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Abstract

One of the problems with the modern radio communication is the lack of available
radio frequencies. Recent studies have shown that, while the available licensed radio
spectrum becomes more occupied, the assigned spectrum is significantly underuti-
lized. To alleviate the situation, cognitive radio (CR) technology has been proposed
to provide an opportunistic access to the licensed spectrum areas. Secondary CR
systems need to cyclically detect the presence of a primary user by continuously
sensing the spectrum area of interest. Radiowave propagation effects like fading and
shadowing often complicate sensing of spectrum holes. When spectrum sensing is
performed in a cooperative manner, then the resulting sensing performance can be
improved and stabilized.

In this thesis, two fully distributed and adaptive cooperative Primary User (PU)
detection solutions for CR networks are studied.

In the first part of this thesis we study a distributed energy detection scheme
without using any fusion center. Due to reduced communication such a topology
is more energy efficient. We propose the usage of distributed, diffusion least mean
square (LMS) type of power estimation algorithms with different network topolo-
gies. We analyze the resulting energy detection performance by using a common
framework and verify the theoretical findings through simulations.

In the second part of this thesis we propose a fully distributed detection scheme,
based on the largest eigenvalue of adaptively estimated correlation matrices, assum-
ing that the primary user signal is temporally correlated. Different forms of diffusion
LMS algorithms are used for estimating and averaging the correlation matrices over
the CR network. The resulting detection performance is analyzed using a common
framework. In order to obtain analytic results on the detection performance, the
adaptive correlation matrix estimates are approximated by a Wishart distribution.
The theoretical findings are verified through simulations.

Keywords: Cognitive Radio, distributed estimation, distributed detection, Dif-
fusion LMS, Diffusion Networks, Adaptive Networks, Spectrum Sensing, Energy
Detection, Random Matrix, Largest Eigenvalue Detection.
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Sammanfattning

Ett av de framtida problemen med modern radiokommunikation är bristen p̊a
tillgängliga radiofrekvenser. Tidigare studier har visat att medan det tillgängliga li-
censierade radiospektrumet blir mer och mer upptaget, är det tilldelade spektret be-
tydligt underutnyttjat. För att lindra situationen har kognitiv radio (CR) föreslagits
för att ge en opportunistisk tillg̊ang till de licensierade spektrumomr̊adena. Se-
kundära CR-system m̊aste regelbundet detektera närvaron av en primär användare
genom att kontinuerligt känna av det intressanta spektrumomr̊adet. Sökandet ef-
ter spektrumh̊al kompliceras ofta av radioutbredningsfenomen s̊asom fädning och
skuggning. När spektrumavkänningen utförs i samarbete mellan flera noder, kan
den resulterande detektionsprestandan förbättras och stabiliseras.

I denna avhandling studeras tv̊a fullt distribuerade och adaptiva kooperativa
lösningar för att detektera primära användare (PU) i CR-nätverk.

I den första delen av avhandlingen studerar vi ett distribuerat energidetektions-
system utan användning av n̊agot fusionscenter. P̊a grund av minskad kommunika-
tion är en s̊adan topologi mer energieffektiv. Vi föresl̊ar användningen av energide-
tektion baserad p̊a distribuerad, diffusions-LMS med olika nätverkstopologier och
studerar resulterande prestanda. Vi analyserar den resulterande energidetekterings-
prestandan genom att använda ett gemensamt ramverk och verifierar de teoretiska
resultaten genom simuleringar.

I den andra delen av avhandlingen föresl̊ar vi ett helt distribuerat detekte-
ringsschema baserat p̊a det största egenvärdet för adaptivt skattade korrelations-
matriser, under förutsättningen att den primära användarsignalen är temporärt
korrelerad. Olika former av diffusions-LMS-algoritmer används för att uppskatta
och medelvärdesbilda korrelationsmatriserna över CR-nätverket. Den resulteran-
de detektionsprestandan analyseras med hjälp av ett gemensamt ramverk. För att
erh̊alla analytiska resultat p̊a detektionsprestandan approximeras de adaptiva kor-
relationsuppskattningarna av en Wishart-fördelning. De teoretiska resultaten veri-
fieras genom simuleringar.

Nyckelord: Kognitiv radio, distribuerad uppskattning, distribuerad Detektion,
diffusion LMS, diffusionsnät, adaptiva nätverk, spektrum Sensing, Energy Detec-
tion, Slumpmässig Matrix, Största Eigenvalue Detection
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pers he provided. I highly evaluate the research ideas, recommendations for driving
the ongoing research and all the support from Prof. Mats Bengtsson which helped
me a lot to achieve the current work results. Additionally I would like to thank
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Chapter 1

Introduction

Future communication networks will have seamless and ubiquitous connectivity
among several communicating devices using different radio technologies. In the
year 2021, it is predicted that there will be 16 billion devices that will be connected
[ER116]. These devices could include cell phones, TVs, computers, tablets, etc.
Wireless sensor networks play an important role in the future of Internet of Things
systems. Several applications as Smart Grids, Smart Homes, Intelligent control
systems are associated with the wireless sensor networks. As a result, sensing and
information processing in the sensor networks becomes more and more important.
The increasing trend of more connected devices via wireless channels leads to the
potential problem of lack of free and usable radio frequencies (as a national resource)
and brings up the dilemma for allow an opportunistic spectrum usage. Special
solutions are needed to handle that problem.

1.1 Cognitive Radio in Wireless Communications

Cognitive telecommunication systems are a relatively new interesting direction in
telecommunication research. Traditionally the radio frequencies have been divided
between the interested parties by licensing. The party who has a license to use a
given frequency band has exclusive rights to the band and no one else can use this
band. Nowadays we are reaching to the situation where the attractive frequency
bands are full and there are no more frequencies available to license out new and
innovative applications. This situation makes development and implementation of
new radio-based services more difficult all over the world. Recent studies have
shown, that the available licensed radio spectrum is becoming more occupied, while
the assigned spectrum is significantly underutilized. The licensed users do not use
their spectrum in all locations and all times and it is possible to utilize the available
spectrum more fully and effectively. Cognitive radio [III00,HNZ09,BGG+13] is a
technology that was proposed about 18 years ago by J. Mitola III to solve the
problem [MM99]. Within this paradigm the radio equipment will search unused
frequencies by itself and sense the spectrum area in terms of presence of licensed
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Figure 1.1: CR Principle

user. The proposed solution poses both technical and legal problems, which are
currently dealt with. Cognitive radio is seen as a new promising technology and
the research topic is providing interests to great amount of universities in spectrum
sensing and signal detection, estimation, communication areas.

More specifically, spectrum utilization can be improved by allowing secondary
(unlicensed) users to opportunistically access the licensed spectrum area when the
primary user (PU) is not present. A cognitive radio (CR) technology is able to serve
the secondary users for detecting and utilizing so called spectrum holes by sensing
and adapting to the environment without causing harmful effects or interference
to the licensed PUs. It is expected that CR systems are able to systematically de-
tect the presence of a primary user (while the CR system usually does not have
the a priori knowledge that the channel is free) by continuously sensing the spec-
trum area. If a PU signal is detected, the secondary user (SU) has to immediately
stop operating in this specific frequency area and has to adapt and find new free
spectrum area or channel for continuing operation. PUs may use different kind of
modulations, transmission rates and powers, which makes the spectrum sensing
more complicated. The CR network is illustrated in Fig. 1.1.

Since the active work-pattern of a PU is usually not known for the CR system,
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then adaptive signal processing methods could be used for spectrum sensing, which
are able to learn and track the changes in the statistical properties of the underlying
process.

One of the examples with Cognitive Radio technology is the usage of TV White
Space. The unoccupied TV UHF band may be used for secondary services during
time periods, when the primary TV stations are switched off [LZPH08, HNZ09].
Support for opportunistic spectrum access has for example been proposed initially
for the LTE (4G) standard [OHMG12] and also for the 5G [LWM+17,HWWS14].
The topics related to cognitive radio technology are providing interests to world
leading mobile access technology providers, including Ericsson.

In this thesis we investigate distributed cooperative detection algorithms that
the radio equipment can use to determine whether a frequency is usable or not
i.e. whether the primary user is using the frequency for its own purposes or not. A
single cognitive user may not be in a good position to detect the presence of primary
user with high probability because of the effects of radio propagation like fading
and shadowing of radio waves. A more reliable decision can be obtained if several
cognitive users work together sharing information. In the thesis we will investigate
two cooperative detection techniques, that do not need any fusion center, which
would be a single point of failure, but are rather similar to those used in adaptive
filtering to share the information. The individual nodes will share the information
directly with each other.

The aim is to develop algorithms usable for both individual and cooperative
detection that can be used in cognitive radio networks to detect the presence of
primary users. In this thesis we assume that there is only one PU signal present,
however the current work can be logically extended also to the cases, were more PU
signals are present, by updating the measurement signal model and by choosing or
designing most optimal detector (module) for these specific cases.

1.2 Adaptive Distributed Signal Processing and
Optimization

Several classical distributed detection methods have been proposed and studied in
the literature and over decades [Var96]. Most of the classical solutions are however
based on the "close to or ideal" a priori knowledge about the statistical properties
of the observations and the detection hypotheses. In the CR application area, we
have usually limited information about the PU signal and about the prior probabil-
ities of the detection hypotheses. The CR system usually has limited information
about transmission parameters, modes and functions of the PU system. Thus in the
CR context we usually can not design an optimal detector in the sense of classical
detection theory, since the parameters of the conditional distributions of the mea-
surements are not ideally known (but have to be estimated, where an estimation
error is always present). Also in CR context it is not that practical to limit the de-
tection solutions with the assumption that the prior probabilities of the detection
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hypotheses are known and fixed over a period of time. Thus the classical detection
methods based on the Bayesian approach are not that practical in CR context and
we are aiming to use the Neyman-Pearson type of detectors in this thesis.

Adaptive filters [Hay02,Say08] have been used extensively in the systems, where
the parameter to be estimated has a dynamic nature. Several applications in the
literature use non-adaptive estimation methods (based on collected amount of sam-
ples) are used to estimate a parameter of interest. Adaptive (recursive) algorithms
are however able to react to the changes in the statistical properties of the measure-
ments "on line" and during the time when the recursive algorithm is kept running. In
comparison, classical non-adaptive estimation methods have to be usually restarted,
when the maximum amount of samples have been collected and when the value of
the estimate has been calculated. This leads to the design issues, related to the
size of measurement data windows for a specific application and there is a higher
chance to miss the start moments of the transitions in the statistical processes of the
measurements. Secondly adaptive algorithms usually do not require large amount of
system memory, since only the data from the previous time instant should be stored
into the memory. These mentioned aspects make the usage of adaptive estimation
algorithms in the Cognitive Radio application context more practical.

Distributed adaptive estimation and detection schemes have been studied before
in several papers [CS11a,CS10]. An optimal, matched filter based distributed detec-
tion scheme has been studied in [CS11b]. However in most cases we do not have any
information about the waveform of the PU signals and hence we cannot design a
matched filter based solution [CS11b]. LMS (Least Mean Square) based distributed
estimation schemes have been investigated for example in [CS11a,CS10,CS11a]. In
the thesis LMS (Least Mean Square) based adaptive estimation algorithms (which
is a stohastic gradient based algorithm) are chosen due to the simplicity, robust-
ness and good tracking abilities, compared to for example RLS (Recursive Least
Squares) [LCS08].

Some recent developments in adaptation, learning, and optimization over net-
works have been published for example in [Say14,STC+13]. Diffusion Optimization
Strategies [CS12,CS13] can be seen as a generalizations of Diffusion LMS estimation
algorithm [CS10,CS11a].

1.3 Motivations and Objectives

We consider a scenario with a number of CR nodes in the network, which sense a
spectrum area of interest. For simplification of the analysis, we additionally assume
that the Gaussian noise floor is constant over the nodes. Several solutions have been
proposed, that make use of a central processing unit to collect all the measurements
over sensing period from all the nodes and make decisions about presence or absence
of PU, for example [LZPH08,KLW09,WNK+10]. Instead of this, we expect that the
measurements or estimates are exchanged between the CR nodes directly, without
involvement of any central processing unit (fusion center). At every time instant
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new measurements or estimates from the neighbouring nodes become available.
Thus CR nodes estimate the elements of the test statistics in their own location
and make individual decisions about the detection hypotheses. Depending on the
exact topology of the network, with such a solution communication in the network
can be reduced (compared to solutions where nodes send their measurements to
a fusion center, which sends the collected estimates back to the nodes after an
iteration of the estimation process). This method saves energy, required for the data
transmission of the single nodes (transmitters usually consume most of the power
of a node). On the other hand this method enhances network failure resistance (in
case of fusion center stops operating).

The above discussion naturally leads to the following main research topics which
are addressed in this thesis:

1. Cooperative signal processing in Cognitive Radio Networks.

2. Distributed estimation and detection in Cognitive Radio, without using a FC.

3. Distributed Energy and Largest Eigenvalue detection in Cognitive Radio. Re-
sulting detection performance analysis.

The main research concerns in the thesis are the following:

1. Removal of the central processing unit − a fusion center (FC) − from the
domain of estimation and detection in the Cognitive Radio network. It is
expected that CR network is able to estimate the test statistic of a detector
and to detect the presence of the PU signal without the usage of any FC.
The solutions in this thesis are based on the idea that distributed estima-
tion schemes are used for designing distributed detection schemes, with no
use of a FC. Thus the distributed detection schemes are based on the under-
lying distributed estimation strategies and topology in the Cognitive Radio
Network.

2. We assume to have limited information about the type and properties of the
PU signal and therefore an energy detection method becomes a usable solu-
tion. The energy detection method is implemented in a distributed way in CR
network. Secondly, several type of correlation matrix based detection meth-
ods exist in the literature. We have chosen to study the Largest Eigenvalue
detection method, which is similarly implemented in a distributed way in CR
network.

3. Least Mean Square (LMS) type of adaptive estimation algorithms are based
on the Stochastic gradient descent and the LMS estimates are modelled as
random variables. Thus LMS type of algoritms are suitable for the estimation
of a statistical moment based detection test statistics. Distributed Diffusion
LMS algorithms have been already proposed and studied in the literature.
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We adapt the Diffusion LMS algorithms to estimate the statistical moment
based detection test statistics directly.

4. Since the PU signal is assumed to be slowly fading, then we design the us-
age of distributed adaptive estimation schemes so that approximately equal
statistical properties of the estimates are achieved in every CR node in the
network. In such a way an averaged detection performance in every CR node
is achieved regardless of the actual channel conditions of each single node.

5. Usage of adaptive and recursive estimation schemes. We are interested in the
online tracking ability of the statistical properties of the estimates to react to
the changes in the presence of PU signal − i.e to the changes of the underlying
detection hypothesis, over the iteration period of the distributed estimation
algorithm.

6. As common in the area of statistical signal processing an extensive perfor-
mance analysis for the proposed algorithms is performed. Since the detection
performance of the proposed distributed detection schemes depends on the
statistical properties of the underlying estimates, we propose to use a generic
framework for studying the performance of the proposed estimation schemes
in the CR network level. We focus on the analysis of the theoretical statistical
moments of the estimates to study the resulting detection performance.

7. In the simulation sections we compare the theoretical findings with the results,
obtained via the Monte-Carlo based computer simulations. A good match be-
tween theory and practice allows us to use computationally much faster theo-
retical calculations to evaluate the performance of the proposed algorithms in
different use cases. We use mainly the probability of detection versus averaged
SNR type of computer simulations to study the detection performance of the
proposed algorithms, to evaluate the ranges when the detection methods fail
to provide perfect detection results.

1.4 Thesis Outline and Contribution

This section provides an outline of the thesis with a brief summary of the material
presented in each chapter. This thesis consists of 5 chapters, the summary of which
are as follows.

Chapter 2
Chapter 2 provides background information. Here we will briefly discuss the con-
cepts and tools that are needed to follow the rest of the thesis. We give a short
summary of the theory of statistical signal processing in connection to the material
in this thesis, where we discuss the basics of detection and estimation theory. We
provide a generic introduction for the derivation of Diffusion LMS type of algo-
rithms. Also we provide a short summary about the literature on Cognitive Radio.
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Chapter 3

Chapters 3 and 4 discuss the main contributions of this thesis. Each chapter follows
the structure of the corresponding published papers and thus is complete by itself -
the reader does not need the content of previous or subsequent chapters to follow the
material. However, the chapters themselves address problems and solutions which
are partly related. Each chapter begins with a “Background” section, which gives
the overall context to the discussion that follows and ends with a “Conclusion”
section which summarizes the chapter along with the main concepts from that
chapter.

Thus more specifically, chapter 3 addresses the distributed energy detection
problem in Cognitive Radio networks. Often we have limited information about
the signal received by the cognitive radio nodes and such signal flow can not be
modelled as a deterministic process. Since the radio signals contain information
when the PU signal is present, then it is often more suitable to model the PU
signal also by a random process, in addition to the radio channel noise process.
In such cases an energy detection becomes a usable solution. We are interested to
remove a potential single point of error - a central processing unit from the cognitive
radio network. Each CR node should be able to rely only on the communication
between the neighbour CR nodes. We use distributed recursive estimation schemes
to estimate the power of the received signal in a distributed way.

We propose the usage of distributed, diffusion least mean square (LMS) type
of power estimation algorithms and three different static network topologies: Ring-
Around, Combine And Adapt and Adapt and Combine are studied. We provide a
generic framework for studying the detection performance of the proposed schemes
by using the statistical properties of these distributed estimates. In case of the Ring-
Around topology, a generic recursive signal power (statistical variance) estimation
algorithm is proposed and more specific results about the moment estimation of
the distributed estimates can be given. These results have been integrated into the
same chapter. The theoretical findings are verified by MATLAB based simulations.

This chapter is based on the following 3 papers:

[A] A. Ainomäe, T. Trump and M. Bengtsson, “Distributed Recursive Energy De-
tection,” IEEE Wireless Communications and Networking Conference WCNC
2014, Istanbul, Turkey, Nov 2014, pp. 176-183.

[B] A. Ainomäe, T. Trump and M. Bengtsson, “CTA Diffusion Based Recursive
Energy Detection,” CSCS 14, WSEAS Latest Trends in Circuits, System Signal
Processing and Automatic Control, Salerno, Italy, Jun 2014, pp. 38-47.

[C] A. Ainomäe, T. Trump and M. Bengtsson, “Distributed diffusion LMS based
energy detection,” IEEE 6th International Congress on Ultra Modern Telecom-
munications and Control Systems and Workshops (ICUMT), St. Petersburg,
Russia, Nov 2014, pp. 176-183.



8 Introduction

Chapter 4
Chapter 4 deals with distributed correlation matrix (CM) based signal detection in
Cognitive Radio network. The PU signal is assumed to be temporally correlated.
Similarly as in previous chapter, in this chapter we study the usage of diffusion LMS
based estimation strategies for estimating the elements of the correlation matrices,
used for PU signal detection. Two static network topologies Combine and Adapt
(CTA) and Adapt and Combine (ATC) are used in this chapter and we add few
simulations with Consensus and FC based network topology for comparison. The
estimation and detection solution does not rely on any central processing unit in the
network. The estimation strategies and the section of performance analyses have
been adapted and extended to deal with vector estimates and block-covariance
matrices. Several correlation matrix based detection solutions have been proposed
in the literature and in this research work we have chosen the Largest Eigenvalue
based detection solution, where in case of Primary user signal exists in the network
we assume, that the PU signal has a rank one correlation matrix. In order to obtain
analytic results on the detection performance, the exact distribution of the CM
estimates are approximated by a Wishart distribution, by matching the moments.
The theoretical findings are similarly verified by MATLAB based simulations.

This chapter is based on the following 2 papers:

[D] A. Ainomäe, T. Trump, M. Bengtsson, “Distributed Largest Eigenvalue De-
tection,” 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP 2017), New Orleans, USA, March 2017.

[E] A. Ainomäe, M. Bengtsson, T. Trump, “Distributed Largest Eigenvalue Based
Spectrum Sensing using Diffusion Adaptation,” Accepted to IEEE Transactions
on Signal and Information Processing over Networks, Sept 2017.

Chapter 5
Finally, Chapter 5 summarizes the author’s topics in this thesis and lists possible
directions for future research.

Contributions by the author and Copyright Notice

As specified in the Section 1.4, material presented in this thesis is based on the
author’s previous work which is published or submitted to conferences and journals
held by or sponsored by IEEE and WSEAS publishers. They hold the copyright of
the published papers and will hold the copyright of the recently accepted papers.

The contributions of the author of this thesis on the included papers are the
outcome of the author′s own work, in collaboration with the co-authoring academ-
ical advisors Prof. Mats Bengtsson and Prof. Tõnu Trump. Most of the problem
formulations and initial ideas for the papers were proposed by the advisors Prof.
Tõnu Trump and Prof. Mats Bengtsson. The author of this thesis is the first author
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of the papers A to E and has been giving the substantial and the vast majority of
the contributions, especially derivation and implementation of the proposed algo-
rithms, regarding theoretical analysis, computer simulations and paper writing. The
second and third authors were helpful with technical discussions and proofreading.





Chapter 2

Preliminaries

In this chapter, we will introduce some basic concepts that are essential to follow
the rest of thesis.

2.1 Summary on Cognitive Radio

In this section we provide a brief summary about the aspects of Cognitive Radio
Networks, which are essential in the context of the thesis. The section is based
mainly on the material from [HNZ09], [GSMS09].

It was already briefly mentioned in Chapter 1, that since frequency spectrum is
a limited resource for wireless communications, then it may become congested. To
meet these growing demands, some national frequency regulation institutions, such
as US Federal Communications Commission (FCC), has expanded the use of the
unlicensed spectral band. However traditional wireless communications systems are
not able to adaptively utilize the frequency bands. Many studies show that while
some frequency bands (for example allocated statistically for some licensed users)
in the spectrum are heavily used, other bands are largely unoccupied most of time.
These potential spectrum holes result in the under-utilization of available frequency
bands.

The concepts of software−defined radio and cognitive radio have been recently
introduced to enhance the efficiency of frequency spectrum usage in next generation
wireless and mobile computing systems. Cognitive ratio, which can be implemented
through software−defined radio, is able to observe, learn, optimize, and intelligently
adapt to achieve optimal frequency band usage.

