VETENSKAP
39 OCH KONST &%

s

Design and Analysis of On-Chip
Communication for Network-on-Chip
Platforms

Zhonghai Lu

Stockholm 2007

Department of Electronic, Computer and Software Systems
School of Information and Communication Technology
Royal Institute of Technology (KTH)

Sweden

Thesis submitted to the Royal Institute of Technology in partial fulfillment
of the requirements for the degree of Doctor of Technology

Lu, Zhonghai
Design and Analysis of On-Chip Communication for Network-on-Chip Plat-
forms

ISBN 978-91-7178-580-0
TRITA-ICT/ECS AVH 07:02

ISSN 1653-6363

ISRN KTH/ICT/ECS AVH-07/02 -SE

Copyright © Zhonghai Lu, March 2007

Royal Institute of Technology

School of Information and Communication Technology
Department of Electronic, Computer and Software Systems
Electrum 229

S-164 40 Kista, Sweden

Abstract

Due to the interplay between increasing chip capacity and complex applications,
System-on-Chip (SoC) development is confronted by severe challenges, such as
managing deep submicron effects, scaling communication architectures and bridg-
ing the productivity gap. Network-on-Chip (NoC) has been a rapidly developed
concept in recent years to tackle the crisis with focus on network-based commu-
nication. NoC problems spread in the whole SoC spectrum ranging from spec-
ification, design, implementation to validation, from design methodology to tool
support. In the thesis, we formulate and address problems in three key NoC areas,
namely, on-chip network architectures, NoC network performance analysis, and
NoC communication refinement.

Quality and cost are major constraints for micro-electronic products, particu-
larly, in high-volume application domains. We have developed a number of tech-
niques to facilitate the design of systems with low area, high and predictable per-
formance. From flit admission and ejection perspective, we investigate the area
optimization for a classical wormhole architecture. The proposals are simple but
effective. Not only offering unicast services, on-chip networks should also pro-
vide effective support for multicast. We suggest a connection-oriented multicas-
ting protocol which can dynamically establish multicast groups with quality-of-
service awareness. Based on the concept of a logical network, we develop the-
orems to guide the construction of contention-free virtual circuits, and employ a
back-tracking algorithm to systematically search for feasible solutions.

Network performance analysis plays a central role in the design of NoC com-
munication architectures. Within a layered NoC simulation framework, we develop
and integrate traffic generation methods in order to simulate network performance
and evaluate network architectures. Using these methods, traffic patterns may be
adjusted with locality parameters and be configured per pair of tasks. We propose
also an algorithm-based analysis method to estimate whether a wormhole-switched
network can satisfy the timing constraints of real-time messages. This method is
built on traffic assumptions and based on a contention tree model that captures

iv Abstract

direct and indirect network contentions and concurrent link usage.

In addition to NoC platform design, application design targeting such a plat-
form is an open issue. Following the trends in SoC design, we use an abstract
and formal specification as a starting point in our design flow. Based on the syn-
chronous model of computation, we propose a top-down communication refine-
ment approach. This approach decouples the tight global synchronization into
process local synchronization, and utilizes synchronizers to achieve process syn-
chronization consistency during refinement. Meanwhile, protocol refinement can
be incorporated to satisfy design constraints such as reliability and throughput.

The thesis summarizes the major research results on the three topics.

Table of Contents

Acknowledgments

List of Publications

List of Figures

Abbreviations

1 Introduction

11

1.2
1.3

Network-on-Chip (NoC)
1.1.1 System-on-Chip (SoC) Design Challenges
1.1.2 Network-on-Chipasa SoC Platform
1.1.3 On-Chip Communication Model
Research Overview
Author’s Contributions oL

2 NoC Network Architectures

2.1

2.2

2.3

2.4

Introduction
2.1.1 On-Chip Communication Network
2.1.2 Wormhole Switching
Flit Admission and Ejection
2.2.1 Problem Description
2.2.2 The Wormhole Switch Architecture
2.2.3 FlitAdmission
224 FlitEjection.
Connection-oriented Multicasting
2.3.1 Problem Description
2.3.2 The Multicasting Mechanism
TDM Virtual-Circuit Configuration
2.4.1 Problem Description

vii

Xiv

XVi

RO ERRR

Vi Table of Contents

2.4.2 Logical-Network-oriented VC Configuration
25 FutureWork

3 NoC Network Performance Analysis
3.1 Introduction
3.1.1 Performance Analysis for On-Chip Networks
3.1.2 Practices of NoC Simulation
3.2 NNSE: Nostrum NoC Simulation Environment
321 OVEIVIEW o e
3.2.2 The SimulationKernel
3.2.3 Network Configuration
3.2.4 Traffic Configuration
3.25 AnEvaluationCase Study
3.3 Feasibility Analysis of On-Chip Messaging
3.3.1 Problem Description
3.3.2 The Network Contention Model
3.3.3 TheFeasibility Test.
34 FutureWork

4 NoC Communication Refinement
4.1 Introduction
4.1.1 Electronic System Level (ESL) Design
4.1.2 Communication Refinement
4.1.3 Synchronous Model of Computation (MoC)
4.2 The Communication Refinement Approach
4.2.1 Problem Descriptionand Analysis
4,22 RefinementOverview
4.2.3 Channel Refinement
424 Process Refinement.
4.25 Communication Mapping
43 FutureWork

5 Summary
5.1 SubjectSummary
5.2 Future Directions

References

Appended papers

45
45
45
49
50
50
51
52
53
56
57
57
58
65
69

71
71
71
72
73
76
76
79
81
84
90
91

93
93
94

97

111

Acknowledgements

Studying towards Ph.D. takes five years, with 20% teaching workload. It is a long
process filled with mixed feelings, pleasure and pressure, satisfaction and disap-
pointment. The pleasure and enjoyment originate from the persistent development
of innovative ideas in the frontline of the interesting research area. The pressure
may undergo in the face of frequent deadlines for tasks and papers, especially dur-
ing the tight finance period in the department. The satisfaction comes often for
the recognition of a piece of innovative work while the disappointment may occur
for the sake of mis-understanding and rejections. My life as a Ph.D. student is a
colorful picture, which composes a beautiful and important part of my life.

While this picture is painted, a lot of people have contributed in various ways.
It is the right time and place to acknowledge their help. Professor Axel Jantsch
is the one | thank most. | thank him far more just because of the fact that he is
my supervisor. He is a very respectable person for his personality, knowledge and
creativity. I am lucky to be one of his students. In reality, he treats his students
very equally. He is not only a supervisor but also a colleague and a collaborator. |
am indebted to Dr. Ingo Sander. He has been acting as the co-supervisor for my
Ph.D. study, and helping me in all the ways possible. He is concerned with not
only my progress in research but also my office and health. We have had many and
many small talks and discussions, which are sources of friendship and inspiration.
I thank Professor Shashi Kumar, who was my co-supervisor before he left KTH.

I acknowledge valuable discussions and diverse help from all my colleagues
in the System, Architecture and Methodology (SAM) group, particularly, the two
project teams, Nostrumand For SyDe, where | have been involved in. The Nostrum
team investigates network-on-chip architectures and associated design technigues.
The present and past contributors include Mikael Millberg, Rikard Thid, Erland
Nilsson, Raimo Haukilahti, Johnny Oberg, Kim Petersen and Per Badlund. Partic-
ularly, 1 thank Rikard for his original work in the layered NoC simulation kernel.
The ForSyDe team aims to develop a formal design methodology for System-on-
Chip applications from modeling to implementation and verification. This team

vii

viii Acknowledgements

involves Ingo Sander, Tarvo Raudvere, Ashish Kumar Singh and Jun Zhu.

| appreciate our system group, Hans Berggren and Peter Magnusson, for their
active and patient support in computer and network systems. | thank secretaries
Lena Beronius, Agneta Herling and Rose-Marie Lovenstig for their administrative
assistance in traveling and other issues.

I thank all other colleagues in the Department of Electronic, Computer and
Software Systems for their various help and for the pleasant and encouraging en-
vironment we contribute to and share. | thank Roshan Weerasekera for friendship.
Special thanks should go to all my Chinese colleagues, particularly to Lirong, Jian
Liu, Li Li, Bingxin, and Jinliang, for the great occasions and happiness we share.

During my Ph.D. study period, | have supervised twelve Master theses. These
works have deepened my understanding on the corresponding subjects and most of
them are excellent. | thank all the students for their hard and fruitful work, particu-
larly, Bei Yin, Mingchen Zhong, Li Tong, Karl-Henrik Nielsen, Jonas Sicking and
Ming Liu.

| have taken an internship in Samsung Electronics in the summer of 2005.
During the three-month period, | investigated the state-of-the-art interconnect tech-
niques. | thank Mr. Soo Kwan Eo, Dr. Cheung and Dr. Yoo and all others in the
system design technology group for their arrangements and assistance.

Finally I give my deepest gratitude to my family, my wife Yanhong and daugh-
ter Lingyi. | could not count how many weekends | have spent with my computer,
and how many times | have been late back home. Any piece of my achievement
has an invisible part of their contribution. | thank my brothers and sisters in China
for their endless concerns. | thank my parents for their permanent love and irre-
placeable support.

The research presented in the dissertation is financed by the Swedish govern-
ment within the SoCware program and the European Commission within the Sprint
project.

