a random initialization of the weights w;; to break
the symmetry of the ANN.

It is important to stress that not all random initializations are equally good:
the gradients and the attraction towards a good local minima depend strongly on
the initial position of W. Gradients can therefore become unstable if W is not
properly initialized. In particular we would like the activations to have the same
variance in each layer as a training vector is forward-propagated and the back-
propagated gradients should also have the same variance in each layer, so that
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each layer can learn at the same speed. With a purely random initialization the
gradient can start exploding or vanishing from one layer to the other, making
the training difficult. In particular some activations can saturate when the
activation is very high and the derivative becomes zero. Saturated neurons
have pretty much stopped learning, so we need to initialize W such that training
vectors and gradients flow well through the network, without saturated neurons
from the beginning.

Glorot has shown in [50] that poor weight initialization was one of the main
reasons why DNNs failed to be trained successfully, with the vanishing gradient
due to saturated neurons as one of the main reasons. He introduced a successful
weight initialization that solves the problem for tanh hidden neurons by ensur-
ing that the magnitude and variance of activations and gradients is conserved
by layer-to-layer propagation. The formula is commonly known as the Xavier
initialization method:

V6 V6

w~U |- :
VDi+Di—1 /Dy + Dy

(3.10)

Networks with reLU activation have been shown to be easier to train. reLLUs are
not prone to gradient vanishing: their linear part does never saturate, so that
a neuron is always learning in its positive part or completely shut off and not
learning in its negative part. In [51] He introduced a new initialization designed
especially for reLLU neurons, with the goal of better and faster convergence that
does not stagnate even with very deep networks:

2
w® ~ 11
N [0, B 1 (3.11)

We used He’s initialization method for our DNN with reLLU activations. For the
biases we decided to set them to the small constant value of 0.1, to push more
neurons to be in the active linear state at the beginning of training.

3.3.3 Nesterov’s Accelerated Gradient

Many improvements over simple gradient descent have been introduced to speed
up and improve the training of ANNs. One very successful technique is that of
momentum, a way of smoothing the movement of W on the cost surface [52].
The core idea is to accumulate the updates in a velocity vector which points in
the direction of persistent reduction of the cost. The momentum update tends
to stagnate less in the valleys of the cost function and also gets rid of oscillations
when going down a ravine with high curvature. This leads to faster convergence
to a local minima. The equations for standard momentum update are:

V¢ = MUVt — UVL (Wt—l) (3.12)
Wt = Wt,1 + vy (313)
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where p € [0,1] is an hyperparameter called the momentum constant, which
controls how much contribution the past updates have on the velocity vector v.
Typical values for p are 0.9 or 0.95, while setting p = 0 leads to the standard
steepest descent update.

Nesterov’s Accelerated Gradient (NAG) is a first-order optimization method
proven to achieve a better convergence rate with gradient descent for convex
functions [53]. Recently Ilya Sutskever derived a new formulation of the NAG
equations [54], showing that it implements an update rule which is very similar
to standard momentum, but with a key difference that makes it perform better
in many occasions. The NAG update equations are:

vy = pvi_1 —nVL (Wtfl + ,U,tfl’Utfl) (314)
Wt = Wt—l —+ vy (315)

The only difference is the position at which the gradient is evaluated at each
time step. This is best explained graphically: in fig 3.2a we can see that, at
a particular time step ¢, standard momentum computes the gradient at the
starting position, accumulates it in v and makes a big jump in the resulting
direction. NAG makes the jump first, computes the gradient at the resulting
position W;_1 + pu;_1v¢—1 and uses it to make a correction. In the words of
Geoffry Hinton, ”it is better to gamble and then make a correction than to make
a correction first and then gamble”.

Figure 3.2b shows the minimization of a two-dimensional oblong quadratic,
where it is evident that NAG changes v in a quicker and more responsive way,
achieving higher stability over many iterations, while standard momentum os-
cillates strongly along the high-curvature vertical direction.

For our implementation of NAG we used the formulation proposed by Yoshua
Bengio in [55], which focuses on the ”peeked-ahead” parameters ©;_1 = W;_;+

Ht—1V¢—1.-

vy = p Vi1 — M1 VDEL (@tfl) (3-16)
@t = @tfl — Ut—1Vi—1 + V¢ + Uy (317)
= O 1+ pppe—1ve—1 — (L4 ) m—1 VL (O4_1) (3.18)

Assuming zero velocities at the beginning and at convergence of optimization,
the parameters © are equivalent to W. The learning rate and the momentum
hyperparameters can be functions of time, but in practice we use a constant
wand n. In [55] it is noted that NAG can take advantage of higher values of
1, storing past velocities for a longer time while actually using those velocities
more conservatively during the updates.
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Figure 3.2: a) One step of Nesterov’s Accelerated Gradient and of
standard momentum. b) The trajectories of GD (red), momentum
(green), and Nesterov’s accelerated gradient (blue). Both methods
had p set to 0.95. The global minimum of the quadratic is in the
center of the figure, at (0,0). Image taken from [54].

3.3.4 RMS-prop for adaptive learning rates

Another optimization improvement is to change the value of the learning rate
over time. A good intuition is that if the learning rate is too big the system has
too much kinetic energy and our parameter vector will start to bounce around
the cost surface chaotically. This is particularly true for the later stages of
learning. In the beginning it might be advantageous to have a big learning rate
and get a quick descent, but after a few epochs we might reach a local minima.
Thus it is better to anneal the learning rate to try to descend deeper in the local
minima without bouncing back up.