Dynamic spectrum access (DSA) or opportunistic spectrum access (OSA) is
the key approach in a cognitive radio network and has emerged as a new design
paradigm for next generation wireless networks. Therefore also a new spectrum
licensing paradigm needs to be initiated by the national frequency regulation insti-
tutions, for being more flexible in allowing unlicensed (or secondary) users to access
the spectrum as long as the licensed (or primary) users are not interfered with. Such
a way the utilization of the frequency spectrum could be improved. Development

11
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of dynamic spectrum access-based cognitive radio technology has to in general deal
with technical and practical considerations as well as regulatory requirements.

The main frequency bands for CR are considered as follows

1. UHF band, typically 470-790 MHz,

2. Cellular bands, typically 800-900 MHz, 1.8-1-9 GHz, 2.1 GHz, 2.3 GHz, and
2.5 GHz,

3. Fixed wireless access bands, typically 2.5-3.5 GHz.

Main functions of CR to support DSA can be listed as follows [HNZ09]:

1. Periodical spectrum sensing, which can be centralized (FC based) or dis-
tributed, to determine if the frequency area of interest is free,

2. Spectrum analysis, to process the information from previous task, plan the
spectrum access and optimize the transmission parameters,

3. Spectrum access, with the help of a cognitive medium access control (MAC)
protocol,

4. Spectrum mobility, to change the operating frequency band of CR users.

Three major models of dynamic spectrum access are listed: common-use, shared-
use, and exclusive-use models. In the first case the spectrum is open for access to
all users. In the second case licensed users (i.e. PUs) are assigned to the frequency
bands which are opportunistically accessed by the unlicensed users. In the latter
case a PU can grant access of a particular frequency band to an unlicensed user for
a certain period of time.

CR has to use a frequency area without causing interference to the PUs. There
are three main approaches for opportunistic spectrum access [GSMS09]:

1. Spectrum Interweave,

2. Spectrum Overlay,

3. Spectrum Underlay.

The interweave paradigm of operation was the original motivation for the idea of
CR. The requirement is that the CRs should not interfere with the communication
between the already active PUs. Thus the CRs should be able to detect (sense), with
very high probability, the primary user transmissions in the network. Once the CR
successfully detects the PU transmissions, it can opportunistically communicate
only if it is able to do so without harming the PU transmissions. This requires
spectrum agility or the ability to transmit at different frequencies. The temporary
space−time−frequency gap in the transmission of primary users is referred to as a
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spectrum hole or a white space. The overlay paradigm is more advanced. The CR
needs to know the channel between the primary transmitter and the primary and
secondary receivers as well as the channel between the secondary transmitter and
the primary receiver. With the channel knowledge of both the primary and CRs, the
CR can then choose appropriate transmission strategies so that the communication
in the secondary network causes least interference to the primary network. In the
underlay paradigm, the secondary transmitter keeps the interference levels below
a certain threshold. The primary receiver sees a higher noise level if the primary
and secondary transmission overlap in the same band. Possible methods include
transmission power control, beam-forming and spread spectrum techniques.

Combining of these methods may be also considered. Although the overlay and
interweave approaches are similar, in this thesis we focus on the detection methods,
which follow interweave approach. The detectors are not aware about the channel
gains of PU signal.

2.1.1 Spectrum Sensing in Cognitive Radio
In this section, we briefly focus on the spectrum sensing task of CR. The ob-
jective is to detect the presence of transmissions from licensed users. Three ma-
jor types of spectrum sensing types are listed: non−cooperative, cooperative and
interference−based sensing.

The usual model for signal detection is given based on the following idea

H0 : x(n) = v(n)
H1 : x(n) = αs(n) + v(n),

(2.1.1)

where xk(n) is the received signal of a CR user at time instant n, s(n) is the
transmitted signal of the PU, v(n) is the additive white Gaussian noise (AWGN),
and α is the channel constant (gain).

Three classical and one class of additional detection methods in non-cooperative
sensing are for example:

1. Matched filter detection or coherent detection,

2. PU transmitter energy detection,

3. Cyclostationary feature detection,

4. Correlation Matrix based detection.

The matched filter is generally used to detect a signal by comparing a known
signal (i.e. a template) with the received signal. A matched filter will maximize the
received SNR for the measured signal [Kay98]. If the information of the signal from
a licensed user is known, then a matched filter is an optimal detector in stationary
Gaussian noise [SHT04]. Thus when a signal template is perfectly known, a matched
filter requires only a small amount of time to operate. On the other hand, when
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this template is not available or is incorrect, the performance of spectrum sensing
degrades significantly. Matched filter detection is suitable when the PU signal has
a pilot, preambles, synchronization word or spreading codes, which can be used to
construct the template for spectrum sensing.

Energy detection is the optimal method for spectrum sensing when the infor-
mation from a PU (i.e signal type, pattern etc) is unavailable [SHT04]. The output
signal from a bandpass filter is squared and integrated over the observation inter-
val. A decision algorithm compares the integrator output with a threshold to decide
whether a licensed user exists or not. In general, the energy detection performance
deteriorates, when the SNR decreases. The Energy detection method is studied
further in Chapter 3 of this thesis.

The PU signal has often a cyclostationarity (periodic) pattern, which can be
used to detect the presence of a licensed user. A signal is cyclostationary (in the
wide sense) if the autocorrelation is a periodic function. With such periodic pattern,
the transmitted PU signal can be distinguished from noise, which is a wide-sense
stationary signal without correlation. In general, cyclostationary detection can pro-
vide a more accurate sensing result and it is robust to variations in noise power.
However, the detection is complex and requires long observation periods to obtain
the sensing result.

A second large group of detectors for spectrum sensing are based on eigenvalue
properties of an estimated correlation matrix [TW12,WTL14, ZL09]. When the
PU signal exploits certain type of low rank correlation, then this feature can be
used to detect the presence of a PU signal. Several CM based detectors have been
proposed in the literature: the largest eigenvalue (LE) method, the volume based
detector (VD), the covariance based detector (CAV), which have been studied for
example in [HSQ14,HQXZ15] and [ZC09]. So called robust detectors do not require
noise power value in the threshold calculation. Eigenvalue Arithmetic to Geometric
Mean (AGM) [HFL+15], the Maximum to Minimum eigenvalue ratio (MME), the
Energy to Minimum Eigenvalue ratio (EME) [ZL09], the Eigenvalue Moment ratio
(EMR) [HFL+15], and the Hadamard [HXZ15] robust detectors have been proposed
in the literature. The LE method is studied further in Chapter 4 of this thesis.

An unlicensed transmitter may not always be able to detect the signal from a
licensed transmitter due to its geographic separation (a shadowing problem) and
channel fading (a multipath fading problem). In cooperative sensing, spectrum sens-
ing information from multiple CRs are exchanged among each other to detect the
presence of a PU. The cooperative spectrum sensing is usually performed in a
centralized or distributed manner. Obviously cooperative sensing will increase the
communication and computation overhead compared with non-cooperative sensing.
However in case of cooperative sensing, the detection probability can usually be sig-
nificantly improved [LZ09]. In this thesis we assume that fully distributed CR nodes
perform spectrum sensing and no central processing unit is used in estimation and
detection domain.

We also mention, that in case of Interference based sensing, the noise/interference
level (from all sources of signals) at the receiver of the primary user is measured.
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This information is used by a CR to control the spectrum access (e.g. by com-
puting expected interference level) without violating the interference temperature
limit. Alternatively, an unlicensed transmitter may observe the feedback signal from
a licensed receiver to gain knowledge on the interference level.

Finally we briefly list the potential application areas of CR [HNZ09], [GSMS09]:

1. Next Generation Wireless Networks, Machine-to-machine communications
(IoT), Dynamic spectrum access in cellular systems.

2. Wireless broadband for distribution and backhaul, Data boost for mobile
networks,

3. Coexistence of different wireless technologies, Cognitive digital home

4. Intelligent transportation system, Long range vehicle-to-vehicle networks,

5. eHealth services,

6. Emergency networks,

7. Military networks.

2.1.2 Common Research areas in cognitive radio
For an overview, we list some main CR research areas and aspects, which follow
the function areas of CR:

1. Spectrum sensing,

2. Spectrum management,

3. Spectrum mobility,

4. Network layer and transport layer,

5. Cross-layer design for cognitive radio networks,

6. Artificial intelligence approach in cognitive radio.

By following the recently emphasised interests in the world-level scientific con-
ferences of communication systems, such as IEEE GLOBECOM 2017 but also IEEE
ICCASP 2017, IEEE WCNC 2017, we can add the following. In the research area of
embedded (electronic) systems a continuing interest is on the design of (energy and
failure) efficient hardware platform and architectures for testing and implementing
the CR technology. On the other hand in the research area of applications and
services of CR, the continuing interest are in the areas of cognitive networking in
TV whitespaces, adaptation and integration with newest access technologies (incl.
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massive MIMO and full-duplex). Also aspects related to the (cyber-) security and
privacy in CR radio networks are gaining an interest.

Let us mention, that since the development of new generation 5G access tech-
nology is closely related to the IoT (Internet of Things) concept, then recently
the research area of CR in the 5G/IoT technologies has gained increasing interest.
It is expected that 5G will become the backbone for IoT devices by forming an
ecosystem of so called smart devices. For example [MMB16, Chapters 4 and 2] give
an overview about the challenges related to the implementation of IoT using CR
capabilities in the future 5G Mobile Networks. As also initially planned for 4G, in
5G technology, the CR technology is expected to improve the handling of resources
of the future smart environments - such as improving the utilization of available
radio spectrum.

Since in this thesis we focus on the area of spectrum sensing, then we specify,
that generic research issues can be categorized for example as follows:

1. Sensing interference limit,

2. Spectrum sensing in multiuser and multichannel networks,

3. Optimizing the period of spectrum sensing,

4. Spectrum management issues,

where obviously the research in this thesis is related to the second topic (and with
the focus on the physical layer).

2.1.3 Standardization in cognitive radio

In this section, we give few comments about the standardization in CR area, based
on [GSMS09].

In May 2004 US Federal Communications Commission (FCC) initiated the pro-
posal to provide more efficient and effective use of the TV spectrum (i.e in the VHF
and UHF band). As a result, IEEE 802.22 Working Group (WG) was formed to
define a standardized air interface based on CRs. The IEEE 802.22 standard for
Wireless Regional area Networks) requires that CR nodes sense the spectrum to
detect the presence or absence of active primary transmitters. In November 2008,
the FCC issued second report to adopt rules to allow unlicensed radio transmitters
to operate in TV white spaces in order to make a significant amount of spectrum
available for new and innovative products and services, including broadband data
and other services for businesses and consumers. FCC expects that a database and
active spectrum sensing is used by the solution. In September 2010, the FCC re-
leased third report that finalized the rules for using unused TV bands for unlicensed
wireless devices, where mandatory sensing requirements were removed.

Some of the other IEEE standards related to white space networks are as follows.
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1. The IEEE 802.11af WG for channel access and coexistence in TV White
Spaces (TVWS).

2. The P1900 WG for developing supporting standards dealing with new tech-
nologies and techniques being developed for cognitive radio and advanced
spectrum management.

3. The IEEE SCC41for of checking, whether reusing the IEEE 802 PHY/MAC
is optimal for white space operation and to estimate how far the performance
of the system could benefit from a tailored PHY/MAC system.

4. The IEEE 802.19 focuses on developing standards for coexistence between
wireless standards of CR devices. The standard was formed to minimize the
interference between different networks belonging to various wireless stan-
dards in the unlicensed band.

The International Telecommunication Union (ITU) has formed the following
study groups that discuss cognitive radio networks.

1. ITU-R Study Group 1 on Spectrum Management, dynamic spectrum issues
was covered by working part 1B.

2. ITU-R Study Group 5 on Terrestrial Services, working part 5A has described
the potential application of cognitive radio systems in the land mobile service.

3. ITU-R Study Group 5, working party 5D, where the scope of this work is to
consider the inclusion of CRS into the IMT family of technologies.

In Europe:

1. The European Communications Committee (ECC), has a special Task Group
working on operation of cognitive radio systems in the white spaces of the
UHF frequency band. The initial focus is on opportunistic use of radio spec-
trum in TV White Spaces.

2. The End−to−End Efficiency is a German Large Scale Integrating Project
for integrating cognitive wireless systems in the Beyond 3G (B3G) world.
The key objective of the E3 project is to design, develop, prototype, and
showcase solutions to guarantee interoperability, flexibility, and scalability
between existing legacy and future wireless systems.

2.2 Detection and Estimation Theory

We will start with some elements of detection and estimation theory. This overview
section is written based mainly on materials from the [Kay93], [Kay98] and [Yaj17,
Ch.2]. Detection theory deals with the problem of determining a particular hypothe-
sis from the observation, x. Typically a hypothesis maps to a particular phenomenon
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that is being detected. For example, in the context of a CR, we can formulate a
hypothesis for whether a PU signal is present or not. If there are only two hypothe-
ses, H0 and H1 for a phenomenon, then the detection problem reduces to a binary
hypothesis test. For a binary hypothesis, the following types of errors can occur
when deciding based on the observation:

• A type-1 error or false alarm, which occurs when the observation is decoded
as H1, for an H0 event. Probability of false alarm, PFA = Pr(H1;H0)1.

• A type-2 error or miss, which occurs when the observation is decoded as H0,
for an H1 event. Probability of miss, PM = Pr(H0;H1).

For an optimal design, both type-1 and type-2 errors cannot be reduced simultane-
ously. A typical approach is to fix the false alarm (type-1 error) and seek an optimal
detector to minimize the type-2 error. Note that minimizing the type-2 error is the
same as maximizing the detection probability, PD = (1−Pr(H0;H1)) = Pr(H1;H1).
This setup is called the Neyman-Pearson (NP) approach to hypothesis testing. We
can formalize this into a theorem as follows:

Theorem 2.2.1. For a given false alarm, PFA = α, to maximize, PD, decide
toward H1 if,

L(x) = p(x;H1)
p(x;H0) > γ, (2.2.1)

where the threshold, γ, is obtained from

PFA =
∫

x:L(x)>γ

p(x;H0)dx = α. (2.2.2)

Equation (2.2.1) is called the likelihood ratio test [Kay98]. Let us note that the
formula for PD is obviously given as

PD =
∫

x:L(x)<γ

p(x;H1)dx. (2.2.3)

In practice and given the specific signal model, the conditional probability density
functions p(x;H1) and p(x;H1) of the observation variable x are specified. By
following the standard derivation procedure, then usually all the constant variables
in (2.2.1) are moved on the right side of the inequality and the observation data
dependant variables on the left hand side. In general the detection formula can be
given as follows

H0 : Tx < γ,

H1 : Tx ≥ γ,
(2.2.4)

1We define Pr(Hi; Hj) as the probability of choosing hypothesis Hi when Hj has occurred.
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where after the mentioned steps the left hand side of the likelihood ratio is made
equal to the variable Tx, which is called a test statistics of the detector. The exact or
approximate conditional probability density functions are assigned for the variable
Tx and as mentioned above. Througout the thesis, the threshold γ is determined
based on the desired PFA value. Often the detection performance of a NP detector
is studied with the help of PD versus PFA graphs, called as Receiver Operation
Charateristics (ROC) [Kay98, Chapter 3.4].

The details for the Energy and Largest Eigenvalue Detectors are given in the
corresponding sections of Chapters 3 and 4 respectively. In this thesis swe use the
PD versus the network average SNR graphs to study the areas there the detection
method fails to provide perfect detection results.

The Estimation theory deals with arriving at a quantitative conclusion about a
parameter, θ, from the observation, x. An example of this is estimating the power of
the PU signal (which is modelled as a CSCG process) in CR network from a function
of received PU signal samples. The joint probability distribution function, p(θ,x),
denotes the complete statistical description of the parameters and observations.
The parameter, θ can be random and unknown. However, in certain estimation
problems, θ, can be deterministic. Under these conditions, good estimators can be
designed by mathematically modelling the observation x, through the parametrized,
PDF, p(x;θ).

Typical estimation methods depend on the model assumptions. In this thesis we
deal mainly with the mean and variance estimation tasks. The details are described
in Section 3 and 4 respectively.

Let us note that in case of a PU signal detection problem, the usage of Bayes
approach, both in detection [Kay98] and also in estimation [Kay93] domain, is rather
impractical, since usually the CR system does not obtain sufficiently accurate and
a priori data about the (longer time) statistical behaviour of the PU signal(s)
and thus about the parameters of the distributions of the corresponding random
processes. It is more practical to view the PU behaviour as a dynamic process,
where the statistical parameters of interest may change inexplicably during the
observation time. Thus we rather need to look for the adaptive estimation solutions
to implement the detectors of interest.

2.3 Adaptive Distributed Signal Processing and
Optimization

An adaptive filter is a system with a linear filter that has a transfer function con-
trolled by variable parameters and a means to adjust those parameters according
to an optimization algorithm [Say08,Hay02]. Usually the adaptive filters are digital
filters and are suitable for the applications where some parameters of the desired
processing operation are not known in advance or are changing over the time in-
stant.

Stochastic optimization methods are optimization methods that generate and
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use random variables. For stochastic problems, the random variables appear in
the formulation of the optimization problem, which involve for example random
objective functions. Stochastic gradient descent is a stochastic approximation of
the gradient descent optimization method for minimizing an objective function −
i.e by finding a minima or maxima by iteration. A popular stochastic gradient
descent algorithm is the least mean squares (LMS) adaptive filter.

Thus the concepts of adaptive filtering and stochastic optimization are con-
nected. In both cases usually a parameter of interest is found from the realizations
of random inputs variables iteratively by solving an optimization problem with the
minima search.

In resent years the research area of distributed optimization has gained increas-
ing interest [Say14, Say12]. Distributed estimation algorithms are useful in several
contexts, including wireless and sensor networks, where scalability, robustness, and
low power consumption are desirable. Since diffusion cooperation schemes (such as
diffusion LMS) have been shown to provide good performance, robustness to node
and link failure and are amenable to distributed implementations [CS10], then in
this thesis we have used diffusion LMS type of algorithms for designing and imple-
menting the distributed Energy and Largest Eigenvalue detection solutions.

2.3.1 Diffusion LMS Algorithm

In this overview section we briefly describe the idea and the derivation steps of
the distributed, Diffusion Least Mean Square type of algorithm and in general
form, by summarising the material from [CS10]. This section provides some brief
background info for the reader to follow the re−derivation and implementation
steps of the diffusion LMS type of algorithms in Chapters 3 and 4.

Distributed Estimation Problem Formulation

Let us assume we have K nodes in CR network. Let Nk denote the neighborhood
group of node k ∈ K, i.e Nk defines the set of nodes l which can send data unidi-
rectionally the node k. In general, at time instant n, every node k receives:

1. a scalar measurement dk(n) and a 1×M row regression vector uk,n or

2. a M × 1 vector measurement dk(n) and when the row regression vector uk,n
is neglected from the derivations.

dk(n),dk(n),uk(n) are realizations of corresponding complex random processes. On
page 24 we explain that in this thesis we adapt and apply the theory of diffusion
LMS for two different measurement and estimation dimension sets. In the first case
every node k, using data set {dk(n),uk(n)} estimates an optimal parameter po. In
the second case an optimal M × 1 vector po is estimated based on the set {dk(n)}.
Thus for the generic notation in this overview section, we use boldface notation
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dk(n) for the measurement parameter and po for the optimal vector respectively
and show the row regression parameter uk,n in the derivations.

Global Optimization

We seek theM×1 optimal linear estimator po, that minimizes the following global
cost function

Jglob(p) ,
K∑
k=1

E |dk(n)− uk,np|2. (2.3.1)

In case of the so called "desired process" dk(n) and the "regressor process" uk,n are
Wide Sense Stationary, then the optimal solution is given as

po =
(

K∑
k=1

Ru,k

)−1( K∑
k=1

Rdu,k

)
, (2.3.2)

where Ru,k = E
[
u∗k,nuk,n

]
and Rdu,k = E

[
dk(n)u∗k,n

]
are the corresponding

covariance matrices.

Steepest Descent Solution

For the minimization of the global cost function, standard iterative Steepest-Descent
algorithm can be used and we have

pn = pn−1 − µ
[
5wJglob(pn−1)

]∗
, (2.3.3)

where scalar step size parameter is µ > 0 and p is the estimate of po, at time
iteration i. Complex gradient is given as follows

[
5pJ

glob(pn−1)
]∗ =

K∑
k=1

(Ru,kp−Rdu,k) , (2.3.4)

and we get the steepest descent recursion as

pn = pn−1 − µ
K∑
k=1

(
Rdu,k −Ru,kpn−1

)
. (2.3.5)

Since usually the second order moments in (2.3.5) are not known a-priori, then
the following approximations can be used instead: Ru,k ≈ u∗k,nuk,n and Rdu,k ≈
dk(n)u∗k,n. As a result, we get a non−distributed Global 2 LMS type of algorithm

pn = pn−1 − µ
K∑
k=1

u∗k,n
(
dk(n)− uk,npn−1

)
. (2.3.6)

2The term Global means that the algorithm requires data from all the nodes in the network.
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Local Optimization

Introduce a matrix C with elements {cl,k}, where the element cl,k defines if ob-
servation from node l is available for the node k. C is usually considered to be
doubly-stochastic K ×K non-negative real matrix with entries cl,k and cl,k = 0 if
l /∈ Nk and thus obviously C1 = 1, 1TC = 1C . The local cost at node k is given
as

J lock (p) = cl,k E |dl(n)− ul,np|2. (2.3.7)

The optimal solution can therefore be updated

plock =
(∑
l∈Nk

cl,kRu,l

)−1(∑
l∈Nk

cl,kRdu,l

)
. (2.3.8)

Define additionally the matrix Γk ,
∑
l∈Nk

cl,kRu,l. By completing the squares, we
get that J lock can be alternatively rewritten in terms of plock as

J lock (p) = ‖p− plock ‖2Γk
+ MMSE, (2.3.9)

where the MMSE is a constant part. By using the matrix C then minimizing of
the global cost Jglob(p) is equivalent to minimizing of the following cost function
for any k ∈ K

Jglob(p) =
K∑
l=1

J locl (p) = J lock (p) +
K∑
l 6=k

J locl (p) (2.3.10)

Jglob(p) =
∑
l∈Nk

cl,k E |dl(n)− ul,np|2 +
K∑
l 6=k
‖p− plock ‖2Γl

(2.3.11)

We have now an alternative global cost representation in terms of local estimates{
plock

}
.