Zhonghai Lu

December 2006, Stockholm

List of Publications

Part A. Papers included in the thesis:
* NoC Network Architectures

1. Zhonghai Lu and Axel Jantsch. Flit admission in on-chip wormhole-switched
networks with virtual channels. In Proceedings of the International Sympo-
sium on System-on-Chip, pages 21-24, Tampere, Finland, November 2004.

2. Zhonghai Lu and Axel Jantsch. Flit ejection in on-chip wormhole-switched
networks with virtual channels. In Proceedings of the IEEE NorChip Con-
ference, pages 273-276, Oslo, Norway, November 2004.

3. Zhonghai Lu, Bei Yin, and Axel Jantsch. Connection-oriented multicasting in
wormhole-switched networks on chip. In Proceedings of the |EEE Computer
Society Annual Symposiumon VLS (ISVLS'06), pages 205-210, Karlsruhe,
Germany, March 2006.

4. Zhonghai Lu and Axel Jantsch. TDM virtual-circuit configuration in network-
on-chip using logical networks. In submission to |EEE Transactions on Very
Large Scale Integration Systems.

* NoC Network Performance Analysis

5. Zhonghai Lu and Axel Jantsch. Traffic configuration for evaluating networks
on chip. In Proceedings of the 5th International Workshop on System-on-
Chip for Real-time Applications, pages 535-540, Alberta, Canada, July 2005.

6. Zhonghai Lu, Mingchen Zhong, and Axel Jantsch. Evaluation of on-chip net-
works using deflection routing. In Proceedings of the 16th ACM Great Lakes
Symposiumon VLS (GLSVLS’ 06), pages 296-301, Philadelphia, USA, May
2006.

List of Publications

7. Zhonghai Lu, Axel Jantsch and Ingo Sander. Feasibility analysis of messages
for on-chip networks using wormhole routing. In Proceedings of the Asia
and South Pacific Design Automation Conference (ASPDAC’ 05), pages 960-
964, Shanghai, China, January 2005.

« NoC Communication Refinement

8. Zhonghai Lu, Ingo Sander, and Axel Jantsch. Refining synchronous communi-
cation onto network-on-chip best-effort services. In Alain Vachoux, editor,
Applications of Specification and Design Languages for SoCs - Selected pa-
pers from FDL 2005, Chapter 2, pages 23-38, Springer, 2006.

9. Zhonghai Lu, Ingo Sander, and Axel Jantsch. Towards performance-oriented
pattern-based refinement of synchronous models onto NoC communication.
In Proceedings of the 9th Euromicro Conference on Digital System Design
(DSD’06), pages 37-44, Dubrovnik, Croatia, August 2006.

Part B. Publications not included in the thesis:

10. Zhonghai Lu, Ingo Sander, and Axel Jantsch. Refinement of a perfectly
synchronous communication model onto Nostrum NoC best-effort commu-
nication service. In Proceedings of the Forum on Specification and Design
Languages (FDL’05), Lausanne, Switzerland, September 2005.

11. Zhonghai Lu, Li Tong, Bei Yin, and Axel Jantsch. A power-efficient flit-
admission scheme for wormhole-switched networks on chip. In Proceedings
of the 9th World Multi-Conference on Systemics, Cybernetics and I nformat-
ics, Florida, U.S.A., July 2005.

12. Zhonghai Lu, Rikard Thid, Mikael Millberg, Erland Nilsson, and Axel Jantsch.
NNSE: Nostrum network-on-chip simulation environment. In Proceedings
of Swedish System-on-Chip Conference, Stockholm, Sweden, April 2005.

13. Zhonghai Lu, Rikard Thid, Mikael Millberg, Erland Nilsson, and Axel Jantsch.
NNSE: Nostrum network-on-chip simulation environment. In The Univer-
sity Booth Tool-Demonstration Program of the Design Automation and Test
in Europe Conference, Munich, Germany, March 2005.

14. Ingo Sander, Axel Jantsch, and Zhonghai Lu. Development and application of
design transformations in ForSyDe. |EE Proceedings - Computers & Digital
Techniques, 150(5):313-320, September 2003.

List of Publications Xi

15.

Zhonghai Lu and Axel Jantsch. Network-on-chip assembler language (ver-
sion 0.1). Technical Report TRITA-IMIT-LECS R 03:02, ISSN 1651-4661,
ISRN KTH/IMIT/LECS/R-03/02-SE, Royal Institute of Technology, Stock-
holm, Sweden, June 2003.

16. Ingo Sander, Axel Jantsch, and Zhonghai Lu. Development and application of

17.

18.

19.

design transformations in ForSyDe. In Proceedings of Design, Automation
and Test in Europe Conference, pages 364-369, Munich, Germany, March
2003.

Zhonghai Lu and Raimo Haukilahti. NoC application programming inter-
faces. In Axel Jantsch and Hannu Tenhunen, editors, Networks on Chip,
Chapter 12, pages 239-260. Kluwer Academic Publishers, February 2003.

Zhonghai Lu, Ingo Sander, and Axel Jantsch. A case study of hardware and
software synthesis in ForSyDe. In Proceedings of the 15th International
Symposium on System Synthesis (1SSS 02), pages 86-91, Kyoto, Japan, Oc-
tober 2002.

Zhonghai Lu and Axel Jantsch. Admitting and Ejecting Flits in Wormhole-
switched On-chip Networks. In submission to Journal of Systems Architec-
tures (under the second round review).

Xii

List of Figures

11
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

AmeshNoCwith9nodes 5
On-chip communication layers with Application Level Interface

(ALI) and Core Level Interface (CLI) 9
Flits delivered inapipeline 25
Virtual channels (lanes) 26
Flitadmissionand ejection 27
Flitizationandassembly 27
A canonical wormhole lane switch (ejection not shown) 29
Lane-to-lane associations L 30
Organization of packet- and flit-admission queues 31
The coupled admission sharing a (p+1)-by-p crossbar 33
Theideal sink model 34
The p-sinkmodel 35
The virtual-circuit configuration problem 39
TDM virtual circuits L 40
Using logical networks to avoid conflict 41
The view of logical networks 41
Virtual-circuit configuration approaches 44
Network evaluation 51
The communication layersinSemla 51
Network configurationtree 53
The traffic configurationtree 54
Feasibility analysis ina NoC designflow 57
Network contention and contentiontree 60
Message contention for links simultaneously 62
Avoided flit-delivery scenario 63
Message scheduling 64

Xiv

List of Figures
3.10 Athree-node contentiontree 65
3.11 Message scheduling and contended slots 66
3.12 Afeasibility analysisflow. 68
4.1 Computation and communication elements. 77
4.2 NoC communication refinement 80
4.3 Processes for synchronization. 86
4.4 WrapasStrong ProCesS v v v v i e e e 87
45 Wrapastrictprocess 87
4.6 Astrongandastrictprocess 87
4.7 Two non-striCt processes v v v i 87
48 Feedbackloop. 89
4.9 Arelax-synchronization process 89

Abbreviations

ASIC
AXI
ALI
CAD
CLlI
CMOS
CT
DSM
DTL
ESL
FIFO
ForSyDe
FPGA
GUI
ITRS
IP

LN
MoC
NNSE
NoC
OCP
PC

PE
QoS
RNI
RT
RTL
SEMLA
SoC
TDM
ULSI
VC
VCI

Application-Specific Integrated Circuit
Advanced eXtensible Interface
Application-Level Interface

Computer Aided Design

Core-Level Interface

Complementary Metal Oxide Semiconductor
Contention Tree

Deep SubMicron

Device Transaction Level

Electronic System Level

First In First Out

FORmal SYstem DEsign
Field-Programmable Gate Array

Graphical User Interface

International Technology Roadmap for Semiconductors
Intellectual Property

Logical Network

Model of Computation

Nostrum Network-on-Chip Simulation Environment
Network on Chip

Open Core Protocol

Physical Channel

Processing Element

Quality of Service

Resource Network Interface

Real Time

Register Transfer Level

Simulation EnvironMent for Layered Architecture
System on Chip

Time-Division Multiplexing

Ultra Large Scale Integration

Virtual Channel / Virtual Circuit

Virtual Component Interface

XV

XVi Abbreviations

Chapter 1

Introduction

This chapter highlights System-on-Chip design challenges and introduces the Network-
on-Chip concept. We also give an overview of the research presented in the thesis
and outline the author’s contributions to the enclosed papers.

1.1 Network-on-Chip (NoC)

1.1.1 System-on-Chip (SoC) Design Challenges

Our life has been largely shaped by the exciting developments of modern elec-
tronic technologies, such as pervasive and ubiquitous computing, ambient intelli-
gence, communication, and Internet. Today micro-electronic products are influenc-
ing the ways of communication, learning and entertainment. The key driving force
for the developments during decades is the System-on-Chip (SoC) technologies,
where complex applications are integrated onto single ULSI chips. Not only func-
tionally enriched, these products such as mobile phones, notebooks and personal
handheld sets are becoming faster, smaller-in-size, larger-in-capacity, lighter-in-
weight, lower-in-power-consumption and cheaper. One could favorably think that
this trend will persistently continue. Following this trend, we could integrate more
and more complex applications and even systems onto a single chip. However, our
current methodologies for SoC design and integration do not evenly advance due
to the big challenges confronted.