Another thing that must be stressed is that gradients vary widely in their
magnitudes. Some gradients can be much higher than others, so it is difficult
to set a global learning rate. This leads to the idea of per-parameter learning
rates, where each weight has a different learning rate which changes over time
depending on the values of the partial derivatives of L over time.

We will present here an unpublished method called RMS-prop, which was
introduced by Geoffrey Hinton and Tijmen Tieleman and for which we reference
the Coursera lecture slides available from the university of Toronto [56]. Its
core idea is to keep a moving average of the squared gradient for each weight
separately and then use it to normalize the global learning rate n separately for
each weight.

@
ow

S(w,t) =aS(w,t—1)+ (1 — a) < (t)> (3.19)

where « is the integrating constant for the moving average of the squared gra-
dients. Typical values for a are in the range [0.9,0.99].
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The learning rate of parameter w as a function of time is then obtained as:

Ui

e(w,t) = ———— 3.20
(w, t) S D) (3.20)
and the gradient descent update for parameter w becomes:
oL
wy = w1 —e(w,t — 1)6wt_1 (3.21)

The method is called RMS-prop because the normalizing factor for the gradients
is the root mean square of each partial derivative.

The effectiveness of these optimization methods for minimizing the cost func-
tion was confirmed in our experiments. Fig 3.3 shows the results of training a
DNN with three hidden layers of size 500 for a speaker identification task with
80 speakers. Comparison is made between training with standard Stochastic
Gradient Descent (SGD), NAG and RMS-prop. The convergence over the 20
epochs of training is fastest when combining RMS-prop with NAG, but even
alone the two methods achieve a great training speed up compared to standard
SGD.

Also the use RMS-prop makes it easier to set the initial learning rate 7. Since
it is adapted automatically for every w during training, the outcome depends
less on its initial value, while for simple gradient descent it must be fine-tuned
to achieve a reasonable learning speed.

3.3.5 Regularization

The aim of regularization for training a machine learning model is to prevent it
from overfitting the training data, which would lead to poor generalization and
bad classification accuracy on real-world examples. DNNs are very powerful
models with lots of parameters, and they can thus overfit easily, especially if
the training set is small. Alternatively we can say regularization adresses the
bias/variance dilemma: it tries to find an optimal trade-off between the high
bias of a very constrained model and the high variance of a model with too
much freedom [57].

The classic approach to regularize a model is to introduce a penalty in the
cost function, which forces the weights to have smaller weights and thus avoid
spikes and strong non-linearities which could lead to an overfitted model. This
class of methods is called weight decay and is a special case of Tikhonov regu-
larizaion [58]. Two of these methods which are widely used in the training of
ANNSs are L2 and L1 regularization.

Another approach is that of early-stopping [59]. The idea is to stop the
training when the network starts to overfit, by monitoring the loss or the clas-
sification error on both the training data and an independent validation set.
There are many heuristics to decide when exactly to stop and a good review of
them can be found in [60]. The basic idea is that when the performance on the
validation set stops increasing and starts to drop the model is overfitting. A
simple graphical representation of this is shown in fig 3.4. After a large enough
number of epochs any performance gain over the training set does not generalize
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Figure 3.3: Training loss as a function of epochs of training for stan-
dard SGD (blue), NAG (red), RMS-prop (yellow) and NAG+RMS-
prop (purple). The global learning rate n was 0.003 for the first two
methods and 0.0001 for the curves using RMS-prop. The hyperpa-
rameters were y = 0.95 and o = 0.99.

to real test data, but just overfits the training set. The goal is to stop training
at the optimal point where the validation error (or loss) is minimal.

Finally, a new powerful regularization method for DNNs, called dropout,
has been introduced recently by Hinton [46, 61]. Tts core idea, inspired by how
genes are transmitted in sexual reproduction, is to shut down randomly a subset
of hidden units for each training example. The most common implementation
shuts down each unit with probability 0.5. This approach forces each unit to
learn more useful features by decoupling it from the other hidden units and thus
prevent complex co-adaptations of feature detectors. Dropout has been shown
to be a very powerful and effective regularizer, having also properties that link
it to the technique of bagging, where a large number of models are trained on
a subset and then averaged together. We can think of dropout as sampling a
different network architecture for every training example it is presented with,
and then averaging them all together by forcing them to share the same weights.
In this sense each model is strongly regularized by all the other models. At test
time all hidden units are used, but their outgoing weights are halved. Hinton
proved that, for a softmax network with a single hidden layer, this computes
the geometric mean of the predictions of all possible sub-models. The number
of sub-models grows exponentially with the number of hidden units, so dropout
is a really extreme form of bagging: averaging an exponential number of models
trained on a single example.
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Figure 3.4: Early stopping of training to prevent overfitting of the
model

A DNN which is overfitting will generalize better to the test set when trained
with dropout. Hinton suggests to use a large enough model that can overfit the
training set easily and then train it with dropout, which can be rephrased also
as: “there should be many more synapses than experiences, therefore many
more parameters than training examples”. This seems to work really well when
we have enough time to train the model with dropout and make it converge,
much better than using early-stopping. The problem is this kind of training
process usually takes a very long time.