MSE Minimization

Minimization of Jglob(p) on every node k, still requires access to the global informa-
tion

{
plocl

}
and matrices Γl in the other nodes in the network. A fully distributed

solution is derived at next and this is based on the diffusion LMS strategy.
Let us replace Γl with Γl = bl,kIM , where IM is M ×M , bl,k = 0 if l /∈ Nk,

1TB = 1T . Let us introduce a new K ×K matrix B. Also we replace plock with the
intermediate estimate ψl at node l. Then the following approximation of Jglob is
proposed and so that each node k can minimize modified cost as

Jdistk (p) =
∑
l∈Nk

cl,k E ‖dl(n)− ul,np‖2 +
∑

l∈Nk/{k}

bl,k‖p−ψl‖2 (2.3.12)
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The complex gradient is given as:[
5pJ

dist
k (pn−1)

]∗ =
∑
l∈Nk

cl,k (Ru,lp−Rdu,l) +
∑

l∈Nk/{k}

bl,k (p−ψl) . (2.3.13)

We can use Jdistk (p) to obtain the recursion for the estimate of p at node k in two
steps:

ψk,n = pk,n−1 + µk
∑
l∈Nk

cl,k
(
Rdu,l −Ru,lppk,n−1

)
pk,n = ψk,n + νk

∑
l∈Nk/{k}

bl,k
(
ψl − pk,n−1

)
. (2.3.14)

In the second equation two replacements are performed: ψl is replaced by the
intermediate estimate ψl,n, available at node l, at time n, and secondly pk,n−1 is
replaced by ψk,n. As a result we get

ψk,n = pk,n−1 + µk
∑
l∈Nk

cl,k
(
Rdu,l −Ru,lpk,n−1

)
pk,n = ψk,n + νk

∑
l∈Nk/{k}

bl,k
(
ψl,n −ψk,n

)
. (2.3.15)

The second recursion can be rearranged again. First recall that

pk,n = (1− νk + νkbk,k)ψk,n + νk
∑

l∈Nk/{k}

bl,k. (2.3.16)

Let us define K ×K matrix left stochastic A, which elements are the coefficients
ak,k = (1− νk + νkbk,k) and al,k = (νkbl,k) for l 6= k. We get the following recursion

ψk,n = pk,n−1 + µk
∑
l∈Nk

cl,k
(
Rdu,l −Ru,lpk,n−1

)
pk,n =

∑
l∈Nk

al,kψl,n. (2.3.17)

Let us note that cl,k = al,k = 0 if l /∈ K, 1TC = 1T , C1 = 1, and obviously
1TA = 1T .

ATC and CTA Diffusion LMS algorithms

Next we summarise the Adapt and Combine (ATC) and Combine and Adapt
(CTA) type of Diffusion LMS algorithms, by inserting the approximations of the
covariance matrices.
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ATC Diffusion LMS
Init: pk,0 = 0 for all k ∈ K. Given the non-negative real coefficients {cl,k, al,k}

for each time n ≥ 0 and for all nodes k:{
ψk,n = pk,n−1 + µk

∑
l∈Nk

cl,ku∗l,n
(
dl(n)− ul,npk,n−1

)
, (incremental step),

pk,n =
∑
l∈Nk

al,nψl,n (diffusion step).
(2.3.18)

CTA Diffusion LMS
Init: pk,0 = 0 for all l. Given the non-negative real coefficients {cl,k, al,k} for

each time n ≥ 0 and for all nodes k ∈ K:{
ψk,n−1 =

∑
l∈Nk

al,kpl,n−1 (diffusion step),
pk,n = ψk,n−1 + µk

∑
l∈Nk

cl,ku∗l,n
(
dl(n)− ul,nψk,n−1

)
, (incremental step).

(2.3.19)
We note that detailed performance analysis of the Diffusion LMS algorithms is

performed in [CS10] but in the estimation domain only and based on the estimation
error recursions.

Comments on the implementation and usage in the CR context

In Chapters 3 and 4 we use the Diffusion LMS algorithm derivation framework
for deriving a diffusion LMS based scalar (power) estimation solution for the dis-
tributed Energy detection solution and a diffusion LMS based vector (vectorized
correlation matrix) estimation solution for the distributed Largest Eigenvalue detec-
tion solution. For deriving these latter estimation algorithms, we need to introduce
small modifications in the standard derivation flow of the Diffusion LMS algorithms.

The considerations are the following.

1. Depending on the application of an adaptive filter [Hay02, Chapter 1.7], the
regressor variable uk,n can be seen as a variable, which can contain some a
priori information for the estimation process. In a practical PU signal de-
tection task a CR system usually can not use a priori data, which can be
incorporated in the estimation process of the elements of test statistics −
i.e the signal sequence of the PU user for implementing a matched filter de-
tection solution. For the Energy and Largest Eigenvalue detection solutions,
proposed in this thesis, the regressor variable is expendable (i.e uk(n) = 1
constantly) and thus can be excluded from the derivations. The secondary
statistics becomes then Ru,k = 1 and Rdu,k = E [dk(n)]. Thus in our solu-
tions the "desired" variable dk(n) is connected with the observations for the
estimation process.

2. Due to the previous point and for the power estimation algorithm in Chap-
ter 3, the po and dk(n) are both selected as scalars and the derivation of
diffusion LMS type of algorithm can be slightly simplified. These details are
shown in Chapter 3.
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3. For the vector estimation algorithm in Chapter 4, the variables dk(n) and po
are taken as a M ×1 vectors. The derivation of diffusion LMS type algorithm
is slightly modified and these details are shown in Chapter 4.

4. In this thesis we do not proceed with the performance analysis of the Diffusion
LMS type algoritm, based on the estimation error measures. Instead we are
interested in the analysis of the statistical moments of the estimates directly,
to proceed with the analysis of the detection performance of the proposed
distributed detection solutions.

Thus in Chapters 3 and 4 we skip some of the standard derivation steps and
focus on the differences from the standard derivation flow of diffusion LMS type of
algorithms.





Chapter 3

Distributed Diffusion LMS based
Energy Detection

CR systems need to detect the presence of a primary user by continuously sens-
ing the spectrum area of interest. Radiowave propagation effects like fading and
shadowing often complicate sensing of spectrum holes because the PU signal can
be weak in a particular area. Cooperative spectrum sensing is seen as a prospective
solution to enhance the detection of PU signals. This chapter studies distributed
spectrum sensing in a cognitive radio context based on the results in [ATB14b]
and [ATB14a]. We investigate distributed energy detection schemes without using
any fusion center. Due to reduced communication such a topology is more energy
efficient. We propose the usage of distributed, diffusion least mean square (LMS)
type of power estimation algorithms. In this chapter an Adapt and Combine (ATC)
diffusion based power estimation scheme is proposed and the performance is com-
pared with the Combine and Adapt (CTA) and ring-around schemes in a common
framework. Additionally we show in this chapter also the results from the first pa-
per [ATB14c] for a recursive and distributed power estimation scheme with a ring
around topology, which does not necessarily have to be related with the Diffusion
LMS context. In this case specific theoretical results for the performance analysis
of that algorithm can be given. The power to be estimated for the energy detection
is a scalar quantity. The PU signal is assumed to be slowly fading. We analyse the
resulting energy detection performance and verify the theoretical findings through
simulations.

3.1 Background

The cognitive radio (CR) system is dynamic. Often in practice the statistical in-
formation (for example conditional probability density of observations, prior prob-
abilities of detection hypotheses, longer time statistical behaviour of primary user
(PU)) is not available a priori for constructing a PU signal detection solution. The
properties of the test statistics (for making a detection decision) may change in

27
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time.
In cognitive radio context we would like to avoid interference to the PU user

and find free spectrum opportunities as fast as possible. On-line distributed network
learning methods are able to learn the statistical information based on observations
received by the nodes in the network. These methods can react to possible changes
in the properties of estimated statistics in real time.

Several proposed distributed spectrum sensing solutions make use of a central
fusion center [HNZ09], [LZPH08], [KLW09], [WNK+10]. A fusion center is however
seen as a single point of failure in the network since a malfunction in this unit affects
the performance of the whole distributed solution. We propose a power estimation
solution, where the available power estimates (and measurements) are fused in
cognitive radio network nodes, to allow all nodes to make detection decisions based
on data from the neighbour nodes and without involvement of any central processing
unit. Such a solution enhances network failure resistance (at the cost of slightly
increased information overhead in the network).

Several distributed adaptive estimation and detection schemes have been stud-
ied in the past. Least mean square (LMS) and recursive least squares (RLS) based
estimation schemes are analysed for example in [CS11a], [CS10], [LS08], [LCS08]
and consensus based schemes in [XBL06], [SMG09], [XBL05], [DKM+10]. Optimal,
matched filter distributed detection, based on diffusion type LMS and RLS estima-
tion schemes, was studied in [CS11b]. Here, we make the assumption that the CR
network does not have any prior information about the waveform of the PU signal
in the secondary nodes and hence we cannot design a matched filter. Therefore
energy detection becomes a practical solution.

A ring network topology for distributed energy detection without a fusion cen-
tre has been suggested in [KGC11]. In [ATB14c] we proposed and analysed an
estimation based recursive calculation of the test statistics for the energy detec-
tors in cognitive radio network with ring topology. The test statistic in form of a
converged power estimate is the soft information used for making the detection de-
cision at every node. Ring networks are however sensitive to link failures. Combine
and Adapt (CTA) diffusion based recursive calculation of the test statistics for the
energy detectors was proposed and studied in [ATB14a]. In this chapter we focus
mainly on the analysis of the Adapt and Combine (ATC) version of diffusion LMS
type of received power estimation algorithm. The performance of the ATC diffu-
sion based distributed power estimator is compared with the previously proposed
CTA [ATB14a] and ring [ATB14c] schemes to complete the analysis. The resulting
energy detection performance is studied and is dependent on the performance of
the used distributed recursive power estimation algorithm.

We organize the remainder of the chapter as follows. In Section 3.2 we review the
system model and the basics of energy detection. We derive an ATC type received
signal power estimation algorithm based on diffusion LMS strategy and summarize
the CTA based version. In Section 3.3 we analyse the performance of the proposed
distributed power estimation algorithm (using a common model) and the resulting
energy detection. In Section 3.4 we present our simulations results.
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3.2 Distributed power estimation and detection

According to classical detection theory, an energy detector can be used for detecting
random signals in additive noise. For energy detection in a cognitive radio context,
the type of PU signal can be completely unknown. During a sensing time t, an
energy detector (ED) receives N samples of a signal x(n) from a specific frequency
band [LZPH08]. The average energy of the received data samples is the test statistic
T (x) of the ED, which compares T (x) to a predefined threshold γ and decides which
of the hypotheses H0 or H1 is more likely.

We assume the following signal model at node k:

H0 : E[|xk(n)|2] = E[|vk(n)|2]
H1 : E[|xk(n)|2] = E[|αk|2|s(n)|2] + E[|vk(n)|2],

(3.2.1)

where k = 1, 2, ...,K is the node number and n = 1, 2, ...N is the sample in-
dex. vk(n) is independent and identically distributed (i.i.d) circularly symmetric
complex Gaussian (CSCG) noise with zero mean and variance E[|vk(n)|2] = σ2

v,k,
i.e. v(n) ∼ CN(0, σ2

v,k). The power of the emitted PU signal s(n) is denoted as
E[|s(n)|2] = S, under H1. The primary signal s(n) and the noise vk(n) are assumed
to be statistically independent. The PU signal passes through a slowly fading chan-
nel with gain αk(n). The gain αk is considered to be constant. Note, that for im-
plementing the energy detector, only the noise variance is needed to determine the
detection threshold γ, therefore estimates of the channel gains are not required in
practical implementations. Noise power estimation is not considered in this research
work. In this chapter we make the following assumptions:

• (AS 1) The x(n) is sensed by K nodes in the CR network.

• (AS 2) The additive noise vk(n) is uncorrelated in time and space and has
the same power level over all the nodes in the CR network.

• (AS 3) The number of performed iterations N is large enough.

• (AS 4) The links between the CR nodes are ideal and not capacity restricted
(no need to quantize the soft information).

In the literature on distributed detection, for example in [Var96], a fusion center,
which collects all the local soft information, hard or soft binary decisions from
the sensors, is often used in distributed detection networks. Similarly a central
processing unit has been used in distributed estimation schemes, see e.g. [CS11a].
However, such a central processing unit can potentially be a single point of failure
in the detection system. Secondly it may require frequent data exchange between
the nodes and the centre and thus drain system energy resources, since usually most
of the energy is spent for powering up the transmitter to exchange the data with
neighbour nodes.
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A distributed and recursive estimation scheme is one of the possible solutions
for removing the central processing unit from the system and thus the network is
able to calculate the global estimates based on the local observations collected by
the CR nodes. Then based on the estimated test statistic, the detector at each CR
node can locally make its own decision if the PU signal is present or not. We denote
the power estimate at node k and at iteration n as p̂k(n). The network topology is
assumed to be fixed over the sensing time. We consider a linear, fixed combination
of neighbour estimates and measurements at every node k.

Next we shortly review the global model for estimating the received signal power
in cooperative manner (as proposed in [ATB14a]). Then we derive an ATC type
power estimation algorithm, where the nodes can observe the measurements and
share the estimates (and measurements) only with their neighbour nodes, accord-
ing a to predefined network topology. Finally we propose a data exchange and
combination strategy for ATC diffusion algorithm.

3.2.1 Global estimation
According to model (3.2.1), the power of the PU signal is attenuated at every node
k. The locally estimated power varies between nodes k. Therefore if the channel
gain at node k is low, the resulting energy detection performance is low. The result
is opposite, when the node has a good channel gain. When nodes cooperate to
estimate a common parameter P o, the resulting detection performance will improve.
As in [ATB14a] we recommend the following form of po

po = 1
K

K∑
k=1

E
[
|xk(n)|2

]
= S

1
K

∑
k=1
|αk|2 + σ2

v . (3.2.2)

The po is the average of the received power across the nodes k ∈ K in the network.
The second equation in (3.2.2) follows from the signal model (3.2.1) if the PU signal
is present and from the assumption AS 2. When we have sufficient number of nodes
in the CR network, the effect of varying channel gains is averaged over nodes k ∈ K.

The corresponding global cost function is given as:

Jglob(p) =
K∑
k=1

E
[
|xk(n)|2 − p

]2
, (3.2.3)

where we have used the form of global cost as proposed in [STC+13], [CS11b],
[CS11a]. Minimization of the mean square error across the network (3.2.3) with
respect to P results in the optimal solution, which is given by (4.3.5).

3.2.2 Distributed ATC Diffusion LMS estimation
Suppose that K nodes in the CR network are interested in estimating the scalar
parameter p0 in a distributed manner, where nodes rely only on the information,
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that is available to them. Depending on network topology, nodes are connected only
to selected neighbour nodes and do not have access to any global data. The global
cost (3.2.3) needs to be approximated in a distributed manner. The derivation of
the ATC diffusion power estimation algorithm follows the ideas in [Say12], [CS10].

Let Nk denote the neighbourhood group of node k ∈ K, i.e Nk consists of nodes
l which can communicate with node k. We assume that the network is connected
and the connection between nodes l and k is unidirectional.

Let us define K ×K doubly stochastic matrix C containing non-negative ele-
ments cl,k and cl,k = 0 if l 6= Nk (i.e when data from node l is not available for
node k). Let us note that for a doubly stochastic matric C it holds that C1 = 1
and 1TC = 1T . The local cost and the corresponding local optimal solution in
the neighbourhood of node k can be expressed with the help of coefficients cl,k as
follows

J lock (p) =
∑
l∈Nk

cl,k E
[
|xl(n)|2 − p

]2
, (3.2.4)

plock =
∑
l∈Nk

cl,k E
[
|xl(n)|2

]
. (3.2.5)

The global cost can be fractioned into the local cost of over the neighbourhood of
node k and local costs over the neighbourhood of other nodes. Using the completion
of squares argument [STC+13] to relate variable P and local optimal solution P locl ,
secondly ignoring the mmse part which is not dependant on p, the global cost
function can be expressed as follows

Jglob
′
(p) =

∑
l∈Nk

cl,k E
[
|xl(n)|2 − p

]2 +
K∑
l 6=k
‖p− plocl ‖2. (3.2.6)

Node k may not have access to all the data plocl in the network. We modify the
second member of right hand side (RHS) of (3.2.6) by replacing the summation∑K
l 6=k with

∑
l∈Nk/{k}. Next we replace ‖p− plocl ‖2 ≈ bl,k‖p− plocl ‖2 ( [Say12, Eq.

117]). We collect the non-negative coefficients bl,k in a K×K matrix B and assume
bl,k = 0 if l 6= Nk. Also we replace the unknown plocl with an intermediate estimate
ψ̂l available at node l. Then the approximation of (3.2.6) at node k is given as

Jdistk (p) =
∑
l∈Nk

cl,k E
[
|xl(n)|2 − p

]2
+

∑
l∈Nk/{k}

bl,k‖p− ψ̂l‖2 (3.2.7)

and derivative of the cost function is (3.2.7) is

∇pJdistk (p) = 2
∑
l∈Nk

cl,k
[
p− E

[
|xl(n)|2

]]
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+ 2
∑

l∈Nk/{k}

bl,k

[
p− ψ̂l

]
. (3.2.8)

The cost (4.3.18) can be used to obtain a recursion for the estimate of p at node
k, denoted as p̂k(n). Using the steepest descent method, which is divided into two
parts, we get an iterative solution for (3.2.7) as follows:

ψ̂k(n+ 1) = p̂k(n) + µk
∑
l∈Nk

cl,k
[
E
[
|xl(n)|2

]
− p̂k(n)

]
p̂k(n+ 1) = ψ̂k(n+ 1) + νk

∑
l∈Nk/{k}

bl,k [ψl − p̂k(n)] . (3.2.9)

Different step sizes µk and νk at the nodes k have been assigned and the constants
2 has been incorporated into µk and νk. In the second equation of (3.2.9) we replace
ψ̂l with time dependant ψ̂l(n+ 1), p̂k(n) with ψ̂k(n+ 1) and we get

p̂k(n+ 1) =

1− νk
∑

l∈Nk/{k}

bl,k

 ψ̂k(n+ 1)

+ νk
∑

l∈Nk/{k}

bl,kψ̂l(n+ 1). (3.2.10)

Next we introduce the coefficients al,k = 0 if l 6= Nk, al,k = νkbl,k if l 6= k and
ak,k = 1− νk

∑
l∈Nk/{k} bl,k if l = k. If we collect the coefficients al,k into a K ×K

matrix A, it is straightforward to see that
∑
l∈Nk

al,k = 1 for every k ∈ K and
thus A is a left stochastic matrix 1 (but A can be also doubly stochastic). We
replace E |xl(n)|2 with |xl(n)|2 and finally arrive to the Adapt and Combine (ATC)
recursions that we summarise with energy detection as Algorithm 1.

In the ATC diffusion algorithm, during the incremental step, at time instant n,
the estimate ψ̂k(n + 1) at node k is calculated using the estimate p̂k(n) at node
k and the new observation available for node k. The coefficients cl,k define how
the measurements are exchanged between the nodes. During the diffusion step the
estimate p̂k(n + 1) at every node k is calculated using a linear combination of the
estimates ψ̂l(n+ 1) available for node k. The elements al,k specify the combination
strategy of estimates.

Note that in practice the non-negative coefficients al,k and cl,k can be chosen
freely under the conditions, that C1 = 1, 1TC = 1T , 1TA = 1T , al,k = 0, if l 6= Nk
and cl,k = 0 if l 6= Nk. The coefficients bl,k are absorbed into coefficients al,k and
do not have to be considered in practice.

1For a left stochastic matric A it holds 1T A = 1T .



3.2. Distributed power estimation and detection 33

Algorithm 3.1: Distributed ATC Diffusion Power Estimation
Start with p̂k(0) = p(0).
Given non-negative real coefficients al,k, cl,k
for every time instant n ≥ 1 do

for every node k = 1, ...,K do
1. Power estimation:
ψ̂k(n+ 1) = p̂k(n)

+µk
∑
l∈Nk

cl,k
(
|xl(n)|2 − p̂k(n)

)
p̂k(n+ 1) =

∑
l∈Nk

al,kψ̂l(n+ 1).
2. Detection decision:
H0 : p̂k(n+ 1) < γ or H1 : p̂k(n+ 1) > γ.
(Refer to (3.3.41) for selecting the threshold).

end for
end for

We also add that if we replace the order of adaptation and fusion equations in
(3.2.9) as follows

ψ̂k(n) = p̂k(n) + νk
∑

l∈Nk/{k}

bk,l [ψl − p̂k(n)]

p̂k(n+ 1) = ψ̂k(n) + µk
∑
l∈Nk

ck,l
[
E |xl(n)|2 − p̂k(n)

]
. (3.2.11)

then by skiping the standard steps, we arrive to the CTA (Combine and Adapt)
version of the diffusion LMS algorithm, which is summarised at next In the CTA

Algorithm 3.2: Distributed CTA Diffusion Power Estimation
Start with p̂k(0) = p(0).
Given non-negative real coefficients ak,l, ck,l
for every time instant n ≥ 1 do

for every node k = 1, ...,K do
1. Power estimation:
ψ̂k(n) =

∑
l∈Nk

ak,lp̂l(n)
p̂k(n+ 1) = ψ̂k(n)

+µk
∑
l∈Nk

ck,l
(
|xl(n)|2 − ψk(n)

)
.

2. Detection decision:
H0 : p̂k(n+ 1) < γ or H1 : p̂k(n+ 1) > γ.
(Refer to (3.3.41) for selecting the threshold).

end for
end for

diffusion algoritm, the estimates {p̂k(n)}k∈Nk
including the p̂k(n) from node k are
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combined together at every node k. This is the diffusion step. Then the combined
estimate ψ̂k(n) at node k is used to calculate the new estimate p̂k(n + 1) at node
k, using the new observation available for node k, at time instant n. This is the
incremental step.