* Deep SubMicron (DSM) effects [43, 80, 134]: In early days of VLSI design,
signal integrity effects such as interconnect delay, crosstalk, inter-symbol in-
terference, substrate coupling, transmission-line effects, etc. were negligible

1

Chapter 1. Introduction

due to relatively slow clock speed and low integration density. Chip inter-
connect was reliable and robust. At the scale of 250 nm with aluminum and
180 nm with copper and below, interconnect started to become a dominating
factor for chip performance and robustness. As the transistor density is in-
creased, wires are getting neither fast nor reliable [43]. More noise sources
due to inductive fringing, crosstalk and transmission line effects are cou-
pled to other circuit nodes globally on the chip via the substrate, common
return ground and electromagnetic interference. More and more aggressive
use of high-speed circuit families, for example, domino circuitry, scaling
of power supply and threshold voltages, and mixed-signal integration com-
bine to make the chips more noise-sensitive. Third, higher device densities
and faster switching frequencies cause larger switching-currents to flow in
the power and ground networks. Consequently, power supply is plagued
with excessive IR voltage drops as wells as inductive voltage drops over the
power distribution network and package pins. Power supply noise degrades
not only the driving capability of gates but also causes possible false switch-
ing of logical gates. Today signal and power integrity analysis is as important
as timing, area and power analysis.

Glaobal synchrony [3, 47]: Predominating digital 1C designs have been fol-
lowing a globally synchronous design style where a global clock tree is dis-
tributed on the chip, and logic blocks function synchronously. However,
this style is unlikely to survive with future wire interconnect. The reason
is that technology scaling does not treat wire delay and gate delay equally.
While gate delay (transistor switching time) has been getting dramatically
smaller in proportion to the gate length, wires have slowed down. As the chip
becomes communication-bound at 130 nm, multiple cycles are required to
transmit a signal across its diameter. As estimated in [3], with the process
technology of 35 nm in year 2014, the latency across the chip in a top-level
metal wire will be 12 to 32 cycles depending on the clock rate assuming best
transmission conditions such as very low-permittivity dielectrics, resistivity
of pure copper, high aspect ratio (ratio of wire height to wire width) wires
and optimally placed repeaters. Moreover, a clock tree is consuming larger
portions of power and area budget and clock skew is claiming an ever larger
portion of the total cycle time [94]. Even if we have an unlimited number
of transistors on a chip, chip design is to be constrained by communication
rather than capacity. A future chip is likely to be partitioned into locally
synchronous regions but global communication is asynchronous, so called
GALS (Globally Asynchronous Locally Synchronous).

1.1. Network-on-Chip (NoC) 3

e Communication architecture [9, 19]: Most current SoCs have a bus-based
architecture, such as simple, hierarchical or crossbar-type buses. In contrast
to the scaling of chip capacity, buses do not scale well with the system size
in terms of bandwidth, clocking frequency and power. First, a bus system
has very limited concurrent communication capability since only one de-
vice can drive a bus segment at a time. Current SoCs integrate fewer than
five processors and, rarely, more than 10 bus masters. Second, as the num-
ber of clients grows, the intrinsic resistance and capacitance of the bus also
increase. This means that the bus speed is inherently difficult to scale up.
Third, a bus is inefficient in energy since every data transfer is broadcast. The
entire bus wire has to be switched on and off. This means that the data must
reach each receiver at great energy cost. Although improvements such as
split-transaction protocols and advanced arbitration schemes for buses have
been proposed, these incremental techniques can not overcome the funda-
mental problems. To explore the future chip capacity, for high-throughput
and low-power applications, hundreds of processor-sized resources must be
integrated. A bus-based architecture would become a critical performance
and power bottleneck due to the scalability problem. Novel on-chip commu-
nication architectures are desired.

» Power and thermal management [85, 105]: As circuits run with higher and
higher frequencies, lowering power consumption is becoming extremely im-
portant. Power is a design constraint, which is no more subordinate to per-
formance. Despite process and circuit improvements, power consumption
shows rapid growth. Equally alarming is the growth in power density on the
chip die, which increases linearly. In face of DSM effects, reducing power
consumption is becoming even more challenging. As devices shrink to sub-
micron dimensions, the supply voltage must be reduced to avoid damaging
electric fields. This development, in turn, requires a reduced threshold volt-
age. However, leakage current increases exponentially with a decrease in
the threshold voltage. In fact, a 10% to 15% reduction can cause a two-fold
increase in leakage current. In increasingly smaller devices, leakage will be-
come the dominant source of power consumption. Further, leakage occurs as
long as power flows through the circuit. This constant current can produce
an increase in the chip temperature, which in turn causes an increase in the
thermal voltage, leading to a further increase in leakage current.

 \rification [107, 111]: Today SoC design teams are struggling with the
complexity of multimillion gate designs. System verification runs through

4 Chapter 1. Introduction

the whole design process from specification to implementation, typically
with formal methods or simulation-based validation. As the system has
become extremely complex, the verification or validation consumes an in-
creasing portion of the product development time. The verification effort
has reached as high as 70% of engineering efforts.

 Productivity gap [4, 111]: Simply put, productivity gap is the gap between
what we are capable of building and what we are capable of designing. In
line with Moore’s law [83], the logic capacity of a single chip has increased
at the rate of 58% per annum compounded. Soon the complexity of the chip
enters the billion-transistor era. The complexity of developing SoCs is in-
creasing continuously in order to exploit the potential of the chip capacity.
However, the productivity of hardware and software design is not growing
at a comparable pace. The hardware design productivity is increased at a
rate in the range 20% to 25% per annum compounded. Even worse, the soft-
ware design productivity improves at a rate in the range from 8% to 10% per
annum compounded. As a consequence, the costs of developing advanced
SoCs are increasing at an alarming pace and time-to-market is negatively af-
fected. The design team size is increased by more than 20% per year. This
huge investment is becoming a serious threshold for new product develop-
ments and is slowing down the innovation in the semiconductor industry.
As stated in the ITRS roadmap [4], cost of design is the greatest threat to
continuation of the semiconductor roadmap.

1.1.2 Network-on-Chip as a SoC Platform

Innovations occur where challenges are present. Network-on-Chip (NoC) was pro-
posed in face of those challenges in around year 2001 in the SoC community
[9, 27,37, 41, 109, 119]. In March 2000, packet-switched networks were proposed
in SPIN [37] as a global and scalable SoC interconnection. The term Network-
on-Chip appeared initially in November 2000 [41] where NoC was proposed as
a platform to cope with the productivity gap. In June 2001, Dally and Towles
proposed NoC as a structured way of communication to connect IP modules [27].
The GigaScale Research Center (GSRC) suggested NoC to address interconnec-
tion woes [119]. In October 2001, researchers from the Philips Research presented
a router architecture supporting both best-effort and guaranteed-throughput traffic
for Network-on-Silicon [109]. In January 2002, Luca and De Micheli formulated
NoC as a new SoC paradigm [9]. While network-on-chip is still in its infancy, the

1.1. Network-on-Chip (NoC) 5

Link (Physical channel) Switch

J
AL N A

']] s}
RNI RNI RNI
Resource Resource Resource

[o]
L
[o]
|

1
] [

LY AN (AN

Resource Resource Resource

[o]
L1
[o]
|

1
| |

Y AN LY

Resource Resource Resource

Figure 1.1. A mesh NoC with 9 nodes

concept has spread and been accepted in academia very rapidly. Some big com-
panies, for instance, NXP semiconductors (former part of Philips Semiconductors)
and ST Micro-electronics, are also very active in this field [34, 52]. A comprehen-
sive survey on current research and practices of NoC can be found in [13].

Aimed to be a systematic approach, NoC proposes networks as a scalable,
reusable and global communication architecture to address the SoC design chal-
lenges. As an instance, Nostrum [81, 90] is the name of the Network-on-Chip
concept developed at the Royal Institute of Technology (KTH), Sweden. It fea-
tures a mesh structure composed of switches with each resource connected to ex-
actly one switch, as shown in Figure 1.1. A resource can be a processor, memaory,
ASIC, FPGA, IP block or a bus-based subsystem. The resources are placed on the
slots formed by the switches. The maximal resource area is defined by the max-
imal synchronous region of a technology. The resources perform their own com-
putational, storage and/or 1/0O processing functionalities, and are equipped with
Resource-Network-Interfaces (RNIs) to communicate with each other by routing
packets instead of driving dedicated wires.

Communication network is a well-known concept developed in the context of
telephony, computer communication as well as parallel machines. On-chip net-
works share many characteristics with these networks, but also have significant
differences. For clear presentation, throughout the thesis, we also call an on-chip

6 Chapter 1. Introduction

network a micro-network, a parallel-machine network a macro-network, a tele-
phony or computer network a tele-network. On-chip networks are developed on a
single chip and designed for closed systems targeting perhaps heterogeneous ap-
plications. Parallel-machine networks are developed on distributed boards and de-
signed for a particular application which typically executes specific algorithms.
Computer networks are geographically distributed and designed for open systems
running diverse applications from client-server, peer-to-peer and multicast appli-
cations. Telephony networks are also geographically distributed but are designed
mainly for the purposes of communicating voice, video and data. The design of a
closed system allows for customization in which the network properties including
the network-level, link-level and physical-level properties can be propagated to the
application level and both communication and computation may be efficiently op-
timized. Since a micro-network is built on a single chip, it can have wide parallel
wires and allows high rate synchronous clocking. On the other hand, it has more
stringent constraints in performance, area and power, which are typical trade-off
considerations for SoC designs. As communication is to transfer data, timing is
the first-level citizen. On-chip networks have the strictest requirement on delay
and jitter. The time scale is measured in nano seconds. This requirement precludes
many of the software-based sophisticated arbitration, routing and flow-control al-
gorithms. Cost is a major concern for on-chip networks since most SoCs target
high-volume markets. The buffering in an on-chip network has very limited space
and is expensive in comparison with board-level, local-area and wide-area net-
works. This means that a NoC allows a limited count of routing tables and virtual-
channel buffers in network nodes. Power consumption is important for all kinds of
networks. However, on-chip networks are developed also for embedded applica-
tions with battery-driven devices. Such applications require extremely low power
which is not comparable to large-scale networks. As we also mentioned, on-chip
network designs are confronted by the DSM effects. Taming bad physical effects is
as important as network design itself. Furthermore, many SoC networks are devel-
oped as a platform for multiple use cases, not only for a single use case. Therefore
designing micro-networks also need to take reconfigurability into account.