In our case, given the big training set and our need to train the models in
a reasonable time on a CPU to perform experiments, we decided to use classic
weight penalty or early stopping for regularization.

For L2 regularization, the cost function in equation 3.8 is modified as:

Ng
1 . .
L(W) = N > 0@ logz® + 1) " w? (3.22)
=1 w

While for L1 regularization we have:

Ng
1 . .
L(W)= N > 0@ logz® + 1) |ul (3.23)
=1 w

L2 and L1 refer to the fact that we use the L2 norm or the L1 norm of
W to penalize models with large weights. The hyperparameter A\ must be
tuned to achieve the desired bias/variance tradeoff, where A = 0 is equiv-
alent to no regularization and a large A would lead to a very constrained
model. It is common to look for the best A by searching in the set of values
[0.01,0.03,0.001,0.003,0.0001, ...].

A good explanation of the difference between the two methods is given by
Nielsen in [49]. ”When a particular weight has a large magnitude |w|, L1 regu-
larization shrinks the weight much less than L2 regularization does. By contrast,
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when |w| is small, L1 regularization shrinks the weight much more than L2 reg-
ularization. The net result is that L1 regularization tends to concentrate the
weight of the network in a relatively small number of high-importance connec-
tions, while the other weights are driven toward zero”. L1 thus is said to enforce
more sparsity in the model, which can be advantageous for many tasks, for ex-
ample compressing singals. In [45] Glorot uses L1 penalty to enforce sparse
representations in DNNs with rectifier non linearities. His experiments suggest
that sparsity is a very desirable property which improves classification general-
ization up to a certain percentage, as shown in fig 3.5.

— Polynomial fit, degree 2 .

Final test error (%)

1.2 | | ° | 1 1
75 80 85 90 95 100
Final averaged sparsity (%)

Figure 3.5: Influence of final sparsity on classification accuracy. 200
randomly initialized deep rectifier networks were trained on MNIST
with various L1 penalties (from 0 to 0.01) to obtain different sparsity
levels. Results show that enforcing sparsity of the activation does not
hurt final performance until around 85% of true zeros. Taken from
[45]

In practice L2 and L1 perform very similarly for the purpose of regularizing
ANNSs for most classification problems. In our experiment we tested both meth-
ods and found that we achieve equivalent performance by tuning the coefficient
A properly for each method.

3.3.6 Learning with imbalanced classes

A problem we faced in training a DNN on the speakers of the Librispeech corpus
is that of imbalanced classes. The amount of training data varies a lot between
different speakers: each speaker has a different number of utterances and each
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utterance has a different number of training frames. Variance over the training
set was quite big, with some speakers with as few as 15 training utterances and
others with more than 150. The length of utterances varied between roughly 3
to 30 seconds. This meant that after extracting the dataset we had some classes
that were under-represented in the training set, while some other speakers had
almost 4 times more training data than most other speakers.

This is a typical problem for both binary and multiclass neural networks. If
during each epoch of training the network sees a different number of examples
for each class it can tend to optimize its parameters in the direction of the
dominant classes, while neglecting the smaller classes. This can be diagnosed
easily by looking at the precision and recall performance metric: big classes tend
to be favoured in classification, achieving high recall but low precision, while
small classes are frequently confused for the bigger ones, having thus very low
recall.

Much research has been conducted for this type of problem, often referred to
as imbalanced and cost-sensitive learning. We refer to [62] and [63] for a review
of the topic. Most papers focus on the two class problem where one class has a
much higher importance than the other. The typical example is that of cancer
detection, where the two classes are very imbalanced in the training set and the
cost of misclassifying a positive for a negative is much higher than misclassifying
a negative for a positive.

Our case is much different and it makes it difficult to follow the cost-sensitive
learning approach. Ideally we would like to give the same importance to each
speaker and we don’t have a way of setting a priori the cost matrix for misclassi-
fying one speaker for the other. One idea would be to penalize misclassification
of male for females and the other way around. Also other criteria could be used,
but it would lead to a very ad-hoc technique.

In practice we tried to solve the problem in the easiest way possible. The
simplest way to deal with imbalanced classes is to randomly sample the training
set. Undersampling is used to shrink the bigger classes and upsampling to give
more weight to the smaller classes, thus achieving the same amount of training
frames for each speaker. This approach is straightforward to implement and it
is worth trying as a first solution to the problem.

As explained in [64], oversampling usually increases the training time and
can lead to overfitting the small classes, due to the use of exact copies of the
training examples. A possible solution is to upsample in a smarter way, like in
the SMOTE algorithm [65], where synthetic examples are created on the lines
between the minority class nearest neighbours. On large datasets it is usually
preferrable to use undersampling, especially when examples are not removed
randomly, but by using a smarter criteria based on the concept of Tomek links.
As explained in [66], these techniques try to get rid of borderline and noisy
examples, while keeping all examples that better represent the majority class.

In practice we implemented the simplest approach of random undersampling
most classes and upsampling the subset of minority classes in order to achieve
the same amount of training data for all speakers. This lead to satisfactory
results so we did not experiment with more advanced techniques.