3.2.3 Recursive ring-around topology
As shown in paper [ATB14c], a recusive estimator can be interpreted also as a coun-
terpart of a non-recursive sample variance estimator. By taking into account the
suggestions in [Kay93] for a local, non-cooperating estimator for sample variance,
the distributed estimator using a circular estimation topology can be constructed
as follows

p̂k(n) = 1
n

n∑
i=1
|x(k−i+1)modK(n− i+ 1)|2. (3.2.12)

A recursive equivalent to (3.2.12) is given by

p̂k(n) = p̂(k−1)modK(n− 1) + µ(n)(|xk(n)|2

−p̂(k−1)modK(n− 1)), (3.2.13)

where n ≥ 1 and with step size: µ(n) = 1
n

The usage of step size µ(n) = 1
n however, expects that the received signal xk(n)

over n ∈ N stays under a fixed hypotheses: H0 or H1. This fact makes its direct
use in real-time spectrum sensing problematic. As a solution, a positive constant
step size µ(n) = µ can be used in recursive power estimation algorithm and then
(3.2.13) is able to track the possible changes in power of the received signal xk(n).
As common in the literature of adaptive filtering, the step size of the algorithm is
user defined.

The estimated power level p̂k(n) is used as the test statistic of the recursive
ED. i.e. T (x) = p̂k(n). Since there is no fusion centre and for system redundancy
purposes, information overhead is allowed in the network. Thus there are K circular
estimation processes running in parallel to provide a global estimate for every node
k ∈ K. Every node can then perform the energy detection at any time instant.
The algorithm can in principle run infinitely (no window for sample processing is
required). The proposed algorithm is summarized in Algorithm 3.3. Let us note,
that with the suggested algorithm, only one-directional communication with the
adjacent node is required for exchanging the soft information, compared to the
schemes, where a central processing unit is used and thus two way communication
direction is needed to also send the global soft information back to the nodes at every
iteration n. An example with K = 2 nodes and thereby 2 estimation processes (red
and blue) is illustrated in Fig. 3.1 with nodes k = 1, 2 receiving samples n = 1, ..., 3.

According to AS3 it is assumed, that the number of iterations performed with
the recursive algorithm is larger than the number of nodes in the network. The
estimator needs to converge to steady state before the detection decision is made
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Figure 3.1: Distributed Power Estimation with 2 nodes.

and for the convergence a sufficient number of samples are required. In slow fading
the channel coherence time is large and the convergence is achievable. Secondly,
in the performance section of the proposed algorithm the Central Limit Theorem
(CLT) is applied so enough samples are required also for this approximation to hold.
The minimum number of samples for the CLT approximation has been evaluated
in the literature, e.g. in [PUP02].

3.2.4 Network topologies
Thus in the ring-around topology [ATB14c], the power estimates are exchanged
circularly between the nodes. At time instant n, node k has access only to one esti-
mate p̂(k−1)modK(n) from the node (k−1)modK for calculating p̂k(n+1). The local
estimate p̂k(n) is ignored. The algorithm uses only locally observed measurements
(i.e C = I). Thus K estimates have to be sent over the wireless links at time instant
n.

Secondly to improve the link failure resistance but keep the need for exchanging
the data over wireless links in the network minimal, we compose the diffusion
topology from the local (A,C = I) and ring-around topologies. At time instant
n, at node k the local estimate p̂k(n) and the estimate p̂(k−1)modK(n) from node
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Algorithm 3.3: Distributed Ring−Around Power Estimation
Start with P̂k(0) = P0.
for every time instant n ≥ 1 do

for every node k = 1, ...,K do
1. Power estimation:
P̂k(n) = P̂(k−1)modK(n− 1)+
µ(|xk(n)|2 − P̂(k−1)modK(n− 1)).
2. Detection decision:
H0 : P̂k(n) < γ or H1 : P̂k(n) > γ.
(Refer to (3.3.41) for selecting the threshold).

end for
end for

(k − 1)modK are fused together using equal, constant weight 0.5 for calculating
p̂k(n+ 1). For example when K = 3 and keeping the same notation and conditions
for the elements of matrix A, the ring around and diffusion topologies are given as
follows

AT
ring =

0 0 1
1 0 0
0 1 0

 , AT
diff =

0.5 0 0.5
0.5 0.5 0
0 0.5 0.5

 . (3.2.14)

and is illustrated in Fig. 3.2 If measurements are exchanged between the nodes,
then we set C = AT

diff. Hence at time instant n additionally K measurements have
to be exchanged in the network. Otherwise C = I. Therefore in the subsequent
sections we assume, that both matrices C and A are doubly stochastic (i.e we have
additionally A1 = 1) and all the conditions for selecting elements al,k and cl,k,
listed in last subsection, are satisfied.

3.3 Performance analysis

The performance analysis of the proposed algorithms is divided into two parts. First
we derive a general model for analysing the mean and variance of the estimates of
the ATC, CTA [ATB14a] and ring-around [ATB14c] algorithms in one framework.
Next we analyse the resulting energy detection performance. Let us note that for
the theoretical performance analysis we need to know the values of the channel
gains.

For more convenient notation we stack the estimates and observations from all
the nodes k ∈ K into K × 1 time dependent vectors p̂(n) = [p1(n) . . .pK(n)]T and
x(n) =

[
|x1(n)|2 . . . |xK(n)|2

]T respectively.
Let us define additional matrix M = diag {µ1, . . . , µK}, which contain the

algorithm step size parameters. We introduce also two additional K ×K matrices



3.3. Performance analysis 37

1

2

3

)1(ˆ
1

p )1(ˆ
2

p

)1(ˆ
3

p
)1(ˆ

1
p )1(ˆ

3
p

)1(ˆ
2

p

Figure 3.2: Distributed Power Estimation with 3 nodes.

L1 and L2 for being able to represent all the 3 algorithms using one framework.
Then we can write the recursion in the following general form

p̂(n+ 1) = L2 (I−M) L1p̂(n) + L2MCx(n). (3.3.1)

The initial estimate is p̂(0). It follows, that we get the ATC algorithm, when we
take L2 = AT

diff, L1 = I, C = I or C = AT
diff in case of the measurements are

exchanged between the nodes. For CTA algorithm we take L1 = AT
diff, L2 = I,

C = I or C = AT
diff. The ring around topology is selected when L2 = I, L1 = AT

ring
and C = I. Note that to keep the matching notation with Algorithm 1, we use
transposed matrices in the general recursion. The local, non-cooperative received
power estimation is represented by L1 = L2 = C = I.

For evaluating the performance of the estimation algorithms and the resulting
energy detection, we first evaluate the mean and variance of estimates pk(n).

3.3.1 Mean of estimates

Following the signal model (3.2.1), let us denote the conditional expectation of the
observation vector as E [x(n)|Hi], where i = 1 denotes the case when PU signal is
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present and i = 0 the case when PU signal is absent. In this section we assume that
the environment is stationary. The conditional means are thus constant over time.

Considering the general recursion (4.4.1), we have

E [p̂(n+ 1)|Hi] = L2 (I−M) L1 E [p̂(n)|Hi]
+ L2MCE [x(n)|Hi] , (3.3.2)

for i = 0, 1, where the initial value is given as E [p̂(0)|Hi]. Let us note that the
conditional mean of p̂k(n) under hypothesis Hi, i = 0, 1 at node k is

E [p̂k(n)|Hi] = wTk E [x(n)|Hi] for i=0,1 , (3.3.3)

where wk = col(0 . . . , [wk(k) = 1], . . . 0) at node k.
After iterating we see, that the mean recursion can be given in the following

equivalent form

E [x(n)|Hi] = [L2 (I−M) L1]n p̂(0)

+
[
n−1∑
i=0

[L2 (I−M) L1]i
]

L2MCE [x(n)|Hi] . (3.3.4)

We are interested in finding the mean of the estimates, when the filter has converged
to a steady state, i.e when n → ∞. Thus according to (3.3.4) we need to analyse
the asymptotic behaviour of [L2 (I−M) L1]n and the limit of the geometric series∑n−1
i=0 [L2 (I−M) L1]i.
According to [HJ12, Lemma 5.6.11], if for a matrix norm it holds that

‖L2 (I−M) L1‖ < 1 (3.3.5)

then limn→∞[L2(I−M)L1]n → 0. Thus given the doubly stochastic matrices L1,
L2 and C, the choice of step sizes in M should guarantee that the stability condition
(3.3.5) holds. Using the matrix 2-norm and the submultiplicativity property of a
matrix norm, we have that

‖L2 (I −M) L1‖2 ≤ ‖L2‖2‖ (I −M) ‖2‖L1‖2 < 1. (3.3.6)

The spectral norm of a doubly stochastic matrix is 1 2. Since the matrix (I−M)
is diagonal, we have that

‖L2 (I−M) L1‖2 ≤ || (I−M) ||2 = max
k
|1− µk| < 1. (3.3.7)

We conclude that for the (3.3.5) to hold, we must select the µk, k = 1 . . .K in M so
that the diagonal matrix (I−M) is stable. Thus we have the following condition

|λk [(I−M)]| = |1− µk| < 1 for all k=1. . . K . (3.3.8)
2See [HJ12, Problem 8.7.P5]
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Since in our model we have only one mode of convergence of the filter [Say08], µk
should be selected in the range:

0 < µk < 2. (3.3.9)

The geometric series Sn =
∑n−1
i=0 [L2 (I−M) L1]i, which is generated by matrix

[L2 (I−M) L1], converges if and only if the condition (3.3.5) holds for all λi. The
condition (3.3.5) guarantees that the [I− [L2 (I−M) L1]] is invertible. Thus we
can write the geometric series as follows

Sn = [I− [L2 (I−M) L1]]−1 [I− [L2 (I−M) L1]n] . (3.3.10)

Hence according to (3.3.5) as n→∞ the geometric series converges to

Sn = [I− [L2 (I−M) L1]]−1
. (3.3.11)

Thus by noting the mean of p̂(n) in steady state and under both hypotheses Hi,
i = 0, 1 as E [p̂(∞)|Hi], we can write

E [p̂(∞)|Hi] = [I− [L2 (I−M) L1]]−1

× L2MC E [x(n)|Hi] , (3.3.12)

where the conditional expectations of observations E [x(n)|Hi] follow (3.2.1). Sim-
ilarly to (3.3.3) we have that the mean of p̂k(n) in steady state is

E [p̂k(∞)|Hi] = wTk E [p̂(∞)|Hi] for i=0,1 . (3.3.13)

Mean of Ring-Around estimates

Since the iteration cycle of the ring-around estimation structure can be easily
tracked, specific results for the ring-round estimates can be given.

The mean of the global estimation recursion (3.2.13) can be found directly.
Dropping the modK notation, we have

E[p̂k(n)] = (1− µ)E[p̂k−1(n− 1)] + µE[|xk(n)|2].
(3.3.14)

The initial condition is p0 = p̂k(0). Due to the circular estimation topology we
have that N = KM+m, whereM = bN/Kc and where m denotes additional itera-
tions after full cycles. Let E[p̂k(N)|H1] denote the mean when PU signal present and
E[p̂k(N)|H0] the mean when only noise is present. By iterating recursion (3.3.14),
using the proposed notation and replacing the expectations using model (3.2.1), we
can write
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E[p̂k(N)|H1] =

µS[ 1− (1− µ)KM

1− (1− µ)K

[
K−1∑
l=0

(1− µ)l|αk−l|2
]

+ σ2
v

[
1− (1− µ)KM+m]

+ p0(1− µ)KM+m

+ µS

[
(1− µ)KM

[
m−1∑
i=0

(1− µ)i|αk−i|2
]]

. (3.3.15)

In line 2 of (3.3.15), the geometric series
∑M−1
i=0 (1−µ)Ki has been replaced with

its sum. Let us note, that according to lines 2 and 5 of (3.3.15), the mean differs
from node to node due to the values and processing order of |αk|2. When only noise
is present then S = 0 and

E[p̂k(N)|H0] =
p0(1− µ)KM+m + σ2

v

[
1− (1− µ)KM+m] . (3.3.16)

According to AS3,M >> K and in steady state of the estimator, whenM →∞,
the exponential factors (1 − µ)KM+m and (1 − µ)KM in (3.3.15) converge to 0 if
0 < µ < 1. In steady-state, formula (3.3.15) goes to

E[p̂k(∞)|H1] =

σ2
v + µS

1− (1− µ)K

[
K−1∑
l=0

(1− µ)l|αk−l|2
]

(3.3.17)

and in the noise only case correspondingly to

E[p̂k(∞)|H0] = σ2
v . (3.3.18)

3.3.2 Variance of estimates
Let us denote the conditional covariance of the estimates under the hypothesis Hi,
i = 0, 1 as Cov [p̂(n+ 1)|Hi]. Similarly let Cov [x(n)|Hi] denote the conditional
covariance of the observations. By using recursions (4.4.1), (4.4.2) and standard
definition of covariance, taking expectation and considering the fact that p̂(n) is
independent of the observation vector x(n), it can be shown that the covariance
recursion is

Cov [p̂(n+ 1)|Hi] = L2 (I−M) L1 Cov [p̂(n)|Hi]
× LT1 (I−M) LT2

+ L2MC Cov [x(n)|Hi] CTMLT2 . (3.3.19)
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where initial estimate of covariance matrix is noted by Cov [p̂(0)|Hi], i = 0, 1. The
covariance matrix of observations Cov [x(n)|Hi] is constant over time n.

Next we derive the structure of K × K covariance matrix Cov [x(n)|Hi]. By
considering the model (3.2.1), when PU signal is present the main diagonal elements
of matrix Cov [x(n)|H1] – the variances of observations at node k ∈ K can be shown
to be:

Var
[
|xk(n)|2|H1

]
=
(
|αk|2σ2

s + σ2
v,k

)2
. (3.3.20)

Similarly when the PU signal is not present and according to AS 2 the variances of
observations at node k ∈ K are given as

Var
[
|xk(n)|2|H0

]
= σ4

v,k. (3.3.21)

When the PU signal is present, the off diagonal elements of matrix Cov [x(n)|H1] -
the covariance of observations at nodes k and j if k, j ∈ K and i 6= j can be shown
to be:

Cov
[
|xk(n)|2, |xj(n)|2|H1

]
= |αk|2|αj |2σ4

s . (3.3.22)

According to AS 2 the noise realizations vk(n) and vj(n) are uncorrelated in time
and space for k, j ∈ K and i 6= j. Thus when the PU signal is absent the covariance
of observations is

Cov
[
|xk(n)|2, |xj(n)|2|H0

]
= 0, (3.3.23)

for k, j ∈ K and i 6= j.
The variance of p̂k(n) at node k, given the hypothesis Hi, i = 0, 1, can be found

by multiplying the recursion (4.4.11) with vector wTk from the left and with vector
wk from the right

Var [p̂k(n+ 1)|Hi] = wTk L2 (I−M) L1 Cov [p̂(n)|Hi]
× LT1 (I−M) LT2 wk

+ wTk L2MC Cov [x(n)|Hi]
×CTMLT2 wk. (3.3.24)

Note that (4.4.11) is in the form of a discrete time algebraic Riccati equation
(DARE), [KSH00, App. E]. The steady state variance Var [p̂k(∞)Hi], i = 0, 1,
at node k ∈ K can be recovered by selecting the {k, k} element of the steady state
covariance matrix Cov [p̂(∞)|Hi], which has been found as a solution to the DARE.
Since the DARE can be solved using standard methods, we skip the details here.
We have finally

Var [p̂k(∞)|Hi] = wTk [Cov(p̂(∞)|Hi)]wk. (3.3.25)

To find the solution to DARE we use first the Kronecker product property

vec(UΣV ) =
(
V T ⊗ U

)
vec (Σ) (3.3.26)
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to vectorize the covariance recursion (4.4.11). The notation vec(A) stacks the
columns of its matrix argument A on top of each other, while vec−1(vec(A)) de-
notes the inverse operation to recover the matrix argument from the vector input.
Thus we can write:

vec(Cov(p̂(n+ 1)|Hi))
= [L2 (I−M) L1 ⊗ L2 (I−M) L1]
× vec(Cov(p̂(n)|Hi))
+ [L2MC⊗ L2MC] vec(Cov(x(n)|Hi). (3.3.27)

In steady state, when n → ∞, the Cov(p̂(n + 1)|Hi) and Cov(p̂(n)|Hi) have con-
verged to the same value.

The solution for vec(Cov(p̂(∞))|Hi), i = 0, 1, leads to the following result

vec(Cov(p̂(∞)|Hi))
= [I− [L2 (I−M) L1 ⊗ L2 (I−M) L1]]−1

× [L2MC⊗ L2MC] vec(Cov(x(∞)|Hi)). (3.3.28)

Thus the steady state variance Var(p̂k(∞)Hi), i = 0, 1, at node k ∈ K can be
recovered by selecting the {k, k} element of covariance matrix Cov(p̂(∞)|Hi), which
has been found as a solution to DARE and is given by (3.3.28). We have finally

Var(p̂k(∞)|Hi) = wTk
[
vec−1 (vec(Cov(p̂(∞y)|Hi)))

]
wk. (3.3.29)

Variance of Ring-Around estimates

Similarly, as for the mean of ring-around estimates, specific results for the variance
of ring-round estimates can be given. Since p̂k−1(n) and |xk(n)|2 are uncorrelated
and by dropping the modK notation, we have

Var[p̂k(n)] = (1− µ)2Var[p̂k−1(n− 1)]
+ µ2Var[|xk(n)|2]. (3.3.30)

Replacing the expectations using model (3.2.1)

Var[p̂k(KM +m+ 1)] =

µ2
M−1∑
i=0

(1− µ)2Ki
K−1∑
l=0

(1− µ)2lVar(|xk−l(n)|2)

+ µ2(1− µ)2KM
m−1∑
i=0

(1− µ)2iVar(|xk−i(n)|2) (3.3.31)

Since xk(n) is CSCG, then according to model (3.2.1) the PU signal is present,
Var(|xk(n)|2) = (S|αk|2 + σ2

v)2. Let Var[p̂k(N)|H1] denote the variance when the
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PU signal present and Var[p̂k(N)|H0] the variance when received signal contains
only noise. By iterating (3.3.30), replacing the variances and using the proposed
notation, we have that

Var[p̂k(N)|H1] =

µσ4
v

1− (1− µ)2(KM+m)

2− µ

+ µ2 1− (1− µ)2KM

1− (1− µ)2K

·

[
K−1∑
l=0

(1− µ)2l [S2|αk−l|4 + 2S|αk−l|2σ2
v

]]
+ µ2(1− µ)2KM

·

[
m−1∑
i=0

(1− µ)2i [S2|αk−i|4 + 2S|αk−i|2σ2
v

]]
.

(3.3.32)

In line 3 of (3.3.32), the geometric series
∑M−1
i=0 (1 − µ)2Ki has been replaced

with its sum. Similarly to the mean, the variance differs over the nodes. When only
noise is present, the resulting variance is given as

Var[p̂k(N)|H0] = µσ4
v

2− µ

[
1− (1− µ)2(KM+m)

]
. (3.3.33)

In steady state of the estimator, when M → ∞, the exponential factors (1 −
µ)2(KM+m) and (1− µ)2KM in (3.3.32) converge to 0 if the constant step size µ is
taken sufficient. Thus the variance tends to

Var[p̂k(∞)|H1] = µσ4
v

2− µ

+ µ2

1− (1− µ)2K

[
K−1∑
l=0

(1− µ)2l [S2|αk−l|4 + 2S|αk−l|2σ2
v

]]
(3.3.34)

under H1 and in the noise only case to

Var[p̂k(∞)|H0] = µσ4
v

2− µ. (3.3.35)
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The residual variance of the fixed step size power estimation algorithm depends
on the value of µ. We observe, that smaller µ causes smaller residual variance
and thus more precise estimation results. On the other hand it is known from the
literature of adaptive filtering, that smaller µ causes slower convergence in the
mean.

3.3.3 Detection Performance Analysis
The test statistic of the energy detector at node k at time instant n is estimated
using distributed received signal power estimation algorithms. Thus the resulting
detection performance is dependent on the performance of the underlying estima-
tion process. For deriving the formulas of probability of detection (PD) and prob-
ability of false alarm (PFA) we need to evaluate the probability density function
(PDF) of the test statistic p̂k(n+ 1) under both hypotheses H0 and H1.

The input signal is CSCG and in case K = 1, the test statistic of ED p̂k(n+1) is
local and under both hypothesis a Chi-Square distributed random variable with 2N
degrees of freedom. The test statistic p̂k(n+ 1) is obtained as a sum of a number of
identically distributed variables and hence the CLT can be applied to approximate
the Chi square distribution by a Gaussian distribution [PUP02]. According to AS
3 the number of samples is large enough, and the CLT is expected to apply.

The global test statistic p̂k(n+1) in case of hypothesis H1, is however estimated
over independent, but not identically distributed variables. In such a case the Lya-
punov CLT [Bil95] can still be applied over a large number of samples to result in
a Gaussian approximation.

Let Q be the complementary distribution function of the standard Gaussian

Q(x) = 1√
2π

∫ ∞
x

exp
(
− t

2

2

)
dt. (3.3.36)

The conditional mean E(p̂k(n + 1)|Hi) and the conditional variance Var(p̂k(n +
1)|Hi) at node k (for i = 0, 1), can be easily obtained from previously derived
(4.4.2) and (4.4.11) respectively. The conditional moments in steady state can be
obtained similarly from the corresponding steady state results. We provide at next
approximate formulas for the resulting energy detection performance. The proba-
bility of false alarm PFA of the energy detector under hypothesis H0 is found by

PFA(γ, t) = Pr(T (x) > γ|H0) =
∫ ∞
γ

px(x|H0)dx (3.3.37)

Substituting the estimation mean and variance under H0, we get

PFA = Q

(
γ − E(p̂k(n+ 1)|H0)√
Var(p̂k(n+ 1)|H0)

)
, (3.3.38)

which according to AS 2, holds for every node k ∈ K.
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The probability of detection of an energy detector under hypothesis H1 is cor-
respondingly

PD(γ, t) = Pr(T (x) > γ|H1) =
∫ ∞
γ

px(x|H1)dx. (3.3.39)

Let the probability of detection at node k be: PD,k. Similarly substituting the mean
and variance under H1, we get

PD,k = Q

(
γ − E(p̂k(n+ 1)|H1)√
Var(p̂k(n+ 1)|H1)

)
. (3.3.40)

The sensing threshold is found from (3.3.38) by fixing the desired value of PFA.
Thus

γ = E[p̂k(n+ 1)|H0]
+ Q−1 (PFA)

√
Var[p̂k(n+ 1)|H0].

(3.3.41)

Due to the AS 2 [ATB14a] the thresholds for every CR node k are equal.
Calculation of the threshold requires, however, knowledge of the moments of the

estimation algorithm in case of hypothesis H0 and these moments are dependent
on the algorithm parameters (especially the step size). In practice the required
moments can be calculated in advance using (4.4.2) and (4.4.11), known values of
the step size and the noise power and then substituting these results into (3.3.41).