As we view it, Network-on-Chip is a revolutionary rather than evolutionary
approach to address the SoC design crisis. It shifts our focus from computation to
communication. It should take interconnect into early consideration in the design
process, and might favor a meet-in-the middle (platform-based) design methodol-
ogy against a top-down or bottom-up approach. NoC has the following features:

* Interconnect-aware [93]: As the technology scales, the reachable region in
one clock cycle diminishes [3]. Consequently, chip design is increasingly

1.1. Network-on-Chip (NoC) 7

becoming communication-bound rather than capacity-bound. Since the size
of a single module is limited by the reachable region in one cycle, to exploit
the huge chip capacity, the entire chip has to be partitioned into multiple
regions. A good partitioning should be regular, making it easier to man-
age the properties of long wires including middle-layer and top-layer wires.
Each module is situated in one partitioned region and maintains its own syn-
chronous region. In this way, the reliance on global synchrony and use of
global wires can be alleviated. To guarantee correct operation, registers may
be used in wire segments to make the design latency-insensitive [17]. Be-
sides, each IP may be attached to a switch. Switches are in turn connected
with each other to route packets in the network. The signal and power in-
tegrity issues may be addressed at the physical, link and higher layers. For
example, redundancy in time, space and information can be incorporated in
transmission to achieve reliability. By physically structuring the communi-
cation and successfully suppressing the DSM effects, the design robustness
and reliability can be improved.

e Communication-centric [10]: Networking distributed IP modules in a parti-
tioned chip results in a naturally parallel communication infrastructure. As
long as the chip capacity is not exceeded, the number of cores which can be
integrated on a single chip is scalable. The inter-core communications share
the total network bandwidth with a high degree of concurrency. The network
can be dimensioned to suit the bandwidth need of the application under in-
terest. The parallel architecture allows concurrent processing in computation
and communication. This helps to leverage performance and reduce power
in comparison with a sequential architecture permitting only sequentialized
processing. A protocol stack is typically built to abstract the network-based
communication. Each layer has well-defined functionalities, protocols and
interfaces. The design space at each layer has to be sufficiently explored. The
tradeoffs between performance and cost should be considered in the design,
analysis and implementation of the communication architecture. Quality-of-
Service (QoS) and system-wide performance analysis are central issues to
address predictability.

* Platform-based [50, 87]: Since the cost of design is the major obstacle for
innovative and complex SoCs [46], developing a programmable, reconfig-
urable and extensible communication platform is essential for SoC designs.
To this end, NoC shall serve as a communication and integration platform

8 Chapter 1. Introduction

providing a hardware communication architecture, an associated intercon-
nect interface, as well as a high-level interface for integrating hardware IPs,
custom logic and for software programming. This enables the architecture-
level reuse. One challenge is to address the balance between generality and
optimality. A platform must serve not only one application but also many ap-
plications within an application domain. On the other hand, customization
to enhance performance and efficiency is needed to make designs competi-
tive. Providing well-defined interfaces at least at the network level and the
application level is important, because it enables IPs and functional blocks
to be reusable. Interface standardization is one major concern to make IPs
from different vendors exchangeable. It must be efficient and also addresses
legacy IPs. The concept of interface-based design has been shown successful
for IP plug-and-play in the history of software and hardware developments,
for example, instruction sets and various interconnect buses or protocols such
as Peripheral Component Interface (PCI) and Universal Serial Bus (USB). A
NoC design methodology should also favor communication interfaces for
the greatest possible IP reuse and integration [112, 129]. Using validated
components and architectures in a design flow shrinks verification effort, re-
duces time-to-market and guarantees product quality, thus enhancing design
productivity.

As such, NoC research does not deal with only several aspects of SoC de-
sign but creates a new area [50]. The term NoC is used today mostly in a very
broad meaning. It encompasses the hardware communication infra-structure, the
middleware and operating system, application programming interfaces [64, 101],
the design methodology and its associated tool chain. The challenges for NoC re-
search have thus been distributed in all aspects of SoC design from architecture to
performance analysis, from traffic characterization to application design.

1.1.3 On-Chip Communication Model

On-chip communication is to provide a means to enable interprocess communica-
tion with a set of constraints and properties satisfied. A good view of network-
based process-to-process communication is to follow the 1ISO’s OSI model [135].
The seven-layer model was proposed to interconnect open systems, which are het-
erogeneous and distributed. The layered structure decomposes the communication
problem into more manageable components at different hierarchical layers. Rather
than a monolithic structure, several layers are designed, each of which solves one
part of the problem. Besides, layering provides a more modular design. At each

1.1. Network-on-Chip (NoC) 9

OSl layer Hardware core Software core
Application
Presentation - ALI___
. S
message/transaction N
0
Session . c
Comm. Adapter 0OS & Middleware p
Transport L
S CLl - 2
F
,,,,,,,,,,,, packet/stream _ _________ o
Network -) . R
Link Switch Switch Switch M
Physcial N ’ S

S phivdit <7

Figure 1.2. On-chip communication layers with Application Level Interface (ALI)
and Core Level Interface (CLI)

layer, protocols and services, which are implementation-independent, are well-
defined. Peer entities at the same layer can thus communicate with each other
transparently. Adding new services to one layer may only need to modify the func-
tionality at one layer, reusing the functions provided at all the other layers. Due to
these advantages, several NoC groups [9, 82, 119] have followed this model and
adapted it to build a protocol stack for on-chip communication.

As a platform, NoC shall provide well-defined interfaces for application pro-
gramming and IP integration. Two levels of interfaces can be identified. One is the
Core-Level Interface (CLI), which is used to connect hardware cores. At this level,
IPs and processors implement interfaces such as AXI [6], OCP [95], VCI [130],
CoreConnect [45] and DTL [104]. The other level interface is for integrating hard-
ware logic via a communication adapter and for programming embedded software.
The Operating System (OS) [92] and middleware can be part of the platform. This
level of interface is Application-Level Interface (ALI). A recent proposal of the
two-level interfaces for multiprocessors on chip can be found in [129].

An on-chip communication model combines the two views: abstract layered
communication and interface-based communication. Although having been dis-
cussed separately, the two views are coherent, as shown in Figure 1.2. As can
be seen, hardware and software processes (illustrated as Py, P, Ps, P, in Figure
1.2) representing the application layer use the ALI. The hardware communication
adapter for integrating hardware cores and operating system & middleware for in-
tegrating software cores realize the session and transport layers, and connect to the
CLI. The CLI encapsulates the network. It is worth noting that bypassing one layer
is possible, as long as the interfaces match. For example, if a hardware IP imple-

10 Chapter 1. Introduction

ments the CLI, it can be directly connected to the CLI instead of connecting to the
ALLI, bypassing the communication adapter.

1.2 Research Overview

We have been orienting our NoC research towards three key issues: on-chip net-
work architectures, network performance analysis and application design method-
ology. The network communication architectures deal with the design of on-chip
networks. The performance analysis evaluates the network performance and helps
to uncover the impact of network parameters on performance. The design method-
ology is concerned with how to design applications on a NoC platform. Specifi-
cally, we deal with communication refinement that synthesizes the communication
in a system model into on-chip communication. Essentially these topics deal with
the design and analysis of on-chip communication for NoC platforms.

We have identified and formulated problems related to the three aspects men-
tioned above. The thesis is based on the research results from these studies. In the
following, we give a brief sketch of the main results:

* NoC network architectures. We have proposed cost-effective switch archi-
tectures, a connection-oriented multicasting scheme, as well asa TDM (Time
Division Multiplexing) virtual-circuit configuration method using logical net-
works. After studying wormhole switch micro-architectures, we propose
flit admission and ejection schemes, which are cost-effective with mini-
mal performance penalty. Our multicasting mechanism is also proposed for
wormhole-switched networks. It is connection-oriented, and a connection
can be established dynamically. Based on the concept of a logical network,
we have developed theorems and used a back-tracking algorithm to configure
contention-free TDM virtual-circuits.

* NoC network performance analysis. We have investigated traffic configu-
ration, carried out network simulation and made feasibility analysis. We
propose how to configure synthetic traffic patterns using distribution with
controllable locality or channel-by-channel customization. This traffic con-
figuration method has been integrated into our Nostrum NoC Simulation En-
vironment (NNSE). A case study on the deflection networks shows that our
simulator enables to explore the architectural design space and helps to make
proper decisions on topology, routing schemes and deflection policies. The
feasibility analysis aids designers with information about whether the appli-
cation can fulfill the timing requirements of messages on the network and

1.3. Author’s Contributions 11

how efficient network resources can be utilized. It allows one to evaluate the
network using algorithm instead of simulation. Hence, it is more efficient but
less accurate. This feasibility analysis is performed on wormhole-switched
networks.