We also tried a simplified version of cost-sensitive learning, similar to the
one proposed in [67]. The idea is to weigh the per-example cost differently
according to the amount of training data available for the example class. The
cost function in eq 3.8 is modified as follows:
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Where C’,gi) is the class of training example i. For each class, we define a cost
using the per class amounts of training data Nj;.

max; IV,

cost(Cy) = =1,..,Ng (3.25)

k

In this way the biggest class has a cost of 1, while a class with half its training
examples will have a cost of 2, and so on. This linear rescaling of the cost
function will give more importance to the examples of the minority classes,
therefore moving the classification boundaries in the direction of the majority
classes, which are weighted less.

Comparing the two approaches we found they both improve performance for
unbalanced training of ANNs, without any of the two being clearly superior in
classification accuracy. One nice aspect of the cost sensitive learning is the ab-
sence of any resampling, leading to a more automated training on complicated
unbalanced datasets. In practice though, we decided to use random reseampling
to speed up the training, which is advantageous for faster experimentation on a
dataset with lots of classes and training data like Librispeech.

To recap, in this chapter we presented the architecture and techniques we im-
plemented to train a DNN in a purely supervised fashion on the Librispeech
database. We explained the tricks of NAG and RMS-prop we used to improve
convergence and training time as well as regularization techniques to avoid over-
fitting and resampling and cost-sensitive learning to address the class imbalance
problem.

Using a properly tuned combination of this techniques we were able to signi-
ficatively improve the training time and accuracy of the DNN, achieving better
speaker recognition results than our baseline GMM and i-vector systems. This
higher accuracy comes at the cost of scalability, computational complexity and
memory allocation: a multi-class neural network is very costly and complicated
to train compared to a GMM. It has many more parameters and often requires
careful tuning of hyperparameters to perform at its best. The main drawback
we identified is that of scalability, and we will address it by introducing a new
hybrid approach in chapter 4.
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Chapter 4

Scalable Speaker
Verification with ANNs and
GMM-UBM

4.1 Motivation

Despite the superior performance of our discriminatively trained DNN, we were
not satisfied with the lack of scalability of the new system compared to the
baseline. In the GMM system we have a separate model for each speaker and
the process of enrolling a new speaker is straightforward and independent of
the speakers that have already been enrolled. We can also train and score the
speakers in parallel on different machines if required. The same holds for the
i-vector method, were we can use the same i-vector extractor to enroll speakers
in parallel. The big advantage is that once the per-speaker models are trained,
we can get rid of their training data if we want and still we will be able to extend
the system with new speakers in the future.

On the contrary, the DNN is a single big architecture that requires to see
all the training data of all speakers at once to be trained discriminatively. If we
want to add a single new speaker in the future, we would have to add a new
output neuron to the softmax layer and retrain the network on the whole training
set. We have to keep all the training data from all speakers and we cannot take
advantage of past training effectively. This problem has not received much
attention from the machine learning community., where usually a classification
problem is very well defined, with a fixed amount of classes that does never
change. For such problems a multiclass ANN is very well suited, but for many
real-world problems the number of classes needs to change over time. Think for
example if we were building a speaker recognition system for the employees of a
big company. The number of employees is constantly changing, with new ones
being hired and others being fired or leaving the company. The DNN would be
a very inconvenient system in this scenario. Also the DNN is a very big model
suited for computing the posteriors over the whole set of target speakers, but
in the speaker verification case we are interested in only one target speaker. If
we want to perform verification with the DNN we would still perform forward
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propagation over the whole network and then look at a single output neuron,
which is more costly than scoring a single smaller model like a GMM.

4.2 The ANN-UBM method for speaker verifi-
cation

The above observations suggest that for practical speaker verification having a
separate model for each speaker is advantageous. Motivated by this, we came
up with a way for using discriminatively trained DNNs, with their advantages in
terms of classification performance and representational power, but maintaining
the advantage of having one model per speaker for superior scalability.

The idea is very similar to the One-Against-All strategy to decompose a
multiclass problem into a set of smaller binary problems. This is still the most
popular strategy for many multiclass classifiers, in particular multiclass SVM
[68]. The idea is to train as many binary classifiers as classes, with each classifier
learning to discriminate one single class against all the other classes pooled
together. At test time all classifiers are scored and the class with the highest
output is chosen, in a winner-takes-all fashion.

This simple idea seems very suitable for our goal of having one DNN for each
speaker, but it doesn’t solve the scalability problem because all the training data
from all classes needs to be available and pooled together to train each DNN in
a discriminative way.

We suggest using the UBM to solve the problem of the adversarial data. By
definition the UBM models the distribution of all possible classes and in our case
we already use it to model the rejection hypothesis in the GMM system. Our
idea is to generate the adversarial training examples using the GMM-UBM, so
that each network will learn to discriminate between the target speaker data and
the impostor speaker data generated with the UBM. The training is outlined
in figure 4.1, where for each speaker k we train a separate ANN with a single
sigmoid unit as the output, which estimates the posterior p (si|z;) for each
training frame z;. The target training frames are the MFCC frames extracted
from the utterances of target speaker k and have target label o = 1. The
impostor training data is generated on-the-fly with the GMM-UBM and have
target label 0o = 0.