3.4 Simulation results

In the numerical simulation section we investigate the ATC power estimation algo-
rithm and compare the results with the CTA [ATB14a] and ring-around [ATB14c]
versions. Secondly we view the resulting energy detection performance. In all these
simulations the PU signal s(n) is taken as QPSK with unit power S, under the
active hypothesis H1, the step size is: µ = 0.01.

3.4.1 Local and distributed power estimation
We start with investigation of the estimation algorithms. The channel gains are as-
sumed to be constant, fixed during the simulations and obtained by: αk ∼ CN(0, 1).

Ring-Around

We first investigate the estimates of (3.2.13) under two modes - local: if the nodes
are not cooperating to each-other (i.e. every node acts as a stand alone energy esti-
mator/detector) and global: if nodes are in cooperation. In the next two examples
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Figure 3.3: Local power estimation, fixed step

all nodes receive N = 1200 samples. To illustrate the tracking feature, we examine
how the algorithm reacts if the power level changes at sample 601. Thus during
samples n = 1, ..., 600 hypothesis H1 is present (the source signal power S is atten-
uated by channel gain |αk|2). Due to slow fading the αk is assumed to be constant
and is obtained by: αk ∼ CN(0, 1). In sample range n = 601, ..., 1200, the PU signal
is absent and only background noise power σ2

v = 1 is present at every node k.
Using recursion (3.2.13) the local, non-cooperative power estimate is plotted in

Fig. 3.3, with 10 nodes in the CR network. The channel gain values |αk|2 are given
on the figure. Obviously, the estimation result using local information is depending
on the channel coefficient of the specific node. From n = 601 the algorithm is
starting to converge to the noise only power level σ2

v = 1. If we for instance chose n
dependant step size µ = 1

n , then from n = 601 the algorithm would obviously not
reach to noise level during 600 samples.

In Fig. 3.4 we investigate the cooperative scheme. Exactly the same channel
gains are used as in the local simulation. Since the mean and variance differ at
nodes k, then for illustration we plot only the global power estimation result of
node k = 10, in the network with K = 10. The corresponding mean and ±3 times
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Figure 3.4: Global power estimation, fixed step

standard deviation are given in Fig. 3.4.
In Fig. 3.4 the global estimate is converging around the mean. Due to the pro-

posed circular estimation topology, the recursion (3.2.13) can reduce the effect of
random gain caused by channel coefficients. We see that the global estimate stays
within the ±3 times standard deviation limits from the mean, which is expected in
case of a Gaussian distribution.

ATC and CTA

In the comparison of algorithms we use the same channel gains for all the algorithms.
In this subsection, all the nodes in the network receive N = 2000 samples. To
illustrate how the proposed adaptive algorithms react to changes in the underlying
stochastic process, we have changed the active detection hypothesis at sample n =
1001. During samples n = 1 . . . 1000 the PU signal with constant unit power S is
present. In sample range n = 1001 . . . 2000 the PU signal is absent and only noise is
present. Under both detection hypothesis the noise power is σ2

v = 1 and assumed to
be the same in all the nodes. In this subsection, it is assumed, that no measurements
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Figure 3.5: Local power estimation.

are exchanged between the nodes, C = I.
For illustration purpose, all the estimated power values in the CR network of

10 nodes are first plotted in Fig. 3.6. Using the ATC algorithm the estimates of the
received power together with the optimal solution P o have been plotted in Fig. 3.6.
All the estimated power values in the CR network of the 10 nodes are plotted in one
figure. When we use the CTA algorithm we obtain the results, which are given in
Fig. 3.7. The value of optimal solution P o in figure Fig. 3.6 and in Fig. 3.7 is shown
as the black dashed line and is calculated according to (4.3.5) using the present
channel gains values.

Compared to the ring round topology in diffusion strategies more information
is processed at every node k, since neighbour estimate (k − 1)modK is fused with
the local estimate of node k. It was shown in [ATB14a] that the variance of the
estimates of the CTA algorithm is lower than the variance of estimates of the ring
around algorithm. Based on Fig. 3.6 and in Fig. 3.7 we observe that the variance
of the estimates of the ATC algorithm is even slightly lower than the variance of
estimates of the CTA algorithm.

The smallest value of steady state variance is achieved using the ATC algorithm.
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Figure 3.6: Local power estimation using ATC

Compared to the ring around algorithm, since the preciseness of power estimates
increases when the diffusion estimation strategies are used, the resulting detection
performance will increase as well.

3.4.2 Probability of detection

Next we investigate the probability of detection using the proposed distributed
power estimation algorithms. In the following simulations we compare the perfor-
mance of 5 different network sizes: K = 1, 3, 10, 30, 50 nodes. More specifically, the
estimated and theoretical results of PD of the last nodes in the set are compared,
i.e k = K. In the simulations the converged power estimate is used for detection
i.e p̂k(∞). The theoretical mean and variance of the power estimates are calculated
using directly the steady state formulas.

We set the desired PFA = 10−4. The thresholds of the energy detectors at nodes
k ∈ K are calculated using (3.3.41) and the corresponding steady state theoretical
mean and variance of the power estimates (of algorithms CTA, ATC and ring around
respectively) under detection hypothesis H0.
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Figure 3.7: Local power estimation using CTA

For estimating the PD we use the Monte Carlo method [Kay98] and run 1000
experiments with the same fixed set of channel constants and noise power for all
the algorithms. The estimated PD is compared with the theoretical PD. The theo-
retical PD is calculated using (3.3.40) and the corresponding steady state mean and
variance of the power estimates of the three algorithms under detection hypothesis
H1. In the following figures the continuous lines represent the theoretical PD and
the corresponding signs the estimated PD. First we set C = I. The detection per-
formance of ATC, CTA and the ring around algorithms are shown in Fig. 3.8, in
Fig. 3.10 and in Fig. 3.9 respectively. We see that there is a good match between
estimated and theoretical PD. The PDF of the test statistic is approximated by
a Gaussian distribution and the CLT approximation applies even with small K
and when the underlying stochastic process is cyclostationary (since the variance
of the sample of received signal is changing periodically over n). As we noticed
in [ATB14a] the CTA algorithm outperforms the ring around algorithm. The PD of
the set with few nodes is more influenced by the given values of channel constants.
According to simulation data when K = 1 the PU signal is in deep fading and this
explains the worse PD result. In case of non-distributed estimation and detection,
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Figure 3.8: Probability of detection, ring around, C = I

not much can be done to improve the PD. As the number of nodes in the network
increases, about 4 dB is gained with respect to the noise power. Based on Fig. 3.9
we see that the ATC slightly outperforms the CTA. As the number of nodes K
increases, from about K = 30, the PD result stabilizes close to the theoretical PD
plot of the no fading case.

When also measurements from a neighbour node are available and we set C =
AT

diff for the CTA and ATC algorithms, then the results are shown in Fig. 3.12
and in Fig. 3.11 respectively. We note that ATC performs slightly better, when
more nodes in the network. While ATC fuses more data than CTA, the difference
of detection performance with CTA is rather small. We see minor increase in the
detection performance when additionally measurements are exchanged between the
nodes. Thus we conclude that the best detection results are obtained using ATC
algorithm, however the difference between ATC and CTA is quite small. On the
other hand since exchanging measurements between the nodes in a neighbourhood
of a node in the CR network, additional data has to be broadcast, processed and
this requires additional energy. Thus the usage of measurement exchange may not
be justified in practical implementation.
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Figure 3.9: Probability of detection, ATC, C = I

3.5 Conclusion

In this chapter we studied a diffusion based distributed power estimation approach,
what is applicable for CR networks for detecting the presence of PU signal. We de-
rived Ring-Around, CTA and ATC diffusion based energy detection algorithms for
energy detection. We proposed a general framework for analysing the performance
of the ATC diffusion, previously studied CTA and ring-around power estimation
algorithms and compared the resulting energy detection performances. Our simula-
tion study demonstrated that both diffusion LMS based energy detection algorithms
outperform the previously proposed ring around algorithm and that the ATC diffu-
sion algorithm slightly outperforms the CTA diffusion algorithm and CTA diffusion
algorithm outperforms the ring-around algorithm. In addition it was observed that
the effect of exchanging measurements in addition to the estimates in CTA and
ATC type of algorithms is rather small. All the three proposed algorithms with
fixed step size are able to track changes in received signal power and are usable in
cognitive radio systems.
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Figure 3.10: Probability of detection, CTA topology, C = I
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Figure 3.11: Probability of detection, ATC topology, C = AT
diff
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Chapter 4

Distributed Largest Eigenvalue
Based Spectrum Sensing using

Diffusion LMS

In this chapter we propose a distributed detection scheme for cognitive radio (CR)
networks, based on the largest eigenvalues (LEs) of adaptively estimated correlation
matrices (CMs), assuming that the primary user signal is temporally correlated.
The proposed algorithm is fully distributed, thereby avoiding the potential single
point of failure that a fusion centre (FC) would imply. Different forms of diffusion
least mean square (LMS) algorithms are used for estimating and averaging the CMs
over the CR network for the LE detection and the resulting estimation performance
is analyzed using a common framework. In order to obtain analytic results on the
detection performance, the exact distribution of the CM estimates are approximated
by a Wishart distribution, by matching the moments. The theoretical findings are
verified through simulations.

4.1 Background

We consider the interweave CR paradigm [GSMS09], where CR systems detect
the presence of a primary user (PU) signal by sensing the spectrum area of in-
terest. The binary detection problem is studied: PU signal is present or absent
[HNZ09,BGG+13,ALLP12]. In the interweave paradigm it is expected that the CR
system should accurately detect the transmission of a PU system, when the latter
is operating.

As already described in Chapter 3, in the literature several type of detectors
for spectrum sensing have been proposed. When the PU signal waveform, channel
and additive noise properties are known a priori, then the matched filter detec-
tor (MFD) is optimal [Kay98]. The MFD requires perfect synchronization between
the PU signal waveform and the received signal. However in practice such required
knowledge is often not available, which makes the usage of the MFD detector im-
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practical. The cyclostationary feature detection method [Gar91] requires a priori
knowledge about the cyclic frequencies of the PU signals, which often is a too strong
assumption for practical implementation - in general it is complicated to implement
and it requires that knowledge about the type, modulation and configuration prop-
erties of the PU signal is available. The Energy Detection (ED) method [Kay98]
models the PU signal as a random process and does not require knowledge about
the PU signal, modulation type and channel properties. In such a case, when the
received PU signal is white, the ED is optimal. However, setting the detection
threshold requires knowledge of the noise power value. It has been shown, that if
there is uncertainty in the noise power or if the received PU signal is correlated,
the ED performance decreases and it is no more optimal [LZPH08].

A second large group of detectors for spectrum sensing are based on eigen-
value properties of an estimated correlation matrix [TW12,WTL14,ZL09]. Detec-
tion based on the largest eigenvalue (LE) of estimated CMs [TW12] is optimal
when the observations are zero mean Gaussian distributed, we do not have specific
information about the PU signal and the channel gains, and when the PU signal is
rank one correlated [TNKG10]. The LE method uses knowledge about the additive
noise power to determine the detection threshold. Random Matrix Theory has been
used to study the performance of the CM eigenvalue based detectors [CD11]. We
note, that when linear estimation of CM is used, more sophisticated detectors: the
volume based detector (VD) and the covariance based detector (CAV), which avoid
eigenvalue or singular value decomposition, have been studied in [HSQ14,HQXZ15]
and [ZC09] respectively. Similarly, when linear estimation of a CM is used, several
eigenvalue based detectors are robust in the sense, that the noise power value does
not influence the test statistics or threshold of the detectors. For example the Eigen-
value Arithmetic to Geometric Mean (AGM) [HFL+15], the Maximum to Minimum
eigenvalue ratio (MME), the Energy to Minimum Eigenvalue ratio (EME) [ZL09],
the Eigenvalue Moment ratio (EMR) [HFL+15], and the Hadamard [HXZ15] detec-
tors have been proposed in the literature. A method for blind and optimal combina-
tion of observations for the ED has been proposed in [ZLZ08]. For these detectors,
the performance analysis is based on the assumption that the sample CM is Wishart
distributed with known degrees of freedom (DoF), an assumption that does not hold
when exponentially weighted (adaptive) CM estimation is used. Also, the proposed
approximate or asymptotic analysis of the theoretical detection performance for
EME, MME, CAV detectors tend to be inaccurate in the low SNR regime, as seen
in [ZL09,ZC09]. Such potential inaccuracy is not well usable for studying the accu-
racy of distribution parameter approximations of adaptive CM estimates in a low
SNR region.

From the previous chapters we know, that in cognitive radio (CR) contexts we
would like to avoid creating interference to the PU user and find free spectrum
opportunities as fast as possible. On the other hand the active detection hypothesis
may change during the processing time. Distributed, adaptive network learning
methods, based on exponential averaging estimation, are able to learn the statistical
information based on observations received by the nodes in the network. These
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methods can react to possible changes in the properties of estimated statistics in
real time. Several proposed distributed spectrum sensing solutions make use of a
central FC. A FC will however form a single point of failure in the network since a
malfunction in this unit affects the performance of the whole distributed solution.
We therefore propose a CM estimation solution, where the available CM estimates
(and corresponding measurements) are fused in cognitive radio network nodes, to
allow all nodes to make detection decisions based on data from the neighboring
nodes and without involvement of any central processing unit. Such a solution
enhances the network failure resistance.

Also in the Chapter 3 we mentioned that several distributed adaptive estima-
tion schemes have been studied in the past. Consensus based schemes are analyzed
for example in [XBL06,SMG09,XBL05,DKM+10]. Diffusion estimation schemes are
studied for instance in [ZTS12,GJSS16], while Least mean square (LMS) and recur-
sive least squares (RLS) schemes in [CS11a,CS10,LS08,LCS08]. It has been shown,
that distributed diffusion strategies can often perform better (in terms of faster con-
vergence and lower Mean Square Deviation) and be more stable compared to con-
sensus algorithms [TS12, Say14]. Several detection solutions, based on distributed
estimation, have been studied for example in [CS11b,LKSS12,YSS13,MBMS16]. A
ring network topology for distributed energy detection without a FC has been sug-
gested in [KGC11]. In [ATB14c] we proposed and analyzed a diffusion LMS based
recursive calculation of the test statistics with ring topology for the energy detectors
in cognitive radio network. Ring networks are however sensitive to communication
link failures. Combine and Adapt (CTA) LMS diffusion based calculation of the
test statistics for the energy detectors was studied in [ATB14a] and an Adapt and
Combine (ATC) based version was investigated further in [ATB14b].

In this chapter we study the performance of LE detection in a distributed CR
network, based on adaptively, distributively estimated CMs, using the completely
distributed diffusion LMS strategy. We focus on the distributed detection problem
and the analysis of dynamics of the diffusion estimation process is beyond the scope
of the chapter and this thesis. We make the assumption that the CR network does
not have prior information about the waveform of the PU signal and about the
channel gains in the secondary nodes. We assume that the received PU signals
samples are temporally correlated. Secondly in general we assume the noise power
level is known. Noise power estimation procedures and analysis of the sensitivity to
estimation errors falls outside the scope of this chapter. To analyze the detection
performance and determine the threshold value, we follow the ideas of [Zha12,
Kha89,GN05] and approximate the distribution of the exponentially averaged CM
estimate by a Wishart distribution by moment matching. The resulting DoF for the
approximate Wishart distribution will depend both on the step size, the network
topology, and under H1 detection hypothesis will depend also on the value of the
noise variance parameter. We have therefore focused on the LE based detection,
since underH1 the robustness of alternative detectors like EME, MME, CAV in case
of adaptively estimated CMs, is lost anyway. We however provide a simulation with
the MME detector, which is a robust detector. In the distributed CR network, every
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node acts as an independent detector in terms of detection decision making based
on the available CM estimates. Due to limited information about the PU signal and
the communication channel, the theoretical global estimation model is proposed as
a network-average CM (while in practice the CR nodes have only access to the
subset of data from the neighbor nodes). We consider the control-level analysis of
the proposed distributed CM estimation and LE detection algorithm to be out of
scope of the chapter.

We organize the remainder of the chapter as follows. In Section 4.2 we describe
the motivation, specify the system models which are analysed further in this chap-
ter and we motivate the usage of the LE detector. In Section 4.3 we derive an
adaptive, distributed CM estimation algorithm based on diffusion LMS strategy
and summarize the versions of it. In Section 4.4 we analyse the performance of the
proposed distributed CM estimation algorithm using a common framework for mo-
ment based analysis for all the versions of the Diffusion LMS algorithm. We propose
the usage of Total and General Variance based approximations for being able to
model the distributions of adaptive CM estimates under both detection hypotheses.
Using these results the theoretical false alarm and the detection performance of the
LE detector are studied. In Section 4.5 we present our simulations results and verify
the theoretical findings.

Notation. In this chapter we use the following notations. Boldface uppercase and
lowercase letters denote matrices and vectors, respectively. E[·], Var[·], Cov[·] denote
expectation, variance (of a scalar) and covariance operators, respectively. vec[·] and
vec−1[·] denote conversion from matrix to vector and from vector to matrix. (·)T ,
(·)H and (·)c denote the vector or matrix transpose, the Hermitian transpose and
the complex conjugate, respectively. ⊗ denotes the Kronecker product.

4.2 Problem formulation and background

4.2.1 Signal model and assumptions
Assume that K single-antenna CR nodes are independently sensing the communi-
cation band of a PU. Let the observation bandwidth of the communication band be
denoted as B. A collection of samples of the down converted continuous time signal
zs(t) are collected every Ts seconds, with sampling period δs < Ts. As a result every
node individually obtains a vector

yk(n) = [zs(nTs), zs(nTs − δs), . . . , zs(nTs − (M − 1)δs)] , (4.2.1)

which gives the following observation model for both detection hypotheses

H0 : yk(n) = vk(n),
H1 : yk(n) = αks(n) + vk(n),

(4.2.2)

where k = 1, 2, ...,K is the node number, M is the length of the observation vector,
and n = 1, 2, ...N is the sample discrete time index. The primary signal s(n),
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the noise vk(n) and channel gains αk at node k are assumed to be statistically
independent. We additionally assume that the PU signal follows

s(n) ∼ CNM (ms,Σs) . (4.2.3)

Due to the one communication channel assumption between a CR and PU, tem-
porally correlation models of CMs are justified by the signal model 4.2.2. In the
performance analysis of the LE detection scheme, the following assumption will be
used.

AS 1. The additive noise vk(n) is independently and identically distributed
(i.i.d) circularly symmetric complex Gaussian (CSCG) noise with zero mean and
covariance Σv,k = σ2

v,kIM . In the CR network vk(n) is uncorrelated in time and
space. We assume the noise power is known a priori and has the same power level
for all nodes in the CR network.

Under H1 we have the following M ×M CM model

Rk = Rs,k + Σv,k. (4.2.4)

Let us denote the actually occupied bandwidth (within the observation bandwidth
B) as b. Thus the ratio between occupation and observation bandwidths is denoted
as β = b/B [HBS15] and the rank of the PU signal matrix can be then approximated
as rank(Rs,k) ≈ dβMe. We assume M > 1, β < 1 and then Rs,k has in general a
low rank (see also [Buc87]), while Σv,k is a scaled identity matrix. This property
can be used for detecting the PU signal.

4.2.2 Largest Eigenvalue detection
In this chapter, we focus on the LE detector, which is known to follow from the
General Likelihood Ratio approach, when AS 1 holds, the received observation
vectors obey a Multivariate Complex Gaussian distribution with zero mean, and
when the PU signal population covariance matrix Rs,k is rank one [TNKG10]. The
LE detector requires low computational complexity and the detection performance
analysis is easy to conduct. As seen in [TW12] and in Section 4.4, there exist usable
theoretical results for the conditional distributions without asymptotic approxima-
tions, which predict the true performance well both in low and high SNR. The
LE method is optimal for one PU signal. In the case of higher rank PU signals
(i.e more than one PU signal in the network), then the LE detector is no longer
optimal, but still usable. We note that all these existing results from the literature
for the LE detector hold when estimating the CM using a standard non-weighted
sample covariance matrix, resulting in a complex Wishart distribution.

For the distributed adaptive estimation scheme considered here, this latter as-
sumption is no longer true, but as will be shown in Sections 4.4 and 4.5, the
distribution can still be well approximated by a complex Wishart distribution.
The DoF approximations depend on the parameters of the distributed and adap-
tive CM estimation algorithm step-size and under H1 also on the preciseness of
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the noise power value (AS 1). Extending the analysis to other type of detectors
can therefore be done using the existing results in the literature, for example
from [HSQ14, HQXZ15, HFL+15, HXZ15]. As seen in Section 4.5, a noise power
uncertainty under the detection hypothesis H1 causes an inaccuracy to the approx-
imated DoF|H1 value. This effect causes a potential inaccuracy in the theoretical
detection performance formula of a detector, which requires the DoF|H1 value.
However since the threshold of a robust detector is not affected by the noise power
perturbations, then such a detector can still be used in the framework of this chap-
ter. Thus to keep the focus of the chapter, we have limited our study to the LE
detector, where AS 1 is necessary for the threshold calculation and to illustrate
the effect of accuracy of the DoF approximations under both detection hypothe-
ses. Since the LE detector is vulnerable to the noise power value uncertainty, then
in Section 4.5 we also provide a simulation with the robust MME detector in the
proposed distributed and adaptive CM estimation framework.

Thus an estimate R̂k(n) of the CM Rk is assumed to be available for every node
k ∈ K at time index n. Let us define the eigenvalues of R̂k(n) in non-increasing
order as λ1 ≥ λ2 ≥ · · · ≥ λM . Every node k detects the presence of a PU signal
by independently determining the LE of the locally available estimate R̂k(n) and
performing the following detection test

λ1

[
R̂k(n)

] H1
≷
H0

γLE,k, (4.2.5)

using a threshold γLE,k, which is given in Section 4.4.3 by (4.4.28) or (4.4.31).
Next we implement the diffusion LMS based method to derive a distributed

adaptive CM based LE detector in the CR network, so that the algorithm: A) is
able to react to a possible change in the statistics of observations on line (i.e when
the detection hypothesis changes during the observation time) and B) estimates the
CMs in a cooperative manner with an averaging effect over the CR network. CR
nodes can have access only to a subset of neighbor nodes and no FC unit is used
in the CR network.