¢ NoC communication refinement: Based on a synchronous system model, we
have proposed a communication refinement approach that refines the ab-
stract communication into network-based communication. During the re-
finement, synchronization consistency is maintained in order to be correct-
by-construction and protocol refinement can be incorporated to satisfy per-
formance constraints.

Next, we summarize the author’s contributions in each of the enclosed papers.

1.3 Author’s Contributions

The thesis is based on a collection of papers, which are all peer-reviewed except
Paper 4 that is under review. The papers are grouped into three blocks, namely,
NoC network architectures, NoC network performance analysis, and NoC commu-
nication refinement. Each block is dedicated to one chapter in the thesis and we
concentrate on introducing the author’s contributions in each chapter. The detailed
materials, experiments, results and other related work are referred to the papers. In
the following, we summarize the enclosed papers highlighting the author’s contri-
butions. These papers are also listed in the references.

* NoC Network Architectures

Paper 1 [66]. Zhonghai Lu and Axel Jantsch. Flit admission in on-chip
wormhole-switched networks with virtual channels. In Proceedings of
the International Symposium on System-on-Chip, pages 21-24, Tam-
pere, Finland, November 2004.

This paper discusses the flit admission problem in input-buffering and
output-buffering wormhole switches. Particularly it presents a novel
cost-effective coupling scheme that binds flit admission queues with
output physical channels in a one-to-one correspondence manner. The
experiments suggest that the network performance is equivalent to the
base line scheme which connects a flit admission queue to all the output
physical channels.

Author’s contributions: The author contributed with the problem for-
mulation, conducted experiments and wrote the manuscript.

Chapter 1. Introduction

Paper 2 [67]. Zhonghai Lu and Axel Jantsch. Flit ejection in on-chip
wormhole-switched networks with virtual channels. In Proceedings of
the |EEE Nor Chip Conference, pages 273-276, Oslo, Norway, Novem-
ber 2004.

This paper studies flit ejection models in a wormhole virtual channel
switch. Instead of the costly ideal flit-ejection model, two alternatives
which largely reduce the buffering cost are proposed. Experiments
show that the p-sink model achieves nearly equivalent performance
with the ideal sink model if the network is not overloaded.

Author’s contributions. The author formulated the flit-ejection prob-
lem, proposed solutions, conducted experiments and wrote the manu-
script.

Paper 3 [75]. Zhonghai Lu, Bei Yin, and Axel Jantsch. Connection-
oriented multicasting in wormhole-switched networks on chip. In Pro-
ceedings of the IEEE Computer Society Annual Symposium on VLS
(ISVLS'06), pages 205-210, Karlsruhe, Germany, March 2006.

This paper presents a connection-oriented multicast scheme in wormhole-
switched NoCs. In this scheme, a multicast procedure consists of es-
tablishment, communication and release phases. A multicast group can
request to reserve virtual channels during establishment and has prior-
ity on arbitration of link bandwidth. This multicasting method has been
effectively implemented in a mesh network with deadlock freedom.
Our experiments show that the multicast technique improves through-
put, and does not exhibit significant impact on unicast performance in
a network with mixed unicast and multicast traffic.

Author’s contributions: The author contributed with the idea and pro-
tocol design, suggested experimentation methods, and wrote the ma-
nuscript. The implementation and experiments were conducted by Bei
Yin.

Paper 4 [65]. Zhonghai Lu and Axel Jantsch. TDM virtual-circuit con-
figuration in network-on-chip using logical networks. In submission to
|EEE Transactions on Very Large Scale Integration Systems.
Configuring Time-Division-Multiplexing (TDM) Virtual Circuits (VCs)
on network-on-chip must guarantee conflict freedom for VCs besides
allocating sufficient time slots to them. Using the generalized concept
of logical networks, we develop and prove theorems that constitute suf-
ficient and necessary conditions to establish conflict-free VCs. More-
over, we give a formulation of the multi-node VVC configuration prob-

1.3. Author’s Contributions 13

lem and suggest a back-tracking algorithm to find solutions by con-
structively searching the solution space.

Author’s contributions: The author developed and proved the theorems,
formulated the problem, wrote the program, conducted experiments
and wrote the manuscript.

* NoC Network Performance Analysis

Paper 5 [68]. Zhonghai Lu and Axel Jantsch. Traffic configuration for
evaluating networks on chip. In Proceedings of the 5th International
Workshop on System-on-Chip for Real-time Applications, pages 535-
540, Alberta, Canada, July 2005.

This paper details the traffic configuration methods developed for NNSE.
It presents a unified expression to configure both uniform and locality
traffic and proposes application-oriented traffic configuration for on-
chip network evaluation.

Author’s contributions: The author formulated the unified expression
for the regular traffic patterns and defined application-oriented traffic,
integrated the methods in NNSE, conducted experiments and wrote the
manuscript.

Paper 6 [76]. Zhonghai Lu, Mingchen Zhong, and Axel Jantsch. Evalu-
ation of on-chip networks using deflection routing. In Proceedings of
the 16th ACM Great Lakes Symposium on VLS (GLSVLS'06), pages
296-301, Philadelphia, USA, May 2006.

This paper evaluates the performance of deflection networks with dif-
ferent topologies such as mesh, torus and Manhattan Street Network,
different routing algorithms such as random, dimension XY, delta XY
and minimum deflection, as well as different deflection policies such
as non-priority, weighted priority and straight-through policies. The
results suggest that the performance of a deflection network is more
sensitive to its topology than the other two parameters. It is less sensi-
tive to its routing algorithm, but a routing algorithm should be minimal.
A priority-based deflection policy that only uses global and history-
related criterion can achieve both better average-case and worst-case
performance than a non-priority or priority policy that uses local and
stateless criterion. These findings may be used as guidelines by design-
ers to make right decisions on the deflection network architecture.

Chapter 1. Introduction

Author’s contributions: The author formulated the problem, proposed
solution schemes, and wrote the manuscript. The implementation and
experiments were conducted by Mingchen Zhong.

Paper 7 [69]. Zhonghai Lu, Axel Jantsch and Ingo Sander. Feasibility
analysis of messages for on-chip networks using wormhole routing. In
Proceedings of the Asia and South Pacific Design Automation Confer-
ence, pages 960-964, Shanghai, China, January 2005.

The paper proposes a method for investigating the feasibility of deliver-
ing mixed real-time and nonreal-time messages in wormhole-switched
networks. Particularly it describes a contention tree model for the esti-
mation of worst-case performance for delivering real-time messages.

Author’scontributions: The author formulated the contention tree model,
developed the algorithm, wrote the program, performed experiments,
and wrote the manuscript.

« NoC Communication Refinement

Paper 8 [71]. Zhonghai Lu, Ingo Sander, and Axel Jantsch. Refining syn-
chronous communication onto network-on-chip best-effort services. In
Alain Vachoux, editor, Applications of Specification and Design Lan-
guages for SoCs - Selected papers from FDL 2005. Springer, Chapter
2, pages 23-38, 2006.

The paper proposes a top-down design flow to refine synchronous com-
munication onto NoC best-effort services. It consists of three steps,
namely, channel refinement, process refinement, and communication
mapping. In channel refinement, synchronous channels are replaced
with stochastic channels abstracting the best-effort service. In process
refinement, processes are refined in terms of interfaces and synchro-
nization properties. Particularly, we use synchronizersto maintain local
synchronization of processes and thus achieve synchronization consis-
tency, which is a key requirement while mapping a synchronous model
onto an asynchronous architecture. Within communication mapping,
the refined processes and channels are mapped onto a NoC platform.
A digital equalizer is used as a tutorial example and implemented in
the Nostrum NoC platform to illustrate the feasibility of our concepts.

Author’s contributions: The author proposed the design flow for the
communication refinement, developed solutions for the synchroniza-
tion problem, conducted the case study, and wrote the manuscript.

1.3. Author’s Contributions 15

Paper 9 [72]. Zhonghai Lu, Ingo Sander, and Axel Jantsch. Towards
performance-oriented pattern-based refinement of synchronous models
onto NoC communication. In Proceedings of the 9th Euromicro Con-
ference on Digital System Design (DSD’06), pages 37-44, Dubrovnik,
Croatia, August 2006.

This paper is complementary to Paper 8, which mainly discusses how
to maintain synchronization consistency while refining the synchronous
communication on asynchronous NoC architectures. This paper fo-
cuses on how to achieve performance-oriented refinement. Specifi-
cally, it deals with protocol refinement and channel mapping issues.
In protocol refinement, we show how to refine communication towards
application requirements such as reliability and throughput. In channel
mapping, we discuss channel-convergence and channel-merge to make
efficient use of shared network resources.

Author’s contributions. The author developed the idea, implemented
the proposed techniques, conducted experiments, and wrote the manu-
script.

The remainder of the thesis is structured as follows. Chapter 2 summarizes
our research results on NoC network architectures. In Chapter 3, we describe our
work on NoC network performance analysis. We present our NoC communication
refinement approach in Chapter 4. Finally we summarize the thesis in Chapter 5.

16

Chapter 2

NoC Network Architectures

This chapter summarizes our research on NoC network architectures, particularly,
cost-effective switch architectures [Paper 1, 2], connection-oriented multicasting
[Paper 3], as well as TDM (Time Division Multiplexing) virtual-circuit configura-
tion [Paper 4].