Target vee Kq X3 X3 e -
Speaker k iabel -1 g
Sp):;[:ler k Scl)%rtﬁlltd P(kix)
vee Xg X5 Xg ...
GMM/UBM >
fabel=0

Figure 4.1: The proposed method for modular ANN training using a
GMM-UBM. Each speaker s; is modelled by one ANN with a sigmoid
output neuron to model the posterior probability p (si|z;)
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By using this hybrid generative-discriminative approach we can maintain
full scalability and still use discriminatively trained DNNs, which have more
representational power and can learn complex invariances that could lead to
robustness to noise and other characteristics which are difficult to obtain with
a GMM. The system is also more suited for speaker verification, since we can
score each speaker independetly of each other. We will refer to this new method
as ANN-UBM to distinguish it from the DNN presented in chapter 3.

The scoring is straightforward. Since each network outputs postrior proba-
bilites, we can get the log-likelihood over all the frames X; of utterance u; via
eq (3.5). The classification is then performed using eq (3.6) for identification
and eq (3.7) for verification. It is worth noting that the posterior probabilites
are over only two classes, since each network is a binary model which discrimi-
nates between a target and the generated impostor data. We can qualitatively
expect the threshold 6 to be around log(0.5) for speaker verification with this
architecture.

The idea presented here is very general and could work with other discrim-
inative classifiers, like SVMs. We decided to use ANNs to have a more direct
comparison with the DNN presented in chapter 3. Training a large number of
ANNSs is challenging because it is not easy to optimize hyperparameters sepa-
rately for each network. By using RMS-prop with a = 0.99 we got rid of the
problem of the learning rate, since it adapts automatically during training. We
also used NAG with mu = 0.95 to speed up convergence. We added L1 regu-
larization with the same parameter A for all ANNs, optimized with the overall
test accuracy as objective. Finally we chose to use early stopping by tracking
the loss over validation data taken as 10% of the training set before learning.
In this way we can set a common maximum number of epochs for all ANNs.
If the validation loss stagnates or increases for two consecutive epochs we stop
the training. This is a very simple rule which could be improved as described
n [60], but we obtained satisfactory results so we decided to keep our simple
early-stop decision.

Moreover we performed optimization on the amount of adversarial data to
generate with the GMM-UBM. The class modelled by the UBM should in theory
be larger than the target speaker, since it models all the possible adversarial
speakers. We therefore varied the ratio between the amount of adversarial and
target data. We found that the best performance on the test set was achieved
by using twice as much data generated with the UBM.

In this way we managed to train all networks without having to worry about
hyperparameters and avoiding overfitting. Figures 4.2a and 4.2b show an ex-
ample of training 50 ANNs with early stopping and with the maximum number
of epochs set at 30. Some networks stopped earlier than the others and overall
it is clear that none of the networks overfitted. If one network overfitted we
would see the characteristic U-shaped curve in the validation loss, while here
the training loss seems to have almost converged for most networks and the
validation loss also oscillates around a stable final value.

It is also interesting to note that some networks reach a smaller loss value
than others, with as much as 100% difference. This could indicate that some
voices are much more similar to the average human voice modelled by the GMM-
UBM, and thus are difficult to discriminate perfectly. The curves reaching a very
low cost probably come from speakers with very peculiar voices which can be
easily discriminated from the impostor data.
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Figure 4.2: Training (a) and validaton (b) loss as function of time for
the novel ANN-UBM method
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Chapter 5

Experiments and Results

All the experiments were carried out at Ericsson research using MATLAB as the
programming environment. We used our own MATLAB implementations of all
the algorithms described in the thesis report.

The dataset we chose for our experiments is the Librispeech ASR, corpus [6].
It consists of audiobooks read-out-loud by 2483 speakers, 1281 male and 1202
female volunteers who recorded their voices spontaneously. The speech signal is
usually clean, but the recoding device and channel conditions vary a lot between
different utterances and speakers. This makes it an interesting dataset to test
algorithms for practical applications. Every speaker has a different amount of
recorded utterances and each utterance has a variable length between 3 and
30 seconds, with the average length of roughly 15 seconds. The Librispeech
database is open access and can be freely downloaded for further experiments
or comparisons.

We decided to keep 70% of the utterances of each speaker for training, and
the reamaining 30% as a fixed test set for evaluation.

To train the UBM we pooled together the MFCC training vectors from 330
speakers, 166 female and 164 male. This amounted to approximately 20 hours
of clean speech. We trained a GMM with 1024 diagonal components on the
pooled data.

For the speaker dependent GMMs we used 32 components with diagonal
covariance matrix, in order to have enough training data per parameter, while
for the i-vector system we set the dimension of the i-vectors to be 200.

The hyperparameters and settings for the training of the DNN are shown
in table 5.1. We trained for only 5 epochs because of time constraints. Since
the network has a huge number of parameters it takes a long time to perform
SGD. Thanks to the optimization methods described in chapter 3 the network
achieved a good local minima even after only 5 epochs. We found that the
best test performance was achieved without the need to add any regularization,
which means the DNN did not overfit and generalizes well from training to test
data.

For the ANN-UBM method, the parameters and training settings are visible
in table 5.2.
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DNN parameter Value

Network architecture [24in 2000 2000 2483out]
Learning rate n 0.0001

NAG p 0.95

RMS-prop « 0.99

Number of epochs 5

Batch size 15000

STI‘f:;rf{ieI;g samples  per 10000

Table 5.1: Training parameters for the Deep Neural Network

NN-UBM parameter Value

Network architecture [24in 400 400 lout)
Learning rate n 0.0001

NAG p 0.95

RMS-prop « 0.99

L1 regularization A 0.0001

Ratio UBM/target 2

Number of epochs 30

Batch size 500

Table 5.2: Training parameters for the ANN-UBM method

These choices of architecture and parameters were made to have a reasonable
comparison between the different methods. The GMM and i-vector method
have roughly 80 training examples per parameter, while the two methods based
on ANNs have around 5 training examples per parameter. In practice ANNs
can have a very large number of parameters and still be trained effectively with
the techniques we described, while for our generative models we preferred to
have a larger number of examples per parameter.