4.3 Adaptive, Distributed CM estimation and LE detection

Obviously one of the most simple cooperation strategies is where all the CR nodes
are able to exchange their local data (estimates or observations) with all the other
nodes in the CR network, i.e the network global data is available at every node.
However in practice it means that all nodes have to be within hearing distance of
all the other nodes and significant amount of data needs to be exchanged and pro-
cessed over the CR network. Secondly transmitting and processing of (global) data
consumes energy, which may drain the batteries of the CR nodes. In this chapter
we assume to have a more general network topology model, where nodes only share
data with a subset of neighbor nodes and thus no global data is available. Thus we
assume that the CR nodes use low power transmitters (i.e a low energy communica-
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tion, to save the batteries) we also would like to save some energy required for local
data processing. This means that while every CR node k still needs to transmit its
estimate or observation at a time instant n, other nodes use data of pre-selected
neighbor nodes and in such a way some energy can be saved by processing (in an
adaptive manner) less data at every CR node.

We first describe local CM estimation, when the CR nodes in the network do
not cooperate. Then we propose a global (theoretical) cost function for estimating
the CM in a cooperative manner. We assume, that the K nodes in the CR network
estimate a vector parameter po in a distributed manner, where nodes rely only on
the information, that is available to them. The network topology is assumed to be
fixed over the sensing time. We consider a linear, fixed combination of neighbor
estimates and measurements at every node k and time instant n. The proposed
global cost needs to be approximated in a distributed manner, where no FC, as a
potential single point of failure in the system, is used. The derivation of the ATC and
CTA type CM estimation algorithm diffusion power estimation algorithm follows
the ideas in [Say12,CS10,ATB14b].

4.3.1 Local estimation
When CR nodes do not cooperate, then according to (4.2.4) Σv,k = E

[
vk(n)vk(n)H

]
and Rs,k = E

[
|αk|2s(n)s(n)H

]
. The estimate R̂k(N) of CM Rk based on the ob-

servations n = 1, . . . , N can be obtained (independently, non-adaptively) at every
node k for example as

R̂k(N) = 1
N

N∑
n=1

yk(n)yk(n)H , (4.3.1)

We continue with the notation, suitable for the adaptive processing, i.e the estimate
R̂k(n), available at node k at time instant n. In the light of the signal model cases in
[SCO13], we consider two specific PU signal models under the detection hypothesis
H1, where s(n) is a constant or a random variable. Under the different detection
hypotheses, the R̂k(n) therefore follows the following Wishart distributions [TW12,
WTL14,GN00]

H0 : R̂k(n) ∼ CWM (N, 1
NΣv,k),

H1 : R̂k(n) ∼ CWM (N, 1
NΣv,k,

1
NΩk) if ms 6= 0,

H1 : R̂k(n) ∼ CWM (N, 1
NΣ′k) if ms = 0,

(4.3.2)

where N is the degree of freedom (DoF) parameter, Σ′k = Rs,k+Σv,k, by following
the notation in [GN00, Th. 3.5.2] 1

NΩk =
[ 1
NΣv,k

]−1
[

1
NEkEH

k

]
, and where the

non-zero column n of M ×N mean matrix Ek equals E [αk] ms. The first case cor-
responds to the Complex Central Wishart (CCW) under detection hypothesis H0,
with population covariance matrix 1

NΣv,k. The second case with the non-centrality
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matrix 1
NΩ corresponds to the Complex Non-central Wishart distribution (NCW)

under H1. We denote it as Case 1. The third case corresponds to the Complex
Central Correlated Wishart (CCCW) under H1 with population covariance matrix
1
NΣ′k. We denote it as Case 2.

According to (4.2.4), every node k has a unique channel gain αk from the PU
source, which is not known a priori for the nodes. When the nodes in the CR
network estimate Rk without cooperating with other nodes, then the estimates of
Rk are (locally) influenced by the individual channel gains of the corresponding
nodes. The local SNR at node k is given by

SNRk =
Tr
[
|αk|2

(
Rs,k + msmH

s

)]
Tr [Σv,k] . (4.3.3)

As seen, some CR nodes achieve better detection performance due to higher channel
gains (i.e due to better position in the space) than the other. We are interested in a
scheme, where all nodes can achieve similar detection performance, despite of their
individual channel gains. The method (4.3.1) expects that N samples are available
for calculation of the estimate and is not adaptive in its nature, i.e the CR system
is unable to react quickly to a possible change of a detection hypothesis during
the observation time N . This may increase the possibility of false alarm or a miss-
detection of the PU user and thus also an interference to the PU user. As seen
in next chapters, we find an adaptive, exponential (non-equal weighed) averaging
based method for estimated the CMs, which is able to learn and react to the changes
in the statistics of the CM in real time and needs to store only data from previous
iteration.

4.3.2 Global estimation
The CR nodes could cooperate via internal communication links to enhance the
detection performance (of the PU signal(s)) at every node k. In the distributed CR
network we assume:

• AS 2. There is a common control channel available for the CR system for
transferring the network level control messages. The communication links
between the CR nodes are ideal and not capacity restricted.

• AS 3. The CR network is strongly connected (however nodes can directly
communicate only with a subset of neighbor nodes).

We propose a model where nodes jointly (and in case of either detection hy-
pothesis) estimate the network average CM, which is denoted as Ro and defined as
follows

Ro = 1
K

K∑
k=1

Ro
k. (4.3.4)
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For notational convenience, introduce M2 × 1 ro = vec(Ro). Thus we can write

ro = 1
K

K∑
k=1

vec(Ro
k) = 1

K

K∑
k=1

E
[
vec
[
yk(n)yk(n)H

]]
. (4.3.5)

Let us define the Hermitian rank one observation matrix DR,k(n) = yk(n)yk(n)H
(under both hypothesis) at node k at time instant n. Its M2 × 1 vectorized form
is dR,k(n) = vec [DR,k(n)]. We can decompose the dR,k(n) into the product of a
M2 ×M2 constant (invertible) complex matrix T and a M2 × 1 real vector dk(n)
as dR,k(n) = Tdk(n), to keep the dimension of the estimated vector minimal in
the adaptive recursions. For example, when M = 2, then

Tdk(n) =


1 0 0 0
0 1 −i 0
0 1 i 0
0 0 0 1




DR,k(n)(1, 1)
<[DR,k(n)(1, 2)]
=[DR,k(n)(1, 2)]

DR,k(n)(2, 2)

 . (4.3.6)

We denote the estimate of the real valued E [dk(n)] as p̂k(n). To construct an
adaptive distributed estimation algorithm, we first relate the estimates of Ro

k and
Ro in (4.3.4) with the minimization of the following global (network-wise) cost
function

po = argmin
p

K∑
k=1

Jk(p) = argmin
p

K∑
k=1

E ‖dk(n)− p‖2, (4.3.7)

where the vector p ∈ RM
2 represents the real valued parameters of the CM, to

be estimated. Thus po represents the optimal (real valued) CM estimate or is the
optimal solution for the minimization of the Mean Square Error (MSE) type of
global aggregate cost function Jglob(p), which is given as

Jglob(p) =
K∑
k=1

Jk(p)

=
K∑
k=1

E
[
‖dk(n)‖2 − dTk (n)p− pTdk(n) + pTp

]
. (4.3.8)

Let us note that compared to the models in [STC+13,CS11b,CS10], in (4.3.8) both
the observation and estimation variables are vectors. By differentiating Jglob(p) in
(4.3.8) with respect to p and setting the result to zero, we get

∇pJ
glob(p) = −

K∑
k=1

E
[
dTk (n)

]
+KpT = 0. (4.3.9)
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It follows that

po = 1
K

K∑
k=1

E [dk(n)] . (4.3.10)

The Hessian of the aggregate cost function is

∇2
pJ

glob(p) = 2IM . (4.3.11)

Obviously Jglob(p) in (4.3.8) is strongly convex [Say14, C.18] with the unique
solution po. Also, in case of one node in the CR system (K = 1) or when the
nodes do not cooperate, then the individual cost Jk(p) is minimized at the point
pok = E [dk(n)]. Since ∇2

pJ
loc
k (p) = 2IM and the individual cost J lock (p) is strongly

convex, thus pok is unique as well.
Compared to [STC+13,CS11b,CS10], in this chapter the local costs Jk(p) are

individually not minimized at the same global point po due to different channel
conditions. However the derivation of the diffusion LMS algorithm still follows the
procedure as proposed in these papers. The proposed optimal solution (4.3.7) is
similar to the Pareto model, which is analysed in [CS13].

Note that

Ro
k = vec−1 [Tpok]

Ro = vec−1 [Tpo] . (4.3.12)

We seek an iterative solution to estimate the pok and po in a manner, which is
adaptive in time, and is fully distributed (cooperative). We propose to use diffusion
LMS based distributed solution.

4.3.3 Iterative Diffusion solutions
Let Nk denote the neighborhood group of node k ∈ K, i.e Nk defines the set of
nodes l which can send data unidirectionally the node k. The node k is assumed to
be always connected to itself. For deriving the diffusion LMS algorithm, we define
and use the standard matrices A, C and C similarly to [CS10], with non-negative
elements al,k, bl,k and cl,k, that describe how data is exchanged and combined in
the network.

Let us start by defining the K×K right stochastic matrix C with non-negative
elements so that

cl,k = 0 if l /∈ Nk, C1 = 1, (4.3.13)

where cl,k = 1 if node l is connected to the node k. The global cost (4.3.8) can be
divided into the local cost of over the neighborhood of node k and the sum of local
costs of other nodes over their corresponding neighborhoods, and can be given in
the following form

Jglob(p) = J lock (p) +
K∑
l 6=k

J locl (p). (4.3.14)
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The local cost at every node k can be expressed as a weighted combination of
the costs of the neighbors of every node k. Thus with the help of non-negative
coefficients cl,k the local cost can be given as follows

J lock (p) =
∑
l∈Nk

cl,kJl(p) (4.3.15)

and is minimized at the location plock . The following relation J locl (p) ≈ J locl (ploc) +
‖p − plocl ‖2 [CS12] can be used for the second part of right hand side (RHS) of
(4.3.14) to relate the variable p and the plocl . Here the J lock (plocl ), can be ignored,
since it is independent on the variable p. Thus we have the modified global cost
function Jglob′ as follows

Jglob
′
(p) = J lock (p) +

K∑
l 6=k
‖p− plocl ‖2. (4.3.16)

Note that it is not assumed, that node k has access to all the plocl in the network.
Thus we need to approximate the Jglob′(p) locally at every node k and the standard
steps follow. We use the non-negative coefficients bl,k to define if plocl is available
for the node k. Thus the elements bl,k take the following values

if l /∈ Nk then bl,k = 0 else bl,k = 1. (4.3.17)

Then, we limit the summation
∑K
l 6=k ‖p − plocl ‖2 on the RHS of (4.3.16) to the

neighbors of node k i.e
∑
l∈Nk/{k} bl,k‖p − plocl ‖2. Secondly, we replace the (only

theoretically available) plocl with an intermediate estimate ψ̂l, which is available at
node l.

After these steps the approximation of (4.3.16) at node k is given as

Jdistk (p) =
∑
l∈Nk

cl,k E ‖dl(n)− p‖2

+
∑

l∈Nk/{k}

bl,k‖p− ψ̂l‖2. (4.3.18)

The steepest descent algorithm [Say08] can be used to obtain a recursion for the
estimate of po at time instant n, at node k, denoted as p̂k(n). By skipping the
derivation steps, as in [CS10], the two-step steepest descent recursions are then
given as

ψ̂k(n+ 1) = p̂k(n) + µk
∑
l∈Nk

cl,k [dl(n)− p̂k(n)]

p̂k(n+ 1) =

1− νk
∑

l∈Nk/{k}

bl,k

 ψ̂k(n+ 1)
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+ νk
∑

l∈Nk/{k}

bl,kψ̂l(n+ 1), (4.3.19)

where µk and νk are a positive step sizes, ψ̂k(n+ 1) is an intermediate estimate at
node k at time n.

The coefficients in front of ψ̂l(n + 1), l = 1, . . . ,K in the second equation of
(4.3.19) can be incorporated into the non-negative coefficients al,k. Let us introduce
the K ×K matrix A, whose elements satisfy

al,k = 0 if l /∈ Nk, 1TA = 1T . (4.3.20)

Thus we take ak,k = 1− νk
∑
l∈Nk/{k} bl,k and al,k = νkbl,k for l 6= k. It is straight-

forward to see that
∑
l∈Nk

al,k = 1 for every k ∈ K and thus A is a left stochastic
matrix. Finally we obtain the Adapt and Combine (ATC) recursions as

ψ̂k(n+ 1) = p̂k(n) + µk
∑
l∈Nk

cl,k (dl(n)− p̂k(n))

p̂k(n+ 1) =
∑
l∈Nk

al,kψ̂l(n+ 1). (4.3.21)

In similar manner the Combine and Adapt (CTA) version can be derived, following
the ideas from [CS10]. In the ATC and CTA algorithms the coefficients cl,k and al,k
define respectively how the measurements dl(n) and p̂l(n) are (unidirectionally)
available for the node k. Thus the matrices A and C specify the combination
strategy of the measurements and the estimates respectively in the CR network.

In Algorithm 4.1 we present the ATC and CTA based CM estimation recursions
and the detection step in a common form. For this we define an additional inter-
mediate estimate φ̂k(n) and denote the K × K matrix A as A1 or A2, with the
elements a1,l,k and a2,l,k correspondingly. The selection options of the matrices A1
and A2 and C based on [CS10] are given in Table 1. In practice the non-negative
coefficients a1,l,k, a2,l,k, cl,k can be chosen freely under the conditions (4.3.13) and
(4.3.20) respectively. The coefficients bl,k are absorbed into coefficients al,k and do
not have to be considered in practice. For comparison in Section 4.5, we list also
a topology, where every node acts as a FC, denoted as Global FC LMS in Table
1. In such case CR nodes estimate the CM adaptively and independently (without
sharing estimates), all the measurements from all the CR nodes are available and
equally weighted for every node in the network.

Thus we observe that according to (4.3.12), Table 1 and the CM estimation
recursions in Algorithm 4.1, when the nodes in the CR network do not cooperate,
then the adaptive estimate p̂k(n) at time instant n at node k defines the individual
(local) adaptive estimate of Ro

k. When nodes cooperate by following the proposed
cost (4.3.7), Table 1 and the CM estimation recursions in Algorithm 4.1, then the
adaptive estimate p̂k(n) at time instant n at node k defines the adaptive estimate
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Algorithm 4.1: Distributed LMS based CM Estimation and Detection
Start with p̂k(0) = p(0) for every k .
Given non-negative real coefficients a1,l,k, a2,l,k, cl,k
for every time instant n ≥ 1 do

for every node k = 1, ...,K do
1. CM estimation recursions:
φ̂k(n) =

∑K
l=1 a1,l,kp̂l(n)).

ψ̂k(n+ 1) = φ̂k(n)
+µk

∑K
l=1 cl,k

[
T−1dR,l(n)− φ̂k(n)

]
p̂k(n+ 1) =

∑K
l=1 a2,l,kψ̂l(n)

2. LE detection decision:
H0 : λ1

[
vec−1 [Tp̂k(n+ 1)]

]
< γLE,k or

H1 : λ1
[
vec−1 [Tp̂k(n+ 1)]

]
> γLE,k.

(Refer to (4.4.28) or (4.4.31) for selecting the γLE,k).
end for

end for

Table 4.1: Choices of Matrices A1 and A2 and C for different LMS algorithms

Algorithm A1 A2 C
No Cooperation LMS I I I
Global FC LMS [CS10] I I (1/K)11T

CTA diffusion LMS [CS10] A I C
ATC diffusion LMS (4.3.21) I A C

of Ro in (4.3.4), within acceptable mean square error bounds [CS11b,CS10]. Thus
after several iterations, the adaptive estimate R̂k(n) of Ro is available (via the
transformation (4.3.6) and de-vectorization) for every node in the CR network.
Therefore depending on the cooperation model of the nodes, the node k at time
instant n can perform independently the LE detection based on the available matrix
estimate R̂k(n) = vec−1 [Tp̂k(n)].

Regarding the communication cost of Algorithm 4.1, then based on Table 1 it
is obvious, that when A 6= I, then from the transmission point of view still every
node k ∈ K needs to broadcast its M2 × 1 estimation vector p̂k(n) at time instant
n to the neighbours of hearing distance of the node k. However from the receiving
point of view the number of estimates p̂k(n) required for the fusion by every node
k is determined by the selection of matrix A. Similarly, every node k obtains at
time instant n a M2 × 1 observation vector d̂k(n) and when C 6= I broadcasts it
at time instant n to the neighbours of hearing distance of the node k. Thus on the
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receiving side, the exact selection of C determines the number d̂k(n) required by
every node k at time instant n for observation fusion. In Section 4.5.1 we comment
our selection of A and C for the simulations.

Finally we note that in addition to AS 2, obviously the CR system needs some
control layer protocol to establish a connection between the nodes. The details
of this operation is outside the scope of this chapter. We note, the exact control
layer model and implementation of the CR system is out of scope or the paper.
In general a protocol needs to be implemented to control the (iteration) time of
reliable spectrum sensing and the time of transmission of secondary (CR) system.
Thus based on assumption AS 4, the Algorithm 4.1 is started and running on-line,
until stopped or , re-initiated by the system.

4.4 Performance analysis

The performance analysis of the proposed algorithm is divided into three parts.
First we derive a general model for analyzing the mean and (co-)variance of the
adaptive CM estimates of recursions in Algorithm 4.1 in one framework. Secondly
we study the statistical properties of the adaptive CM estimates. For studying the
LE detection performance of the adaptive CM estimate, the distribution of the
adaptive CM estimate is approximated by a CCCW distribution. We propose the
usage of the Total and General Variance methods for approximation the DoF and
mean matrix parameters for the corresponding CCCW distributions, based on the
moments of adaptive CM estimates. Thirdly we provide theoretical results for the
LE detector. Let us note that for the theoretical performance analysis of the LE
detector, we need to know the values of the channel gains and the noise power.

4.4.1 Moment analysis of adaptive CM estimates

For the analysis of the moments of the spatio-temporal adaptive CM estimates, we
propose to use a more general vector/matrix recursion model.

We stack first the M2 × 1 estimates and observations from all the nodes k ∈ K
into a KM2× 1 column vector p̂(n)|Hi = [p̂1(n)|Hi . . . p̂K(n)|Hi]T and d(n)|Hi =
[d1(n)|Hi . . .dK(n)|Hi]T respectively, where i = 1 denotes the case when the PU
signal is present and i = 0 the case when the PU signal is absent. The initial
estimate is noted as p̂(0)|Hi.

Secondly we define an additional K ×K matrix M = diag {µ1, . . . , µK}, which
contains the positive step size parameters of the algorithms for every node k ∈ K.
The matrix M is then be extended to another KM2 × KM2 matrix as M =
M ⊗ IM2 . For the purpose of comparison with the Consensus algorithm [TS12],
let the K ×K matrix A0 specify the fusion strategy of estimates of the consensus
algorithm.

The K × K network topology matrices A0, A1, A2 and C are extended to
KM2×KM2 matrices as follows, A0 = AT

0 ⊗IM2 , A1 = AT
1 ⊗IM2 , A2 = AT

2 ⊗IM2
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and C = CT ⊗ IM2 .

Proposition 1. The distributed LMS algorithms in Table 1 and the consensus
algorithm [TS12] can be described by the following spatio-temporal recursion

p̂(n+ 1)|Hi = A2
(
A0 −M

)
A1p̂(n)|Hi + A2MCd(n)|Hi. (4.4.1)

In case of LMS algorithms A0 = IK and for example we get the ATC algorithm
with no measurement exchange, when we take additionally A1 = C = IK and
A2 6= IK , according to the selected network topology. Thus A0 = A1 = IK ⊗
IM2 , A2 = AT

2 ⊗ IM2 and C = IK ⊗ IM2 . For CTA algorithm we take A1 =
AT

diff ⊗ IM2 , A2 = IK ⊗ IM2 , C = IK ⊗ IM2 or C = AT
diff ⊗ IM2 . Note that to

keep the matching notation with Algorithm 1, we use transposed matrices in the
general spatio-temporal vector recursion. For the Consensus algorithm [TS12], we
take A1 = A2 = C = IK , A0 6= IK according to the network topology and thus
we have A0 = AT

0 ⊗ IM2 and A1 = A2 = IK ⊗ IM2 . Note, that the proposed
Kronecker extension retains the stochastic property of the extended matrix and
due to the transpose, the matrices A1 and A2 are now right stochastic and C is
left stochastic.

For studying the performance of the LMS algorithms, we first need to evaluate
the moments - mean and covariance of the stacked estimates p̂(n) and we provide
the corresponding recursions for evaluating these moments.

Mean of estimates

Let us denote the conditional expectation of the observation vector as E [d(n)|Hi],
where i = 0, 1. We specify these values in the Section 4.4.2.

Proposition 2. The general recursion (4.4.1), can be expressed as

E [p̂(n+ 1)|Hi] = A2
(
A0 −M

)
A1 E [p̂(n)|Hi]

+ A2MCE [d(n)|Hi] , (4.4.2)

for i = 0, 1, where the initial value for the mean vector is given as E [p̂(0)|Hi],
i = 0, 1.

After iterating we see, that the mean recursion can be given in the following
equivalent form

E [p̂(n)|Hi] =
[
A2
(
A0 −M

)
A1
]n p̂(0)

+
[
n−1∑
i=0

[
A2
(
A0 −M

)
A1
]i]

×A2MCE [d(n)|Hi] . (4.4.3)
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For the asymptotic analysis of the mean recursion (4.4.3), we need to analyse the
asymptotic behavior of

[
A2
(
A0 −M

)
A1
]n and the limit of the geometric series∑n−1

i=0
[
A2
(
A0 −M

)
A1
]i, when n→∞.

According to [HJ12, Theorem 5.6.12], the convergence limn→∞[A2
(
I−M

)
A1]n

→ 0 happens if and only if the spectral radius of the matrix A2
(
A0 −M

)
A1 sat-

isfies
ρ
(
A2
(
A0 −M

)
A1
)
< 1. (4.4.4)

As also noted in [TS12], the stability of the consensus algorithm is dependent not
only on the selection of step sizes but also on the estimation exchange topology A0.
This fact limits the usage of consensus algorithm in practice.