2.1 Introduction

2.1.1 On-Chip Communication Network
A. On-chip network characteristics

As with macro- and tele-networks, on-chip micro-networks share the same char-
acteristics in topology, switching, routing, and flow control. Additionally, a micro-
network has to provide high and predictable performance with small area overhead
and low power consumption. As noted in [27], a micro-network should appear as
logical wires for network clients. Quality of Service (QoS) is thus a crucial aspect
to distinguish one micro-network from another. Moreover, the design of on-chip
systems should take advantage of well-validated legacy or third-party IP cores to
shorten time-to-market and to guarantee product quality. To this end, IP reuse, ex-
change and integration are other critical issues. Addressing these issues demands
a standardized hardware interface. The interface wrapping a micro-network can
therefore be a distinguishing feature of a NoC proposal.

In the following, we describe the micro-network characteristics, namely, topol -
ogy, switching, routing, flow control, Quality of Service and Interface, highlighting
present NoC practices in these regards.

17

18 Chapter 2. NoC Network Architectures

B. Topology

The topology refers to the physical structure of the network graph, i.e., how net-
work nodes (switches or routers) are physically connected. It defines the connec-
tivity (the routing possibility) between nodes, thus having a fundamental impact
on the network performance as well as the switch structure, for example, the num-
ber of ports and port width. The tradeoff between generality and customization
is an important issue when determining a network topology. The generality fa-
cilitates the re-usability and scalability of the communication platform. The cus-
tomization is aimed for performance and resource optimality. Both regular and
irregular topologies have been advocated for NoCs. Regular topologies such as
k-ary 2-cube meshes [56] and tori [27] are popular ones because their layouts on a
two-dimensional chip plane use symmetric-length of wires. The significance of the
regularity lies in its potential of managing wire delay and wire-related DSM effects.
The k-ary tree and k-ary n-dimensional fat tree [1] are two alternative regular NoC
topologies. With a regular topology, the network area and power consumption scale
predictably with the size of the topology. The arguments for using irregular topolo-
gies are that specific applications require flexible and optimal topology. In [123],
the number of ports in switches can be synthesized according to the requirement
of connectivity. However, the area and power consumption of an irregular network
topology may not scale predictably with the topology size. Other topologies in
between regular and irregular ones are also proposed for NoCs. For example, an
interesting NoC topology is the Octagon NoC [52] in which a ring of 8 nodes con-
nected by 12 bi-directional chords. Traveling between any pair of nodes takes at
maximum two hops. In [99], a butterfly fat-tree topology was proposed in which
IPs are placed at the leaves and switches placed at the vertexes. Moreover, regular
topology may be customized by introducing application-specific long-range links
to improve performance with a small area penalty [96].

C. Switching strategy

The switching strategy determines how a message traverses its route. There are
two main switching strategies: circuit switching and packet switching. Circuit
switching reserves a dedicated end-to-end path from the source to the destination
before starting to transmit the data. The path can be a real or virtual circuit. Af-
ter the transmission is done, the path reservation with associated resources is re-
leased. Circuit-switching is connection-oriented, meaning that there is an explicit
connection establishment. In contrast to circuit-switching, packet-switching seg-
ments the message into a sequence of packets. A packet typically consists of a

2.1. Introduction 19

header, payload and a tail. The header carries the routing and sequencing infor-
mation. The payload is the actual data to be transmitted. The tail is the end of
the packet and usually contains error-checking code. Packet-switching can be ei-
ther connection-oriented or connection-less. Connection-oriented communication
preserves resources while connection-less communication does not. Connection-
oriented communication can typically provide a certain degree of commitment
for message delivery bounds. With connection-less communication, packets are
routed individually in the network in a best-effort manner. The message deliv-
ery is subject to dynamic contention scenarios in the network, thus is difficult to
provide bounds. However, the network resources can be better utilized. Typical
packet switching techniques® include store-and-forward, virtual cut-through [53],
and wormhole switching 2.

e Sore-and-forward: A network node must receive an entire packet before
forwarding it to the next downstream node. Both link bandwidth and buffers
are allocated at the packet-level. The non-contentional latency T for trans-
mitting L flits is expressed by Equation 2.1. Flit is the smallest unit for the
link-level flow control, which is the minimum unit of information that can
be transferred across a link.

T =(L/BW +R)«H (2.1)

where BW is the link bandwidth in flits per cycle; R is the routing delay per
hop; Hop is the basic communication action from switch to switch. H is the
number of hops from the source node to the destination node.

 Mirtual cut-through: Like store-and-forward, virtual cut-through allocates
both link bandwidth and buffers in units of packets. However, in virtual cut-
through, a network node does not wait for the reception of an entire packet.
It receives a portion of the packet, and then forwards it downstream if the
buffer space in the next switch is available. The downstream node must
have enough buffers to hold the entire packet. In case of blocking, the entire
packet is shunt into the buffers allocated. By transmitting packets as soon
as possible, virtual cut-through reduces the non-contentional latency T for

transmitting L flits to
T=L/BW+RxH (2.2)

!Both store-and-forward and virtual cut-through do not divide packets into flits. We show the
division here for a consistent presentation of the switching techniques.

2In the literature, wormhole switching, wormhole routing and wormhole flow control have been
used. In this thesis, we tend to use wormhole switching.

20 Chapter 2. NoC Network Architectures

* Wormhole switching: A packet is decomposed into flits. Operating like
virtual cut-through, wormhole switching delivers flits in a pipelined fash-
ion. Due to the pipelined transmission, the non-contentional latency 7" of
transmitting L flits is the same as that for virtual cut-through. Wormhole-
switching and virtual cut-through are both cut-through switching techniques.
They mainly differ in how they handle packet blocking. With wormhole
switching, link bandwidth and buffers are allocated to flits rather than pack-
ets. The switch buffering capacity is a multiple of a flit. If a packet is
blocked, flits of the packet are stalled in place. With virtual cut-through,
a switch, at which a packet is blocked, must receive and store all flits of the
blocked packet. This enforces that the buffering capacity in switches must be
a multiple of a packet. Virtual cut-through utilizes the network’s bandwidth
more efficiently, achieving higher throughput than wormhole switching but
requiring higher buffering capacity.

Circuit-switching for on-chip networks is proposed in [132] to satisfy applica-
tions with hard real-time constraints. The majority of on-chip networks is based
on packet-switching, and combined packet-switching and circuit-switching. For
example, TDM virtual-circuits [34, 81], which preserves time slots to switch pack-
ets in a contention-free manner, can be viewed as a circuit-switching technique
implemented in a packet-switched network.

D. Routing algorithm

The routing algorithm determines the routing paths the packets may follow through
the network graph. It usually restricts the set of possible paths to a smaller set of
valid paths. In terms of path diversity and adaptivity, routing algorithm can be clas-
sified into three categories, namely, deterministic routing, oblivious routing and
adaptive routing [28]. Deterministic routing chooses always the same path given
the source node and the destination node. It ignores the network path diversity and
is not sensitive to the network state. This may cause load imbalances in the network
but it is simple and inexpensive to implement. Besides, it is often a simple way to
provide the ordering of packets. Oblivious routing, which includes deterministic
algorithms as a subset, considers all possible multiple paths from the source node
to the destination node, for example, a random algorithm that uniformly distributes
traffic across all of the paths. But oblivious algorithms do not take the network
state into account when making the routing decisions. The third category is adap-
tive routing, which distributes traffic dynamically in response to the network state.
The network state may include the status of a node or link, the length of queues,

2.1. Introduction 21

and historical network load information. A routing algorithm is termed minimal
if it only routes packets along shortest paths to their destinations, i.e., every hop
must reduce the distance to the destination. Otherwise, it is non-minimal. Both
table-based and algorithmic routing mechanics can be used to realize the routing
algorithms [28]. The table-based routing mechanism uses routing tables either at
the source or at each hop along the route. Instead of storing the routing relation
in a table, the algorithmic routing mechanism computes it. For speed, it is usually
implemented as a combinational logic circuit. The algorithmic routing is usually
restricted to simple routing algorithms and regular topologies, sacrificing the gen-
erality of table-based routing.

In comparison with adaptive routing, deterministic or oblivious minimal rout-
ing results in relatively simple switch designs because a routing decision is made
independent of the dynamic network state. Though a routing algorithm has differ-
ent properties in design complexity, adaptivity and load balancing, the performance
of a routing algorithm is also topology and application dependent [88]. An inter-
esting extreme case of non-minimal adaptive routing is deflection routing [16], also
called hot-potato routing. Its distinguishing feature is that it does not buffer pack-
ets. Instead, packets are always on the run cycle-by-cycle. A deflection policy
prioritizes packets on the use of favored links. If there is no contention, packets
are delivered via shortest paths. Upon contending for shared links, packets with a
higher priority win arbitration and use the favored links while packets with a lower
priority are mis-routed to non-minimal routes. Deflection routing has been used in
optical networks where buffering optical signals is too expensive [106]. Because
of simplicity and adaptivity, it is adopted and implemented in communication net-
works embedded in massively parallel machines such as the Connection machine
[42]. For the same reasons, it has also been proposed for on-chip networks in
the Nostrum NoC [81, 91]. Using deflection routing results in faster and smaller
switch designs. As projected in [91], a deflection switch with an arity of five can
run 2.38 GHz with a gate count of 19370 in 65 nm technology. Deadlock and live-
lock are the primary concern when designing a routing algorithm in order to ensure
correct network operation [30]. As shown in [97], application knowledge can be
effectively utilized to avoid deadlock. In [16, 49], maximum delivery bounds are
derived for deflection networks. Thus the networks are livelock free.