We used two scoring scenarios to evaluate the methods:

e (Clean test utterances, the ideal and simplest case where there is no mis-
match between training and testing conditions.

e Noisy test utterances, where we added cafeteria noise at 15 dB of Signal-
to-Noise Ratio (SNR) to test the robustness to additive noise.
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The results of each system on both scenarios are shown in table 5.3. It
can be seen that the discriminatively trained DNN achieves the best verifica-
tion performance in the clean test conditions, with only 0.22% EER, which is a
100% reduction in error compared to the GMM-UBM system. This is a statis-
tically significant result, given that more than 200 million verification decisions
were taken to compute the score. The DNN is the best also for the speaker
identification on the clean test utterances, with 0.72% classification error rate.

The i-vector system performs worse than other methods in both verification
and identification of the clean test utterances. This is probably because we used
the simplest scoring technique of cosine distance, while a better performance
could be reached with the use of LDA and WCCN before computing the cosine
distance.

When cafeteria noise is added to the test utterances the performance drops
significatively for all methods. It is interesting to note that the i-vector system
seems to be the most robust to noise in this case, since it performs better than
the others. A possible explanation is the fact that the other methods were too
strongly tuned to the clean speech scenario and thus generalized poorly to a
mismatched noisy scenario. The i-vector method instead has a more compact
representation of each utterance which is less over-fitted to the clean scenario,
and thus was affected less by the addition of noise to the test utterances.

We were not satisfied with the performance of the systems in the presence
of additive noise, so we decided to use a form of data augmentation before
training to improve the robustness of our speaker recognition systems. The
idea of data augmentation for machine learning is to expand the training set
by adding perturbations to the training examples. This has been shown to be
very efficient in many machine learning tasks, including speech recognition and
object recognition. In [69] it is shown that training with noise is equivalent to a
generalized form of Tikhonov regularization. The idea of noise injection is also
linked to the more recent approach of denoising auto-encoders [70], where a set
of robust latent variables is learned in an unsupervised manner by training a
network to reconstruct its input distorted by randomly sampled noise.

We chose to use a simple form of data augmentation by adding additive
noises of various type to the training data before MFCC extraction. In this way
we doubled the size of the training set. We decided not to use cafeteria noise
in data augmentation to maintain some mismatch between training and test
data. Adding the same noise to training and test set would have been an ideal
condition that cannot really be achieved in real-life applications. Some types
of noise we used are office, fan and car noise. The SNR of the noisy training
speech was also set to 15dB.

The results with training data augmentation are shown in table 5.4. The
performance in the noisy test scenario is much better than before for all sys-
tems and evaluation metrics, confirming that adding noise to the training helps
in achieving more robust systems that generalize better to more test scenarios.
The cost of data augmentation is a small loss in performance on the clean test
utterances, which can be tolerated in order to have a more robust system. In this
sense the ANN-UBM seems to really benefit from noise injection, maintaining
very good performance on both clean and noisy test utterance. In particular the
ANN-UBM method has the best performance on the clean test utterances, with
only 0.23% verification EER and 0.36% classification error, which is the best
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identification performance we could achieve on the Librispeech dataset when
training with noisy data augmentation.

A comparison between the different systems in the speaker verification sce-
nario is shown in figure 5.1 and figure 5.2, where we plot the DET curves for
the different training and test conditions.

Despite having the best performance on clean test utterances when training
with noise augmentation, the ANN-UBM method suffers more in generalizing to
noisy test utterances compared to the single DNN. as can be seen in figure 5.1
the ANN-UBM method performs significatively worse, with almost 8% EER.
This could be because the adversarial data generated with the UBM is purely
clean, so the ANNs don’t have noisy adversarial examples available for training.

The performance on noisy test utterances improves drastically with noise-
augmented training, as shown in figure 5.2. All methods achieve EERs below
2%, a drastic improvement for the novel ANN-UBM method, which at the same
time remains the best system when scoring clean test utterances.

In general the discriminative models performed better on most tasks and
training conditions. This is probably due to the higher number of parameters
and superior representational power of ANNs compared to GMMSs. It is also
interesting to compare the performance at different operating points on the DET
curves. The i-vector system seems to perform better at points with very low
FAR, which is ideal for security systems where we must be sure not to accept
impostors. For our target application of query-by-voice and diarization we want
to have very low FRR, in order to query successfully all utterances from a target
speaker. For this scenario the i-vector system is the worse, while the DNN and
the novel ANN-UBM system are the best.
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Method pER Prror Rate
Clean test utterances