For the diffusion LMS based algorithms, the choice of step sizes in the M of
the block diagonal matrix

(
I−M

)
should guarantee that the stability condition

(4.4.4) holds, given the left stochastic matrices A1 and A2 and by considering
the proposed Kronecker extensions. It was shown in [Say12, Lemma D.6], that by
using the block maximum norm, denoted as ‖.‖b,∞, then for the matrix of type
A2
(
I−M

)
A1, it holds that

ρ
(
A2
(
I−M

)
A1
)
≤ ‖A2

(
I−M

)
A1‖b,∞

≤ ‖A2‖b,∞‖
(
I−M

)
‖b,∞‖A1‖b,∞

= ‖
(
I−M

)
‖b,∞

= ρ
(
I−M

)
. (4.4.5)

Since the matrix
(
I−M

)
is diagonal we impose to have that

ρ
(
I−M

)
= max

k
|1− µ̄k| < 1, (4.4.6)

where the µ̄k, k = 1, . . . ,KM2 are the diagonal elements of M. Thus based on
(4.4.6), the sufficient condition for the (4.4.4) to hold (i.e to make the power com-
ponent in the (4.4.3) to zero) is to select every µ̄k in M so that the diagonal
matrix

(
I−M

)
is stable - i.e all the eigenvalues of

(
I−M

)
are inside the unit

circle. Since M = M⊗IM2 , the step size condition (4.4.6) applies for the diagonal
elements µk of the K ×K diagonal matrix M directly. Thus for every k = 1 . . .K
we should have

0 < µk < 2. (4.4.7)
The CR system designer can choose the step size(s) of the nodes (freely) in the
range (4.4.7), by taking into account the CR system design considerations (which
are however out of the scope of this work). Usually the step sizes are taken quite
small to get more precise estimates (and thus better detection performance) i.e
µk � 2, but with the cost of longer convergence time of the adaptive estimations.
We illustrate the effect of convergence in Section 4.5.

Next we analyse the convergence condition of the second component on the
RHS of (4.4.3). Based on the result of [HJ12, Corollary 5.6.16] the geometric series
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Sn =
∑n−1
i=0

[
A2
(
I−M

)
A1
]i is generated by the matrix

[
A2
(
I−M

)
A1
]
and

converges if for a matrix norm it holds that ‖A2
(
I−M

)
A1‖ < 1. This condition

guarantees that
[
I−

[
A2
(
I−M

)
A1
]]

is invertible. Since from (4.4.5) we have
ρ
(
A2
(
I−M

)
A1
)
≤ ‖

(
I−M

)
‖b,∞ = ρ

(
I−M

)
, then the sufficient condition

for the convergence of the series is given by (4.4.6). Hence when the condition (4.4.6)
is satisfied, then as n→∞ the geometric series converges to

Sn =
[
I−

[
A2
(
I−M

)
A1
]]−1

. (4.4.8)

Thus by noting the mean of p̂(n) in steady state and under both hypothesis Hi,
i = 0, 1 as E [p̂(∞)|Hi], we have that

E [p̂(∞)|Hi] =
[
I−

[
A2
(
I−M

)
A1
]]−1

×A2MC E [d(n)|Hi] , (4.4.9)

where the conditional expectations of observations E [d(n)|Hi] are given in the
Section 4.4.2.

The steady state result (4.4.9) is asymptotically biased. Let us note, that the
mean error (or bias) in steady state is given as

E [p̂(∞)|Hi] = ‖(1K ⊗ po|Hi)− E [p̂(∞)|Hi] ‖2, (4.4.10)

for, i = 0, 1, where po|Hi denotes the optimal solution (4.3.10) and E [p̂(∞)|H1]
follows from (4.4.9). Since the global solution (4.3.10) follows the Pareto model,
we refer in this chapter to the generic result [CS13, Th. 3] for characterizing the
bias term, such as (4.4.10). The referred theorem determines that under certain
conditions (for example when we have the same step-sizes and a doubly-stochastic
matrix A), a lower step-size makes the bias term also lower - i.e the estimates are
closer to the optimal solution. Thus in practice, when very low step-size values are
used, the bias term can be ignored.

Covariance of estimates

Let us denote the conditional covariance of the estimates under the hypothesis Hi,
i = 0, 1 as Cov [p̂(n+ 1)|Hi]. Similarly let Cov [d(n)|Hi] denote the conditional
covariance of the observations.

Proposition 3. By using recursions (4.4.1), (4.4.2), the definition of covariance
and by considering the fact that p̂(n)|Hi is independent of the stacked observation
vector d(n)|Hi, it can be shown that the covariance recursion is

Cov [p̂(n+ 1)|Hi] = A2
(
A0 −M

)
A1 Cov [p̂(n)|Hi]

×AT

1

(
AT

0 −M
)

AT

2

+ A2MC Cov [d(n)|Hi] CTMAT

2 . (4.4.11)

where initial estimate of covariance matrix is noted by Cov [p̂(0)|Hi], i = 0, 1.
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The covariance matrix of the observations, Cov [d(n)|Hi], is constant over time
n and we provide the values in the Section 4.4.2. Note that (4.4.11) is in the form of
a discrete time algebraic Riccati equation (DARE). Thus the covariance results in
steady state (i.e the solution to DARE), can be found by using standard procedures,
such as [KSH00, App. E].

Finally we note, that according to the theory of adaptive filtering it is generically
known that a smaller step size causes lower co-variance of an adaptive estimate in
steady state [Say08] and this leads to better detection result.

4.4.2 Statistical modeling of adaptive CM estimates
In this section we first find the theoretical moments for the rank one (Hermi-
tian) observations dR,k(n), which are then transformed to real domain for the
spatio-temporal moment recursions of CM estimate p̂k(n), described in the previous
subsection. Then we describe the statistical modelling of adaptive CM estimates.
Thirdly we propose two methods for approximating the adaptive CM estimates by
a Wishart distribution.

Moments of rank one observations

First we summarize the generic and known results about the moments of M ×M
NCW and CCCW matrices R̂k, based on [ST99].

When a M ×M matrix R̂k follows a NCW distribution with a DoF parameter
N̄ , a noise population covariance matrix Σ̄v,k and a non-centrality matrix Ω̄k =[
Σ̄v,k

]−1
T̄ k, where T̄ k = ĒkĒH

k and where the non-zero column k of M ×N mean
matrix Ēk is E [yk(n)], i.e R̂k ∼ CWM (N̄, Σ̄v,k, Ω̄), then the first and vectorized
second moments are given as

E
[
R̂k

]
= N̄Σ̄v,k + T̄ k,

Cov
[
vec(R̂k)

]
= (Σ̄T

v,k ⊗ T̄ k) + (T̄ Tk ⊗ Σ̄v,k)

+ N̄(Σ̄T
v,k ⊗ Σ̄v,k). (4.4.12)

As a special case, when the matrix R̂k follows a CCCW distribution with a popu-
lation covariance matrix Σ̄k, i.e R̂k ∼ CWM

(
N̄, Σ̄k

)
, then the matrix T̄ k equals

zero and we get

E
[
R̂k

]
= N̄Σ̄k,

Cov
[
vec(R̂k)

]
= N̄(Σ̄T

k ⊗ Σ̄k). (4.4.13)

These results in [ST99] are based on the characteristic functions of the correspond-
ing Wishart distributions and apply for N̄ ≥ 1. We note that Σ̄T

k = Σ̄c
k for a

Hermitian matrix and then (4.4.13) also follows from [Ben99] and [WF93]. Thus
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the moments of dR,k(n) can be found by using the results (4.4.12) and (4.4.13)
with N̄ = 1, R̂k = yk(n)yk(n)H = DR,k(n), Σ̄v,k = σ2

vIM , Σ̄k = Rs,k + σ2
vIM2 ,

Rs,k = E
[
|αk|2

]
Σs and where in NCW case T̄ k = E

[
|αk|2

]
msmH

s .
Based on the signal model (4.2.2) and on the AS 1, obviously under H0 we have

that
E [dR,k(n)|H0] = vec

[
σ2
vIM

]
. (4.4.14)

Under H1 the mean at node k is given as

E [dR,k(n)|H1] = vec
[
Rs,k + σ2

vIM
]
. (4.4.15)

Given the network sizeK, the stackedKM2×1 vector E [dR(n)|Hi] over k = 1 . . .K
and for i = 0, 1 can be formed based on the results (4.4.14) and (4.4.15) respectively.

Due to the AS 1, the k, k (k ∈ K) diagonal block of the KM2×KM2 network-
wise covariance matrix Cov [dR(n)|H0] is given as

Cov [dR,k(n)|H0] = σ4
vIM2 , (4.4.16)

while the off-diagonal blocks are zeros, since the observation noise is not correlated
over the CR nodes.

TheKM2×KM2 network-wise Cov [dR(n)|H1] is constructed as follows. Firstly,
when ms = 0 and Σs 6= 0 (i.e Case 2 type) it can be verified, that the k, j ∈ K
blocks of the Cov [dR(n)|H1] are given as

Cov
[
dR(k,j)(n)|H1

]
=
{[(

Σ̄k

)c ⊗ Σ̄k

]
, k = j

[(Rs,k,j)c ⊗Rs,k,j ] , k 6= j
(4.4.17)

where Σ̄k = E
[
|αk|2

]
Σs+σ2

vIM2 and where for k 6= j Rs,k,j = E
[
yk(n)yj(n)H

]
=

E
[
αkα

c
j

]
Σs, since due to (AS 1) in this case the observations yk(n), yj(n) are zero

mean Gaussian vectors with independent noise processes. Secondly, when ms 6=
0 and Σs = 0 (i.e Case 1 type) and k = j, then the k, k on-diagonal block of
Cov [dR(n)|H1] is given as

Cov
[
dR(k,k)(n)|H1

]
=
[(
σ2
vIM2

)T ⊗ σ2
vIM2

]
+
[(

E
[
|αk|2

]
msmH

s

)T ⊗ σ2
vIM2

]
+
[(
σ2
vI2
M

)T ⊗ (E [|αk|2]msmH
s

)]
. (4.4.18)

When k 6= j, then due to (AS 1) the observation noise is not correlated over the CR
nodes and it can be verified, that for the k, j off-diagonal blocks, Cov

[
dR(k,j)(n)|H1

]
=

0. Given the network size K, the network-wise covariance matrix Cov [dR(n)|H1]
can be composed by using (4.4.17) and (4.4.18) respectively.

Finally the moments of the real observations (as the inputs for the moment
recursions of the estimates p̂k(n), provided in the previous subsection) can be given
for i = 0, 1 as

E [d(n)|Hi] =
[
T−1 ⊗ IM2

]
E [dR(n)|Hi] , (4.4.19)
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and

Cov [d(n)|Hi] =
[
T−1 ⊗ IM2

]
× Cov [dR(n)|Hi]

[
(TH)−1 ⊗ IM2

]
. (4.4.20)

Distributions of the adaptive estimates

To study the detection performance of the proposed distributed, adaptive LE detec-
tor, we need to specify the conditional distributions for the detection test statistics
- the LE of

R̂k(n) = vec−1 [Tp̂k(n)] (4.4.21)
under both detection hypothesis. As summarized in (4.3.2), when the estimate
R̂k(n) is obtained by using the linear, equal weighting based method (4.3.1) in a
non-distributed and non-cooperative manner, then according to the definition of
Wishart matrices [CD11, Chapter 2], Rk(n) follows a Wishart distribution. Based
on the literature, several results exist for the distributions of the LE of Wishart
distributed matrices under both detection hypotheses.

The non-asymptotic cumulative distribution function (CDF) model of the LE
of a NCW distributed CM matrix is more complicated for practical and numerical
evaluation, compared to the corresponding model of a CCCW distribution. Thus
often a NCW distribution is approximated by a CCCW distribution, where the
non-centrality part of the NCW distribution is incorporated into the population
covariance matrix parameter of the CCCW distribution [GN05,TW12,LWT11].

When the estimate R̂k(n) is obtained by using the exponential type of averaging
(as used in LMS type of algorithms), then due to different weights at every n ∈ N ,
it can be seen, that a sum of non-equally weighted Wishart matrices over N is
not Wishart distributed [GN05, Theorem 3.3.1, 3.5.2]. Based on (4.4.1) it is easy to
verify, that the adaptive CM estimate R̂k(n) is an average over non-equally weighted
vectorized observation matrices. At iteration step n, at node k the elements of the
vectors p̂k(n) are weighted equally and fused without changing or mixing the order
of the elements of p̂k(n). The Hermitian property of the estimated CMs is not
affected. Thus we need to seek generic CC(C)W approximations for studying the
conditional CDFs of LE of adaptively estimated CMs.

Total and General variance approximations

We propose the usage of two methods for approximating the adaptive CM estimates
R̂k(n) (4.4.21) by conditional approximate CC(C)W distributions. Thus based on
(4.4.13) and we assume that

R̂k(n)|Hi ∼ CWM

(
N̄i, Σ̄k,i

)
, (4.4.22)

for i = 0, 1, and where ∼ denotes an approximate distribution, N̄i is the approxi-
mating DoF and Σ̄k,i is the approximating population covariance matrix parameter
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of the corresponding CC(C)W distribution. As shown at next, the values for N̄i
and Σ̄k,i are found by matching the mean and trace or determinant of moments of
R̂k(n)|Hi with the corresponding moments of the devectorized adaptive estimate
vec−1 [Tp̂k(n)] under both detection hypothesis.

Proposition 4. For the approximation (4.4.22), Σ̄k,i is found as

Σ̄k,i = 1
N̄i

E
[
R̂k(n)|Hi

]
(4.4.23)

and N̄i can be found using the Total Variance (TV) or General Variance (GV)
method, respectively, as

N̄TV,i =


Tr
[
E
[
R̂k(n)|Hi

]c
⊗ E

[
R̂k(n)|Hi

]]
Tr
[
T Cov [pk(n)|Hi] TH

]
 (4.4.24)

or

N̄GV,i =

 M2

√√√√√det
[
E
[
R̂k(n)|Hi

]c
⊗ E

[
R̂k(n)|Hi

]]
det
[
T Cov [pk(n)|Hi] TH

]
, (4.4.25)

where E
[
R̂k(n)|Hi

]
= vec−1 [T E [pk(n)|Hi]] for i = 0, 1.

These results are found as follows. Firstly we insert the Σ̄k,i = E
[
R̂k(n)|Hi

]
/N̄i

from the first equation of (4.4.13) into the RHS of the second equation of (4.4.13)
and we have that

Cov
[
vec(R̂k(n)|Hi)

]
= 1
N̄i

[
E
[
R̂k(n)|Hi

]c
⊗ E

[
R̂k(n)|Hi

] ]
. (4.4.26)

Based on (4.4.2) or (4.4.9) and the first equation of (4.4.13), we equalize the means
of matrices R̂k(n)|Hi and vec−1[Tpk(n)|Hi] and get (4.4.23). For the DoF, N̄i,
to use in the approximation, we adapt the idea proposed in [Zha12, Kha89] and
equalize the total variances (i.e the traces of corresponding covariance matrices) of
the matrices R̂k(n)|Hi and vec−1[Tpk(n)|Hi]. Thus based on (4.4.26) we require
that Tr

[
Cov

[
vec(R̂k(n)|Hi)

]]
= Tr

[
T Cov [pk(n)|Hi] TH

]
for i = 0, 1. By solving

for N̄i we have the total variance (TV) type of DoF approximation as given by
(4.4.24). An alternative for finding the approximation for N̄i is to equalize the
determinants of both matrices [GN05]. Thus based on (4.4.26), we require that
det
[
Cov

[
vec(R̂k(n)|Hi)

]]
= det

[
T Cov [pk(n)|Hi] TH

]
. Similarly, by solving for

N̄i the general variance (GV) type of DoF approximation is given by (4.4.25).
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Obviously the total variance method takes into account only the variances of
the elements of the corresponding matrices, while the general variance method
includes also the covariances of the elements of the corresponding matrices into the
approximation of parameter N̄i. AS observed, by using the proposed TV or GV
procedures under hypothesis H1, a NCW matrix is approximated by the CCCW
distribution, by matching the moments of NCW matrix into the CCCW model.
This is a desired effect, as we explain in the next section. Based on these results we
can proceed with the detection performance analysis.

It can be verified, that under H0 the DoF value approximations (4.4.24) and
(4.4.25) are, via the moment analysis of the adaptive estimate pk(n), dependant
on the step size parameter µk and on the full network topology. Since the same
noise power value σ2

v is present both in the mean and covariance formulas of the
adaptive estimate pk(n), then a change in the σ2

v,k value does not affect the DoF
value under H0. However under H1 both the DoF approximations are additionally
dependant on the noise power value σ2

v,k. This effect is illustrated in Section 4.5.
Since under H0, the DoF parameter does not affect the threshold calculation,

then a robust detector can also be applied in Algorithm 4.1, by changing the detec-
tion module accordingly. We give an example with the MME detector in Section 4.5.
On the other hand, since under H1 the DoF parameter is affected by the uncer-
tainty in the noise power value, then this effect possibly makes the formula of the
theoretical detection performance of a robust detector inaccurate as well, but that
robust detector can still be used.

4.4.3 Detection Performance Analysis

In this section we provide formulas for studying the probability of false alarm (PFA)
and probability of detection (PD) of the proposed, adaptive LE detector. For this,
we need to evaluate the conditional CDFs of the LE of adaptive CM estimate
R̂k(n) (4.4.22) under both detection hypotheses and under the assumption that
R̂k(n) is approximated by a CC(C)W distribution as proposed in Section 4.4.2. The
resulting detection performance of LE detector is dependent on the performance of
the underlying adaptive, distributed CM estimation. Let the eigenvalues of Σ̄k,i in
(4.4.22) be denoted in non-increasing order as ν1,i ≥ ν2,i ≥ · · · ≥ νM,i.

LE under H0 Hypothesis

Based on [TW12, Kha64], the R̂k(n)|H0 (4.4.22) is assumed to follow the CCW
distribution and the eigenvalues of Σ̄k,0 are ν1,0 = · · · = νM,0 = σ2

v/N̄0. The PFA,e,
based on the non-asymptotic CDF model of the R̂k(n)|H0, is given by

FH0,e(x) = |det(Â)|
PFA,e(γLE,k,e) = 1− FH0,e(γLE,k,e) (4.4.27)
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where the M ×M matrix Âi,j =
(
N̄0−j−i−1

i−1
)
γR(N̄0 + i− j, x

ν1,0
), for i, j = 1, . . . ,M

and where γR(k, u) = 1
Γ(k)

∫ u
0 xk−1e−xdx is the regularized incomplete Gamma

function. The (ideal) detection threshold γLE,k,e, based on the non-asymptotic
model is expressed as

γLE,k,e = F−1
H0,e

(1− PFA,e) (4.4.28)

and can be evaluated in terms of a numerical inversion of the exact CDF formula at
a desired PFA,e value. An asymptotic CDF based on the Gaussian approximation
of Tracy-Widom distribution is proposed in [TW12]. When N̄0 →∞, M →∞ and
M/N̄0 ∈ (0, 1), the approximate CDF under H0 can be given as

FH0,g(x) = Φ
(
x− E[λ1]|H0√

Var[λ1]|H0

)
,

E[λ1]|H0 = ν1 (aLE + (bLE(−1.7711))) ,
Var[λ1]|H0 = (ν1bLE)2(0.8132),

aLE = (
√
M +

√
N̄0)2,

bLE = (
√
M +

√
N̄0)( 1

M
+ 1
N̄0

)1/3. (4.4.29)

This leads to the PFA,g formula

PFA,g(γLE,k,e) = Q
(
γLE,k,g − E[λ1]|H0√

V ar[λ1]|H0

)
, (4.4.30)

where Q is the complementary distribution function of the standard Gaussian and
to the threshold formula is

γLE,k,g = E[λ1]|H0 +
√

Var[λ1]|H0Q−1(PFA,g). (4.4.31)

As seen in Section 4.4, the calculation of the threshold of the LE detector at node
k and time index n requires knowledge of the moments of adaptive CM estimates
(present at the reference node k) under hypothesis H0 i.e R̂k(n)|H0. Thus based
on the values of step sizes, the noise power, the desired PFA, the provided moment
recursions and the distribution parameter approximations models for the R̂k(n)|H0
in Section 4.4 can be applied, to evaluate the detection threshold at node k and
at time instant n. As seen, CR nodes need to know the noise power value(s) to
evaluate the moments of R̂k(n)|H0. In practice every node k needs to calculate its
own threshold by using the provided procedure. While the threshold at node k can
be updated iteratively based on the exact moments of R̂k(n)|H0, the steady state
moments are preferred in practice.
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LE under H1 Hypothesis

Next we obtain a common model for the non-asymptotic CDF|H1 of the LE of
adaptively estimated CM matrix. As explained in Section 4.4.2, we approximate
the NCW matrix by a CCCW matrix by matching the moments of the matrices.
In Section 4.5 we show this approximation works quite well.

Thus we assume the R̂k(n)|H1 is distributed by a CCCW distribution. The
CDF of the LE of a CCCW matrix R̂k(n)|H1 is given by [ZCW05] as follows

FH1,e(x) = KCC

∣∣∣∣∣
{
νN̄1−M+j
i Γ̄

(
N̄1 −M + j,

x

νi,1

)}
i,j

∣∣∣∣∣,
KCC =

 M∏
i=1

(N̄1 − i)!
M∏
j=1

(M − i)!

−1
M∏
k=1

(k − 1)! (4.4.32)

for i, j = 1, . . . ,M and where Γ̄(k, u) =
∫ u

0 xk−1e−xdx is the lower incomplete
gamma function [GR07, 8.350].

This result follows from [ZCW09, Eq. 1] by integrating the joint PDF of or-
dered eigenvalues of a CCCW matrix, by using [ZCW09, Corollary 2]. It should
be emphasized, that as explained in [ZCW09, Chapter II. B], when some of the
eigenvalues of Σ̄k,1 are coincident, then [CWS10, Lemma. 2] needs to be used to
study the limit [ZCW09, Eq. 3].