E. Network flow control

The network flow control governs how packets are forwarded in the network, con-
cerning shared resource allocation and contention resolution. The shared resources
are buffers and links (physical channels). Essentially a flow control mechanism

22 Chapter 2. NoC Network Architectures

deals with the coordination of sending and receiving packets for the correct deliv-
ery of packets. Due to limited buffers and link bandwidth, packets may be blocked
due to contention. Whenever two or more packets attempt to use the same network
resource (e.g., a link or buffer) at the same time, one of the packets could be stalled
in placed, shunted into buffers, detoured to an unfavored link, or simply dropped.
For packet-switched networks, there exist bufferless flow control and buffered flow
control [28].

* Bufferless flow control is the simplest form of flow control. Since there is no
buffering in switches, the resource to be allocated is link bandwidth. It relies
on an arbitration to resolve contentions between contending packets. After
the arbitration, the winning packet advances over the link. The other packets
are either dropped or misrouted since there are no buffers. The deflection
routing uses bufferless flow control. In fact, deflection routing includes an
orthogonal concern of routing algorithm and deflection policy. While a rout-
ing algorithm determines the favored links for packets, a deflection policy re-
solves contentions for shared links by forwarding the packet with the highest
priority to its favored link and misrouting other packet(s) with a lower pri-
ority to unfavored links. As deflection routing does not buffer packets, the
switch design can be simpler and thus cheaper because it has no buffer and
flow management. Moreover, since the routing paths of packets are fully
adaptive to the network state, deflection routing has higher link utilization
and offers the potential to allow resilience for link and switch faults.

« Buffered flow control stores blocked packets while they wait to acquire net-
work resources. Store-and-forward, virtual cut-through and wormhole switch-
ing techniques adopt buffered flow control. The granularity of resource
allocation for different buffered flow control techniques may be different.
Store-and-forward switching and virtual cut-through switching allocate link
bandwidth and buffers in units of packets. Wormhole switching allocates
both link bandwidth and buffers in units of flits. Buffered flow control re-
quires a means to communicate the availability of buffers at the downstream
switches. The upstream switches can then determine when a buffer is avail-
able to hold the next flit to be transmitted. If all of the downstream buffers
are full, the upstream switches must be informed to stop transmitting (as-
suming drop-less delivery). This phenomenon is called back pressure. Link-
level flow control mechanisms, in which the buffer availability information
is passed and propagated between switches, are introduced to provide such

2.1. Introduction 23

back-pressure. Today, there are three types of link-level flow control tech-
nigues in common use: credit-based, on/off, and ack/nack [28].

The flow control scheme of a network may be coupled with its switching strat-
egy. For instance, both store-and-forward and virtual cut-through switching use
the packet-buffer flow control, and wormhole switching uses the flit-buffer flow
control. It is worthwhile to discuss them separately because a flow control scheme
emphasizes the movement of packet flows instead of switching individual packets.

F. Quality of Service

Generally speaking, Quality-of-Service (QoS) defines the level of commitment for
packet delivery. Such a commitment can be correctness of the result, completion
of the transaction, and bounds on the performance [33]. But, mostly, QoS has a
direct association with bounds in bandwidth, delay and jitter, since correctness and
completion are often the basic requirements for on-chip message delivery. Correct-
ness is concerned with packet integrity (corrupt-less) and packet ordering. It can be
achieved through different means at different levels. For example, error-correction
at the link layer or re-transmission at the upper layers can be used to ensure packet
integrity. A network-layer service may secure that the packets are delivered in
order. Alternatively, if a network-layer service cannot promise in-order delivery,
a transport-layer service may compensate to do the re-ordering. Completion re-
quires that a flow control method does not drop packets. In case of a shortage of
resources, packets can be mis-routed or buffered. In addition, the network must
ensure deadlock and livelock freedom.

Roughly classified, NoC researchers have proposed best-effort, guaranteed,
and differentiated services for on-chip packet-switched communication. A best-
effort service is connectionless. The network delivers packets as fast as it can.
Packets are routed in the network, resulting in dynamic contentions for shared
buffers and links. A packet-admission policy is usually desired to avoid network
saturation. Below the saturation point, the network exhibits good average perfor-
mance but the worst-case can be more than an order of magnitude worse than the
average case. A guaranteed service is typically connection-oriented. It avoids net-
work contentions by establishing a virtual circuit. Such a virtual circuit may be
implemented by time slots, virtual channels, parallel switch fabrics and so on. The
Hethereal NoC [34] implements a contention-free TDM virtual-circuit in a net-
work employing buffered flow control. The Nostrum NoC [81] also realizes TDM
virtual-circuit but in a network using bufferless flow control. Both Aethereal and
Nostrum networks operate synchronously. The MANGO network [14] is clockless.

24 Chapter 2. NoC Network Architectures

Since the network switches do not share the same notion of time, it uses sequences
of virtual channels to set up virtual end-to-end connections. In contrast to TDM,
SDM (Space-Division-Multiplexing)-based QoS is achieved by allocating individ-
ual wires on the link for different connections [61]. For the guaranteed services,
if a virtual circuit is set up dynamically, the setup procedure has to use best-effort
packets. This phase is somewhat unpredictable due to the best-effort nature. A
differentiated service prioritizes traffic according to different categories, and the
network switches employ priority-based scheduling and allocation policies. For
instance, the QNoC [15] network distinguishes four traffic classes, i.e., signaling,
real-time traffic, read-write and block transfer. The signaling class has the highest
and the block-transfer class the lowest priority. Priority-based approaches allow
for higher utilization of resources but cannot provide strong guarantees like guar-
anteed services. To improve resource usage, a best-effort service may be mixed
with a guaranteed service using, for example, slack-time aware routing [5].

G. Interface

Wrapping on-chip networks with an interface is essential for NoC designs. The in-
terface is preferably standardized, but domain-specific customization is necessary
for optimal and dedicated solutions. An interface-based design approach [112, 129]
separates computation from communication. It gives the interface users an abstrac-
tion that makes only the relevant information visible. It facilitates the exchange and
reuse of IPs as long as the IPs conform to the same interface.

To make a huge number of legacy IPs reusable and integrable, an on-chip net-
work interface has to follow standard interfaces. Current network interconnects
implement interfaces such as AXI [6], OCP [95], VCI [130] and DTL [104]. AXI
(Advanced eXtensible Interface) is AMBA’s highest performance interface devel-
oped by ARM to support ARM11 processors. The configurable AXI interconnec-
tion is optimized for the processor-memory backplane and has advanced features
such as split transactions (address and data buses are decoupled), multiple out-
standing transactions, and out-of-order data. OCP (Open Core Protocol) is a plug-
and-play interface for a core having both master and slave interfaces. The OCP
specification defines a flexible family of memory-mapped, core-centric protocols
for use as a native core interface in on-chip systems. OCP addresses both data-flow
signaling and side-band control-flow signaling for error, interrupt, flag, status and
test. The VCI (Virtual Component Interface) specification includes three variants:
PVCI (peripheral), BVCI (basic) and AVCI (advanced). The DTL (Device Trans-
action Level) interconnection interface is developed by Phillips Semiconductors to

2.1. Introduction 25

interface existing SoC IPs. It allows easy extension to other future interconnec-
tion standards. The ZHethereal NoC [113] provides a shared-memory abstraction
to the cores and is compatible to standard interfaces such as AXI, DTL and OCP.
The SPIN [37] and Proteo [122] NoCs support the VCI interface. The OCP inter-
face is used in the MANGO NoC [14]. Nonetheless, the cost of adopting standard
socket-type interfaces is nontrivial. The HERMES NoC [84] demonstrates that the
introduction of OCP makes the transactions up to 50% slower than the native core
interface. Therefore domain-specific interfaces will be an option for optimization.

Next, in Section 2.2, we investigate the designh complexity of a canonical worm-
hole switch from the perspective of admitting and ejecting flits, proposing the cou-
pled admission model for flit admission (Paper 1) and the p-sink model for flit ejec-
tion (Paper 2). Section 2.3 suggests a multicasting service (Paper 3). In Section
2.4, we discuss the construction of TDM virtual-circuits using logical networks
(Paper 4). Since both Section 2.2 and Section 2.3 consider wormhole switching,
we introduce wormhole switching further in the next subsection.

2.1.2 Wormhole Switching

Packet ’ ‘

/

flits | tail | | body| | body| |head |

flits flits
— = |body = |body = =

switch switch switch switch

Figure 2.1. Flits delivered in a pipeline

Wormbhole switching [26] allocates buffers and physical channels (PCs, links)
to flits instead of packets. A packet is decomposed into a head flit, body flit(s), and
atail flit. A single-packet flit is also possible. We call this decomposition flitization.
Flitization is named following packetization, i.e., encapsulate a message into one
or more packets. A flit, the smallest unit on which flow control is performed, can
advance once buffering in the next switch is available to hold the flit. This results in
that the flits of a packet are delivered in a pipeline fashion. As illustrated in Figure

26 Chapter 2. NoC Network Architectures

2.1, a packet is segmented into four flits, with one head flit leading two body flits
and one tail flit, and then the four flits are transmitted in a pipeline via switches.
For the same amount of storage, it achieves lower latency and greater throughput.