GMM-UBM 0.4461 % 0.7662 %

I-vector 0.7041 % 2.3081 %

Single DNN 0.2222 % 0.7193 %

ANN-UBM 0.1598 % 0.3720 %
Noisy test utterances

GMM-UBM 4.8873 % 32.6512 %

I-vector 3.0970 % 21.2187 %

Single DNN 4.3817 % 36.4753 %

ANN-UBM 7.8997 % 54.1222 %

Table 5.3: Speaker recognition performance on held-out test set, us-
ing only clean speech for the training. Performance is reported with
EER for verification and classification error rate for identification

Method BER Prror Rate
Clean test utterances

GMM-UBM 0.6135 % 0.9434 %

I-vector 0.8609 % 3.0250 %

Single DNN 0.2957 % 0.9868 %

ANN-UBM 0.2262 % 0.3555 %
Noisy test utterances

GMM-UBM 1.8212 % 9.2558 %

I-vector 1.8868 % 10.0561 %

Single DNN 1.3622 % 11.2013 %

ANN-UBM 1.8952 % 13.3780 %

Table 5.4: Speaker recognition performance on held-out test set, us-
ing both clean and noisy speech for the training. Performance is
reported with EER for verification and classification error rate for
identification
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Chapter 6

Discussion and Future
Work

In our experiments discriminative ANNs perform better than GMMs. This
could be expected, given the higher representational power of ANNs. We are
evaluating on a dataset with 2483 speakers, so we can assume that the feature
space is very ”crowded”, with plenty of superposition between similar voices.
This is probably why the use of more powerful non-linear models like ANN leads
to significatively better performance. The GMM system could be improved by
increasing the number of components, but this would lead to higher computa-
tional costs and moreover it is problematic to fit GMMs with many components
when training data is scarce.

Regarding the i-vector method, we believe many improvements could be
made to our implementation, leading to higher performance. In our experiments
i-vectors performed worse than the three other methods. We identified some
reasons for this and propose a possible direction for improvement:

e The size and training of the GMM-UBM. We used utterances from only
330 speakers for a total of roughly 20 hours of speech. While this is ad-
equate for many systems, it is probably sub-optimal for our experiments,
since our goal was to classify a dataset with 2483 speakers. We believe this
affected the performance of the i-vector system, where the extraction of
the supervectors depends only on the UBM. We propose to train a larger
UBM on the whole Librispeech database, using 1024 or 2048 gaussian com-
ponenets. Also the use of full-covariance guassians could be advantageous,
as noted in [71].

e The fact that we used simple cosine distance to score the utterances limited
the performance of our i-vector system. We should repeat the evaluation
with the scoring proposed in [5] and described in 2, using LDA followed
by WCCN and length normalization.

e Also other scoring methods have been investigated to boost i-vector system
performance. Our experiments with PLDA did not lead to significatively
better results on the Librispeech database. LDA followed by heavy-tailed
PLDA, where gaussian distributions are replaced by student-t distribu-
tions, was shown to perform better than all other methods in [71].
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We also want to highlight some other advantages of using ANNs.

e They can easily handle high-dimensional inputs, since computationally
they just need to perform linear matrix transformations and a non-linearity.
Also, with proper regularization and training hyperparameters, DNNs can
be trained effectively with a small number of training examples per param-
eter. On the contrary, it is difficult to train GMMSs in high-dimensional
spaces, since the number of required training samples for reliable density
estimation grows exponentially with the number of features.

e When using more than one hidden layer, ANNs can learn hierarchical
representations of the input data. This is key to achieve properties like
robustness to noise and invariance to confounding input variation and has
been proven to be one of the reasons why deep learning performs so well
in tasks like object recognition. In the case of speech, a DNN could learn
invariance to background noise and channel variability.

e Since they can handle larger inputs, it is possible to train them with longer
time windows as input. This could be used to learn long-term speech vari-
ability which is completely ignored in current speaker recognition systems,
as described later in the chapter.

Regarding the comparisons of our systems, we can make some remarks also on
the complexity and memory requirements.

e Memory requirements: the systems based on ANNs have larger memory
requirements, since the networks have lots of parameters to be stored. The
GMM system is the one with less parameters, but the most convenient
system for storing speaker models is the i-vector one. Only the T and
> matrices must be stored for the extraction of the i-vectors and each
speaker and utterance is modelled by a single low-dimensional vector.

e Scalability: as already mentioned, the DNN system is not scalable, while
the GMM, i-vector and ANN-UBM systems are fully scalable. We can en-
roll or remove speakers easily and perform training and scoring in parallel
on different machines.

e Scoring speed: the i-vector system again is the most convenient, since
scoring is performed with a simple distance measure between two low-
dimensional vectors. For speaker identification, the single DNN has good
scoring speed since it computes all the outputs with a single feedforward
pass, but it is not convenient for speaker verification.

e Robustness to noise and channel variability: in our experiments GMMs
are the most robust to additive noise in the test utterances. But the
problem for ANN is easily solved by adding training noise to the training
set. In this scenario the DNN performs better than all other methods. We
believe data augmentation is really important to train a robust system.
Unfortunately the ANN-UBM method benefits less than the other three
from data augmentation, probably because the adversarial data generated
with the UBM models clean speech and is difficult to inject noise related
information in the UBM.
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Given all these considerations we believe that, given enough computational
power and memory, the DNN and ANN-UBM methods are superior to the
other systems and have the potential for achieving state-of-the-art results in
the future. Also for practical applications they can perform better on clean
speech (ANN-UBM system) and also on noisy speech when trained with noise
augmentation (DNN system). It would be important in the future to repeat our
experiments on a benchamark dataset, like the one used in the NIST speaker
recognition evaluation. This would allow us to make a better comparison with
the state-of-the-art i-vector systems.