However we note, that the direct numerical evaluation of (4.4.32) is complicated
and (4.4.32) needs to be simplified due to the possibly large N̄ values and large
arguments of Γ̄(k, u). In case of the matrix dimension is M = 2, the eigenvalues
of the population covariance matrix are naturally not coincident under H1 (i.e
ν1,1 > ν2,1). It can be shown, that when M = 2, the following simplified version of
(4.4.32) can be used to evaluate the CDF numerically

FH1,e(x) = D̄(
1
ā −

1
b̄

)
āb̄
,

ā = ν1,1N̄1,

b̄ = ν2,1N̄1,

D̄ = b̄γR(N̄1 − 1, x

ν1,1
)γR(N̄1,

x

ν2,1
)

− āγR(N̄1 − 1, x

ν2,1
)γR(N̄1,

x

ν1,1
), (4.4.33)

where γR(k, u) is the regularized incomplete gamma function.
Finally the probability of detection of the LE of a CCW matrix under H1 using

the exact CDF model is

PD,e(γLE,k,e) = 1− FH1,e(γLE,k,e). (4.4.34)
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As earlier, we observe that the channel gain values and the noise power value
are required to complete the chain of approximations for the theoretical detection
performance analysis.

4.5 Simulation results

In this numerical simulation Section we investigate the detection performance of
the ATC type of distributed, adaptive LE detection algorithm. We describe the
exact signal model, used in the simulations and then investigate the probability of
false alarm (PFA) and the probability of detection PD of the proposed algorithms.

4.5.1 Simulation model
The channel gains in the following simulations are assumed to be constant over N
and M dimension and are sampled for the CR node k ∈ K as αk ∼ CN(0, 1). We
assume there is only one PU signal present in the CR network i.e s(n) = s(n)1,
where s(n) ∼ CN(0, Ps) and Ps = 1. Using the same examples as in [SCO13], we
use for Case 1: ms = s1, Σs = 0, where s is a complex signal realization, and for
Case 2: ms = 0 and Σs = Ps11H . Obviously rank(11H)=1. Also in (4.4.17) and
(4.4.18) we have Rs,k = |αk|2Ps11H , Rs,k,j = αkα

c
jPs11H and T̄ k = |αk|2Ps11H .

When the CR nodes do not cooperate, the local correlation matrix Rk (4.2.4)
is given as follows

Rk =
[
|αk|2

E
[
‖s‖2

]
N

]
11H + σ2

v,kIM . (4.5.1)

For Case 1 we assume |s|2 = Ps, where s is a complex signal realization. Then we
get E

[
‖s‖2

]
= NPs for both Case 1 and Case 2. The first moment of the rank one

input for these two cases is given as

E [dR,k(n)|H1] = vec
[
|αk|2Ps11H + σ2

vIM
]
. (4.5.2)

Network topology selection

To improve the communication link failure resistance in the CR network, but to
keep the need for processing the data from neighbor nodes minimal, we propose to
select the diffusion topology of the estimates in the CR network, i.e the A matrix,
as a combination of the local (A,C = I) and ring-around (A = AT

ring,C = I)
topologies [ATB14b, Eq. 11]. Thus at time instant n, at every node k two M2 × 1
estimates: the local estimate p̂k(n) and the estimate p̂(k−1)modK(n) from node
(k− 1)modK are fused together using equal, constant weight 0.5. Therefore, in the
subsequent sections we assume, that C = I, the matrix A is in such case doubly
stochastic (i.e we have additionally A1 = 1) and all the conditions for selecting
elements al,k and cl,k, as listed in the Section 4.3.3, are satisfied.
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Figure 4.1: Proposed diffusion method

For example when K = 3 and by keeping the same notation and conditions for
the elements of matrix A, the ring around and diffusion topologies are given as
follows

AT
ring =

0 0 1
1 0 0
0 1 0

 , AT
diff =

0.5 0 0.5
0.5 0.5 0
0 0.5 0.5

 . (4.5.3)

A schematic view of the proposed diffusion and incremental steps for the ATC type
of algorithm with K = 2 is illustrated in Fig. 4.1.

In the next sections we select the dimension of the estimated matrix as M = 2
and use (4.3.6) and (4.4.33). The step size of the algorithms in all the simulations is
selected to be µ = 0.001 for all the nodes, unless stated otherwise. Given the step-
size value, all the nodes in the network receive N = 7000 [2× 1] vector-samples to
get converged adaptive CM estimates at the last iteration/sample. These CM esti-
mates are used in the simulations to obtain the LE observations. A system designer
can choose other values for µ and N (depending on the system requirements).

In Fig. 4.2 we illustrate the change of the LE of adaptively estimated CM
with respect to the threshold (4.4.28). We set the noise power to one. After the
initialization, the algorithm first tracks and then converges to the steady state level
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Figure 4.2: LE Adaptive Principle

of LE under the H1 hypothesis. At time instant 7001 the PU signal switches off,
the algorithm adapts and convergences to the H0 level of the LE value.

DoF values under noise uncertainty

In Fig. 4.3 we illustrate of the effect of the noise power uncertainty to the TV based
DoF approximation under Case 2 and H1. The network sizes are K = 1, 3, 10, 30
and the results are taken from the last node in the network. The horizontal axis
represents the (network averaged) SNR, which is changed by scaling the noise power
value σ2

v . We use the noise perturbation model [ZL09, Eq. 8] and denote the ᾱ as
the noise uncertainty factor. Two noise value perturbations are added to the non-
perturbed case 0 dB (ᾱ = 1): -1 dB (ᾱ = 0.796) and 2 dB (ᾱ = 1.585). As we
see, in case of σ2

v is inaccurate, then the TV approximated DoF|H1 values are
shifted in accordance to the value of ᾱ. For GV based DoF|H1 values, the results
are very similar. Also as we already mentioned in Section 4.4.2 that changes, and
thus also the pertubations, in σ2

v,k do not affect the TV and GV based DoF|H0
approximations. Thus we skip these to latter simulations here.

Next we investigate the performance of the proposed LE algorithms by studying
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the PFA in case of PU signal is missing and the PD, when the PU signal is present.
Both the PFA and PD based on adaptive CM estimates are estimated using the
Monte Carlo (MC) method [Kay98]. To have an equal comparison between the node
sets in one plot, we take all the reference results from the last node in the network.
Obviously, based on the global estimation model (4.3.4), when we have more nodes
in the network, then the CM estimates at every node have been better averaged
over the channel gain values of the nodes in the CR network.

4.5.2 Probability of false alarm

We start the investigation of the proposed algorithms by studying the PFA. Un-
der the detection hypothesis H0 we assume σ2

v = 1. We select 21 threshold points
in the range of σ2

v and determine the LE realizations of adaptive CMs estimates.
Then we estimate the PFA over 1000 experiments at every threshold point. The
estimated PFA is denoted as Experiments in the Fig. 4.4. We compare the esti-
mated PFA with the theoretical PFA models when the Total variance (TV) or the
General variance (GV) method are used for determining an approximately equiva-
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lent CCW matrix. The results using (4.4.29) are denoted as Th. TV and Th. GV
respectively. Similarly the results using (4.4.27) are denoted as Th. Exact TV
and Th. Exact GV respectively. Finally, based on the moments of the adaptive
CM estimates, we generate the approximate CCW matrices (by using Cholesky
decomposition method), and study the PFA performance based on those matrices
in addition (denoted as Wishart TV and Wishart GV respectively). The PFA
versus threshold results are given in Fig. 4.4 for the ATC algorithm. We note that
the performance of the TV and GV methods are almost equal and the TV/GV ap-
proximations are sufficient for studying the PFA of the adaptive CM estimates. We
see a good match between the estimated PFA and the theoretical PFA models are
achieved. The Gaussian approximate PFA model (which is easier to use in numer-
ical analyses compared to non-asymptotic PFA model), follows the estimated PFA
results quite well and can therefore be used to characterize the PFA of the adaptive
estimates. Therefore by knowing the noise power value, the theoretical Gaussian
approximate PFA model can be also used for deriving the detection threshold, when
we fix a desired PFA value.
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4.5.3 Probability of detection

Next we investigate the probability of detection under different noise power con-
ditions using the proposed distributed and adaptive LE detection algorithms with
signal models Case 1 or 2. In Case 1 we select one complex PU signal realization,
while in Case 2 we set Ps = 1 for all the simulations. We note, that the performance
of the moment estimation framework of adaptively estimated CMs is well illustrated
by the PD versus SNR analysis. In the PD/SNR simulations, the change in the
(network averaged) SNR is achieved by changing the noise power value σ2

v . In the
comparison of algorithms we use the same individual channel gains of the nodes in
all the simulations performed under hypothesis H1. We set the desired PFA = 10−2

for all the nodes. The thresholds of the LE detectors at nodes k ∈ K are calcu-
lated using (4.4.28) with both the TV and GV approximation. Simulations studies
showed, that the performance of the Gaussian CDF|H1 based threshold (4.4.31) is
almost equal to the performance of the non-asymptotic threshold (4.4.28) and thus
not shown in this work.

In the following simulations we compare the performance of 4 different net-
work sizes: K = 1, 3, 10, 30 nodes, while the comparable results are taken from the
last node in the set. The PD is estimated over 1000 experiments on a given noise
power value. We compare the MC estimated PD results (based on the adaptively
estimated CMs and denoted as Ad. Exp. in the figures) with the non-asymptotic
theoretical model (4.4.34) (denoted as Theory) and with the PD results based
on approximately equivalent CCW matrices (denoted as W. Exp.). These latter
matrices are generated based on the respective moments under H1. For the signal
model Case 1, the PD/SNR results are given in Fig. 4.5 and Fig. 4.6 when the TV
approximation is used and in Fig. 4.7 and Fig. 4.8 when the GV approximation is
used, respectively for the CTA and ATC algorithm. Similarly for the signal model
Case 2, the PD versus SNR results are given in Fig. 4.9 and Fig. 4.10 when TV
approximation is used and in Fig. 4.11 and Fig. 4.12 when GV approximation is
used, respectively for the CTA and ATC algorithm.

For comparison, the MC estimated PD/SNR performance of the MME detector
[ZL09] under Case 2 is shown additionally in Fig. 4.10 and Fig. 4.12 (where denoted
as MME. Exp.). The threshold of the MME detector is calculated by using [ZL09,
Eq. 29], where in our case L = 1 and Ns = N̄TV,0 or Ns = N̄GV,0. Based on the
discussion in Section 4.4.2, it is obvious, that since the noise value perturbations are
not affecting the threshold of the MME detector, then the corresponding MC based
PD/SNR performance is not affected as well. In Fig. 4.13 we show a comparison
of PD/SNR performance of the LE detector by using the FC based algorithm in
Table 1, TV approximation based exact threshold, and Case 2 model only. In such
case the observations of every CR nodes are available for all the CR nodes in the
CR network and the CR networks can (independently and adaptively) estimate the
CM. In Fig. 4.14 we provide similar comparison of the PD/SNR performance of
the LE detection scheme in Fig. 4.14, by using the consensus algorithm ( [TS12]),
TV approximation based exact threshold and Case 2 model only and we select
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Figure 4.5: Probability of detection, CTA, TV, Case 1

A0 = AT
diff.

We note that the non-asymptotic theoretical PD model describes the detection
performance of adaptively estimated CMs well, also in the low SNR regime. The
performance of TV and GVmethods is almost equal and thus the TV approximation
is computationally less demanding method for the numerical performance analysis
of the LE detector. The Case 1 signal model is well approximated by the signal
model of Case 2 (CCCW), via the TV and GV based mean and DoF parameter
matching.

We observe, that as the number of nodes in the network increases, the point
where the PD starts to decrease from one, moves to the left. In case of one node
in the CR network (or in case of the non-cooperating nodes) the PD is highly
dependent on the channel constant of that node. As the number of nodes increases,
more channel gain realizations are involved in the network-averaged CM estimation
process and thus the PD results are more equalized over the nodes.

It can be seen, that the LE detector performs better than the MME in terms
of perfect detection (PD = 1) in the low SNR region and in case of non-perturbed
noise power values.
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Figure 4.6: Probability of detection, ATC, TV, Case 1

The detection performance of LE detector, when the FC based diffusion LMS
algorithm is used, is slightly better, compared with the case of ATC type of LMS.
The difference is however not significant. So that in ATC case, where only two
exchanges of estimates are allowed for a CR node at time instant n, we can save
energy in terms of processing less data at a node k. Also in case of ATC we are
not limited to the specific network topology. The detection performance of LE
detector, when the consensus algorithm is used, is very similar to the case of the
ATC algorithm. As argued in Section 4.4, the usage of ATC type algorithm is
less limited by the estimate exchange topology, while this is not the case with the
consensus algorithm.

It is clear that the detection performance of the MME detector is not affected by
noise power uncertainty also when we use the Diffusion LMS based CM estimation
scheme.

Additionally we note that, in [ATB14b] we showed with scalar estimates (M =
1) in Case 2, that when there are more nodes in the network, then the ATC performs
slightly better compared to the CTA type of algorithm. While ATC fuses more
data than CTA [CS10], the difference of detection performance with CTA is rather
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Figure 4.7: Probability of detection, CTA, GV, Case 1

small and thus we also skip these comparisons in this work. We also observed
in [ATB14b,ATB14a,ATB14c] that for K > 30, PD does not improve significantly
any more.

For illustrating the closeness of the detection results of different CR nodes, we
use the theoretical results and plot the PD/SNR performances of all the CR nodes
in the network of size K, in Fig. 4.15, by using the ATC algorithm, the TV based
exact threshold and the Case 2 model. The four groups of PD/SNR results from
right to the left in Fig. 4.15 correspond to the network of sizes K = 1, 3, 10, 30
accordingly, i.e the leftmost group shows the PD/SNR results of all the 30 nodes in
the CR network. It can be seen, that the detection performances of the CR nodes
in the CR network are quite close to each other. In practice we are more concerned
about the point, where the PD starts to decrease from 1. In case of 30 nodes in the
network, the deviation slightly increases, but is still sufficiently close.

We observe, that the non-asymptotic CDF models, the TV/GV approximations
and CCCW based approximation of NCW type of CMs are usable for studying the
performance of the LE detection of adaptively estimated CMs - for determining
the threshold and for evaluating the theoretical PD of the LE detector. When
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the nodes cooperate in estimating the network-wise CM (while nodes are able to
communicate directly only with limited subset of neighbor nodes) then the resulting
LE detection performance is equalized and stabilized over the individual CR nodes.
We note that other distributed eigenvalue based detection schemes can be studied
in similar manner by using the proposed framework in this chapter.

4.6 Conclusion

In this section we studied distributed and adaptive diffusion LMS based LE detec-
tion algorithms, which are applicable in CR networks, for detecting the presence of
a PU signal. We proposed a network-wise CM estimation model, and derived ATC
and CTA type of diffusion based LE detection algorithms. We proposed a general
framework for analyzing the performance of the diffusion LMS based LE detection
schemes. In our simulation study we demonstrated that the proposed framework
and the approximations used for studying the detection performance of the pro-
posed distributed and adaptive LE detection schemes provided matching results
between the theory and simulations. The proposed algorithms are able to learn the
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statistical changes in the LE in real time.
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Chapter 5

Summary and Future Research

5.1 Summary and Conclusions

This thesis studied two distributed and adaptive detection methods in wireless
sensor networks, which are based on a distributed estimation process. The design,
implementation and performance study of the proposed algorithms has been done
by taking the Cognitive Radio application area into account. In this thesis we
studied the algorithms from the estimation and detection domain point of view.

The objective of the current thesis was to design and implement two fully dis-
tributed and adaptive detection solutions for Cognitive Radio Networks, namely
distributed Energy and distributed Largest Eigenvalue based detection solutions.
This objective has been achieved successfully. We have algorithms for each detector
to be practically implemented. As common in the research area of estimation and
detection, theoretical analytical performance of the proposed solutions was evalu-
ated. We assigned statistical models for the corresponding adaptive estimates and
for the detector test statistics to proceed with the moment and detection perfor-
mance analysis of the proposed algorithms. The theoretical results were verified by
computer simulation experiments and good matches between the theoretical perfor-
mance measures and corresponding experiments were obtained. Thus we proposed
and studied two main cooperative, fully distributed and adaptive spectrum sensing
methods for a Cognitive Radio Network.

Thematically, the main contributions of the thesis are:

1. Introduction of an adaptive and fully distributed Energy Detection
solution. We derived and proposed the usage of distributed, diffusion least
mean square (LMS) type of power estimation algorithms and three differ-
ent static network topologies: Ring-Around, Combine and Adapt, Adapt and
Combine are studied. The signal power estimation and energy detection so-
lution is not dependant on any Fusion center and the detection decisions can
be made independently in every CR nodes or in a selecting a CR node for a
network wise decision making. The signal power estimation solution is able
to track the changes between the underlying detection hypotheses so that

99
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the usage of such algorithms is more practical in CR network. The detection
performance of the proposed schemes was performed by using the statistical
properties of these distributed, adaptive estimates. In case of the Ring-Round
topology, more specific results about the moment estimation of the distributed
estimates were given. With the help of the Central Limit Theorem the dis-
tribution of the test statistics of the energy detector was approximated by a
CSCG process, by using the moments of the adaptive power estimates. The
theoretical findings were verified by MATLAB based simulations. The PU
signal, received by a individual CR node may be in deep fading and thus
the detection results are dependant on the signal gain value (which is usually
unknown for the receiver). We showed that when nodes cooperate in the esti-
mation process of the test statistics, then the resulting detection performance
can be significantly improved and stabilized. We also observed that the best
detection results (also in terms of lowest variance of the power estimates) are
obtained with the ATC type of estimate fusion method and especially when
we have about 30 nodes in the network. It was observed that measurement
fusion in the diffusion LMS estimation process did not notably improve the
resulting detection results.

2. Introduction of an adaptive and fully distributed Largest Eigen-
value Detection solution. We selected the Largest Eigenvalue detection
method from the domain of correlation matrix based detection methods and
designed, implemented an adaptive, fully distributed LE detection solution.
Diffusion LMS type of algorithm was implemented with ATC, CTA topologies
and with no Fusion Center. In order to study the resulting detection perfor-
mance we extended the framework of the theoretical performance analysis,
from the energy detection solution for the vector estimates. The correlation
matrix estimates were vectorized for the distributed adaptive estimation pro-
cess and after the estimation process re-matrizised. The distribution of the
resulting CM matrix estimates was approximated by a Complex Wishard dis-
tribution and we implemented the Total and General Variance methods for ap-
proximating the Complex Wishart distribution parameters for the mentioned
CM distribution approximation. These results were used to proceed with the
study of the distribution of the test statistics - the largest eigenvalue of the
adaptively estimated CM. The theoretical results were verified by MATLAB
based simulations. Similarly we observed that the resulting LE detection per-
formance is more stabilized and equalized over the CR network, when nodes
cooperate in the estimation process. Best results were observed with the ATC
type of estimate fusion method and there was no notable difference in the
performance of the Total and General Variance approximation methods. We
justified that the proposed distributed estimation algorithm could be used
also with some blind type of detectors, where the noise variance is not needed
for the threshold calculation.
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Throughout the thesis and in the distributed estimation domain we proposed
and used:

3. Distributed diffusion LMS based scalar and vector estimation al-
gorithms for estimating the elements of the test statistics of Energy and
Largest eigenvalue detector respectively. The algorithms were implemented
so that CR nodes jointly participate in the estimation of scalar or vector
quantities, where these latter quantities follow the model of network aver-
age (to reduce the effect of channel gains), while the CR nodes individually
are able to communicate only with a subset of neighbour nodes. Initially the
distributed optimization concept for scalar measurements and estimates were
derived for the energy detection method. Then a vectorized estimation model
of the elements of correlation matrix was proposed. A network topology with
minimum number of data fusions in CR network was proposed.

4. A common framework for the performance analysis of the estima-
tion algorithms and resulting detection performance in CR net-
work. We derived and proposed the usage of a framework for the performance
analysis of the statistical moments of the distributed, adaptive estimates so
that several common network topologies and data fusion types are supported.
Mean stability analysis for the algorithms was performed. The statistical mo-
ments of the distributed estimates were used further in the statistical mod-
elling the test statistics of the selected detectors and then for studying the
resulting detection performance.

To conclude, this thesis has shown the benefits of adaptive and fully distributed
energy and largest eigenvalue detection solutions for cognitive radio networks. The
task of the current thesis, to derive fully distributed versions of two most widely
used detectors for cognitive radio, was completed successfully. The obtained results
are of practical interest, as the need for opportunistic spectrum sharing in urban
areas is increasingly fast.

5.2 Future Research

We now highlight the aspects that might be worthy of future study.
Firstly, in the papers B to E, a constant and equal weighting method for the

data fusion between the nodes has been used. Specifically, the matrix A and C are
taken to be constant and with equal weights over the time instance. In the literature
several methods have been proposed for weighting the communication between the
nodes in an adaptive manner or for optimizing the combination weights in accor-
dance to a selected optimization criteria. A list of such methods has been given for
example in [Say14, Chapter 14]. It has been shown in the literature, that properly
optimized weights can improve the properties of the underlying estimation process
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− for instance providing better error measures of the estimates. However for in-
stance non−adaptive relative variance rule, as seen in [TS12], would in detection
context require knowledge of the channel gains under detection hypothesis H1 and
thus cannot be directly adopted to the detection context. Estimation of these gains
would at least require that we know H1 to be true for a given period of time.
The possible implementation of the adaptive combination rule [TS12] in detection
context requires an analysis of several additional aspects, which can potentially
affect the total detection performance of the main estimation algorithm. It would
be interesting to develop an adaptive weight optimization solution, which works
also in the detection context - i.e under both detection hypotheses and when we
cannot assume that a PU signal is present. When the elements of a data fusion
matrix are found based on an additional estimation process and in parallel to the
main estimation process, then the fusion weights need to be considered also as ran-
dom variables. These considerations add an additional complexity to the statistical
modelling of the test statistics. The resulting detection performance analysis needs
to study also the transition processes of the distributed estimation process − i.e
when the algorithm learns new statistical properties, after the detection hypothesis
has changed. Tuning of the algorithm parameters needs to be studied. A subspace
method based SNR weighting method, as implemented and studied only under H1
in [UT15], is one of the alternative fusion weight optimization methods, which could
be implemented and studied in a detection context.

Secondly, other signal models with various correlation structures and detection
methods could be studied together with adaptive and fully distributed estimations
methods, other hand diffusion LMS algorithm. The work presented in this thesis
did not include comparisons for example with distributed RLS (Recursive Least
Squares) method.

Thirdly, it could be interesting to bring in more hardware aspects and con-
straints to the current research. The current work in this thesis is based on the
MATLAB simulations and no major hardware platform specific limitations or as-
pects have been included so far in our research.
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