Another possible direction for future work is a different use of the discrim-
inatively trained DNN. The idea, already explored in [23], is to use the DNN
as a feature extractor, by accumulating and normalizing the activations in the
deepest hidden layer of the network we can obtain a fixed size representation
of an utterance, which can be used and scored exactly like an i-vector. In [23]
they called this representation d-vector and compared it with an i-vector sys-
tem. The performance of their particular system was a little worse, but we
believe the idea is promising and with some modifications could lead to very
good results.

Also we could make a modification to our ANN-UBM system, by using the
same idea, but with the deep features learned by the larger single DNN. As can
be noted in figure 4.1, the ANN-UBM method fundamentally performs logistic
regression on a feature representation learned independelty for each speaker. We
could instead use the deep feature representation learned by the single DNN to
represent the target data and the impostor data from the UBM. It would then be
easy to train a logistic regression classifier in this feature space for each speaker
independently. This needs further investigation, but it could be advantageous
to keep a shared feature representation for all speakers, learned with the DNN
trained with noisy data augmentation on the whole dataset.

We conclude the thesis with some considerations on the future of speaker recog-
nition. One recent trend is trying to incorporate long-time information into the
decision process. It is believed that using only frame-based cepstral features is
not the optimal solution, because long-term variations contain important infor-
mation to discriminate between different speakers. Prosody, speed and articu-
lation are all speaker-dependent factors that are ignored by purely frame-based
classification, but that we humans use to recognize the identity of a particular
voice.

There is a strong belief that prosodic and spectro-temporal features (du-
ration, rhythm, pitch and energy variations) and high-level features (phones,
accent, pronunciation) are salient speaker cues [7].

The question is how to capture this temporal and high-level information
for the goal of speaker recognition, without necessarily using computationally-
intensive speech recognizers to extract semantics from the utterance. We believe
that it could be automatically learned from the data by using a model that
analyses long-time windows or that keeps an internal state which evolves over
time.

An example of a model which could become state-of-the-art in the future is
the Recurrent Neural Network (RNN). RNNs are powerful models for sequential
data, thanks to their feedback loops between hidden units, creating an inter-
nal state which evolves over time. In particular the Long Short-term Memory
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RNN [72] is able to learn long-time dependencies in sequential data, making it
the most powerful RNN so far, achieving state-of-the-art results in many cursive
handwriting recognition tasks and other complex time-sequence analysis. RNNs
have historically been very hard to train, but recently many improvements have
been made in their optimization and much research is being conducted in their
use for speech recognition. For example in [73] they used a deep Long Short-
term Memory RNN to achieve state-of-the-art results on the TIMIT phoneme
recognition benchmark. Of much interest is also the research direction outlined
in [74], where they propose a RNN architecture to achieve end-to-end speech
recognition, without the need of a hidden Markov model or an intermediate
phonetic representation. All these research suggests that in the future RNNs
could become the standard for state-of-the-art speech recognition, outperform-
ing current approaches based on deep feed-forward networks and hidden Markov
models. Our proposal is that similar techniques could also be explored for the
speaker recognition task, by setting a RNN architecture that could capture both
the spectral and the time-varying information which is critical to discriminate
between different speakers.

Another interesting deep learning component is the Convolutional Neural Net-
work (CNN), a type of feedforward neural network in which the connectivity
structure between neurons is inspired by the ones found in the mammalian vi-
sual or auditory cortex. Developed in the 1980s for temporal signals [75, 76],
they have been improved by Yan LeCun’s group for the task of image classifi-
cation, with a famous paper 1998 paper on handwritten digit recognition [77].
A nice property of CNN is that they are biologically inspired and designed to
use minimal amounts of pre-processing, trying to learn their own hidden feature
representations from the raw data. They are by far the most successful deep
learning model for image and video classification and are also used in the field
of unsupervised representation learning [78]. Despite being so popular in the
computer vision community, they have not been tested extensively on speech
signals. A nice direction for future work would be to use CNNs on the speech
waveform or on its spectrogram to try to learn powerful features for speech
and speaker recognition. The idea has been explored in [79], with promising
results. Their network architecture is outlined in figure 6.1, where they used
1-D convolutions along the frequency bands of the spectrogram.

This line of research is interesting and it has not been explored thoroughly.
Various modifications in the connectivity patterns could be made, with convo-
lutional layers across both frequency and time, or 1-D convolutions across time.
In general the use of longer-time inputs to a CNN should be beneficial for the
speaker recognition task and is part of the experiments we would like to con-
duct in the future, both on the speech spectrogram or directly on the speech
waveform.
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Figure 6.1: An illustration of the regular CNN that uses so-called full
weight sharing. Here, a 1-D convolution is applied along frequency
bands. Image taken from [79]

To conclude, deep learning approaches hold very big potential for speech
analysis and speaker recognition. The hope is that they will be explored much
more in the future, leading to big breakthroughs and better audio and speech
analysis systems. This research could also lead to interesting links between
biology, neuroscience and artificial intelligence, giving some insights into how
exactly sound is transformed and processed by the brain. This would help us
understand what happens when we are listening to music, understanding speech
or just identifying people by the sound of their voices.
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