== =

a) One 12-flit buffer b) Four 3—flit buffers

Figure 2.2. Virtual channels (lanes)

However, wormhole switching uses physical channels (PCs) inefficiently be-
cause a PC is held for the duration of a packet. If a packet is blocked, all PCs held
by this packet are left idle. To mitigate this problem, wormhole switching adopts
virtual channels (lanes) to make efficient use of the PCs [25]. Several parallel
lanes, each of which is a flit buffer queue, share a PC (Figure 2.2). Therefore, if
a packet is blocked, other packets can still traverse the PC via other lanes, leading
to higher throughput. Because of these advantages, namely, better performance,
smaller buffering requirement and greater throughput, wormhole switching with
virtual-channel flow control is the prevailing switching scheme advocated for on-
chip networks [1, 24, 44, 110]. In addition, virtual-channel has a versatile use
in optimizing link utilization, improving throughput, avoiding deadlock [26], in-
creasing fault tolerance [18] and providing guaranteed services [14]. Nonetheless,
in order to maximize its utilization, the procedure to allocate virtual channels is
critical in designing routing algorithms [128].

Note that wormhole switching is not without problems. First, it incurs flit-type
overhead to distinguish head, body, tail, and single-packet flits. Second, the flits of
a packet may be distributed in flit buffers of multiple switches. The intermediate
buffers between a head flit and a tail flit may be under-utilized, resulting in lower
buffer utilization [120]. Third, due to the flit distribution, wormhole switching is
more prone to deadlock.

2.2 Flit Admission and Ejection

This section summarizes the research in Paper 1 (Flit admission) and Paper 2 (Flit
ejection).

2.2. Flit Admission and Ejection 27

2.2.1 Problem Description

Despite the aforementioned advantages, using wormhole switching for on-chip net-
works has to minimize the switch design complexity. First, since an on-chip net-
work is an interconnect using shared wires instead of dedicated wires to pass sig-
nals, its cost must be reasonable [27]. Second, embedded applications often have
very stringent requirements on power. For future complex SoC integration, the
communication bandwidth is achievable but the energy consumption will probably
be the bottleneck that has to trade off the performance [98]. Therefore, in order to
shrink energy dissipation, it is important to reduce the switch design complexity so
as to decrease the number of gates and switching capacitance.

Source switch Destination switch

Packets Flits Flits Packets
S Network
Flitization delivery Assembly

Flit admission Flit ejection

Figure 2.3. Flit admission and ejection

F———— npayload - |~ overhead =]

Packet (112 bits) | data bits | other [dst]src]
96 8 4 4
\L Flitization
Flits (32 bits)
‘ [tail [veid | | [body]vcid | | [body[veid | [other] dst[src [head]vcid |
28 2 2 28 2 2 2 2 12 8 4 4 2 2
Assembly
Packet (112 bits) ‘ data bits ‘ other ‘ dst‘ src‘
96 8 4 4

Figure 2.4. Flitization and assembly

We examine the problem of flit-admission and flit-ejection in a wormhole-
switched network. As depicted in Figure 2.3, the delivery of packets passes through
three stages: flitization, network delivery, and assembly. The flitization is per-
formed at a source node, and the assembly, which decapsulates flits into packets, is
conducted by a destination node. Figure 2.4 illustrates the flitization and assembly
of a packet. As can be seen, the packet is encapsulated into four flits (one head flit,
two body flits and one tail flit), where vcid is the identity number of the lane the flit
occupies. We assume 4 lanes per port in a switch, thus vcid takes 2 bits.

28 Chapter 2. NoC Network Architectures

Since flits are both the workload of switches and the source of network con-
tentions for shared Virtual Channels (VCs)® and Physical Channels (PCs, links),
their admission and ejection are as important as delivery. As the transmission time
of a flit comprises admission time, delivery time plus ejection time, the network
performance is the function of flit-admission, flit-delivery and flit-gjection. Intu-
itively, to achieve good network utilization and throughput, flits should be admitted
as fast as possible. However, flits to be advanced (after admission) may contend
not only with each other, but also with flits to be admitted. Flit-admission and
flit-delivery interfere with each other. This implies that a fast admission mecha-
nism may speed up the admission but slow down the delivery. If the network is
too loaded, the overall transmission time may get worse. For the ejection process,
a faster ejection frees flit buffers quicker, thus the faster the better. A slower ejec-
tion of flits may slow down the flit delivery and eventually affect the flit delivery
and admission through back-pressure. However, an ideal ejection, which ejects
flits immediately once they reach destinations, may over-design the switch. Fi-
nally the interplay between flit-admission and flit-ejection influences the tradeoff
between performance and switch complexity. A practical cost-effective ejection
model may actually tolerate a slower but simpler admission model with reasonable
performance penalty.

In the rest of this section, we first explain the operation of a canonical worm-
hole lane switch in Section 2.2.2. Then we discuss flit-admission and flit-ejection
models in Section 2.2.3 and Section 2.2.4, respectively. Particularly, we introduce
the coupled admission and the p-sink model.

2.2.2 The Wormhole Switch Architecture

Figure 2.5 illustrates a canonical wormhole switch architecture with virtual chan-
nels at input ports [25, 102, 110]. It has p physical channels (PCs) and v lanes
per PC. It employs the credit-based link-level flow control to coordinate packet
delivery between switches.

A packet passes the switch through four states: routing, lane allocation, flit
scheduling, and switch arbitration. In the routing state, the routing logic deter-
mines the routing path the packet advances over. Routing is only performed with
the head flit of a packet and only when the head flit becomes the earliest-come flit
in the FIFO lane. After routing, the packet path and output PC are determined. In
the state of lane allocation, the lane allocator associates the lane the packet occu-
pies with an available lane in the next switch on its routing path, i.e., to make a

%In Section 2.2 and Section 2.3, we use the shorthand VC for Virtual Channel.

2.2. Flit Admission and Ejection 29

C1redits out (1...p) Credits in (1...p)

-~]

> e | Laneallocator Forward 1
. 2
: (p,v) Lane status | :

Pa— (p.v) ' p

Switch arbiter

Routing - (p,v)

Lanes (1...v) * * *
Flits in — T 1T

(1...p)

1 —{ [[|- - Flits out
HTTH mux| R
states)
i o ROREY)
2 ——— - -
5 (states)=
LT 0 mux -2

Flit buffers ‘

1
|
> ; mux = P

| : - ;
Packet queue - §
:Flit—admission queues 1

‘ l gp‘by‘P

| rossbar

|
Flit admission'_ _ _ _ _ _______ p

Figure 2.5. A canonical wormhole lane switch (ejection not shown)

lane-to-lane association. A lane is available if it is not currently being allocated
to an upstream lane. A lane-to-lane association fails when all requested lanes are
already associated to other lanes in directly connected switches, or the lane loses
arbitration in case multiple lanes in the switch try to associate with the same down-
stream lane. Note that it is not necessarily required here that there is an empty
buffer in the lane in order to make a successful association. If the lane-to-lane as-
sociation succeeds, the flit vcid is determined and the packet enters the scheduling
state. If there is a buffer available in the associated downstream lane, the lane en-
ters the state of switch arbitration. This can be done with a two-level arbitration
scheme. The first level of arbitration is performed on the lanes sharing the same
physical channel. The second level of arbitration is for the crossbar traversal. If
the lane wins the two levels of arbitration, the flit situated at the head of the lane
is switched out. Otherwise, the lane stays in the arbitration state. The lane-to-lane

30 Chapter 2. NoC Network Architectures

association is released after the tail flit is switched out. Then the allocated lane
is available to be reused by other packets. Credits are passed between adjacent
switches in order to keep track of the status of lanes, such as if a lane is free and a
count of available buffers in the lane.

A flit differs from a packet in that (1) a flit has a smaller size; (2) only the head
flit carries the routing information such as source/destination address, packet size,
priority etc. As a consequence, the routing and lane allocation can only be per-
formed with the head flit of a packet. Once a lane-to-lane association is established
by the head flit of the packet, the rest of flits of the packet inherit this association.
After the tail flit leaves, the lane-to-lane association is released. Thus, a lane is
allocated at the packet level, i.e., packet-by-packet while a link is scheduled at the
flit level, i.e., flit-by-flit since the flit scheduling as well as the switch arbitration is
performed per flit. As the head flit advances, lanes are associated like a chain along
the routing path of the packet, the rest of flits are pipelined along the chain path.
Carrying routing information only in the head flit of a packet leaves more space
for payload. However, flits belonging to different packets can not be interleaved in
associated lane(s) since only head flits contain routing information. To guarantee
this, a lane-to-lane association must be one-to-one, i.e., unique at a time.

CTle Tl

One-to—one association v/
Switch 1 Switch 2 ¢ Switch 3

N
NLane 1]
= Liane2]
~—+{Lane3]

—

T !

Many-to—-one association One—to—many association

Figure 2.6. Lane-to-lane associations

2.2. Flit Admission and Ejection 31

Figure 2.6 illustrates lane-to-lane associations. The one-to-many association
leads to that the flits from lane 2 in switch 2 are delivered to lane 2 and lane 3
in switch 3. The many-to-one association results in that lane 3 in switch 2 will
receive flits from lane 1 and lane 2 from switch 1. Obviously the one-to-many and
many-to-one associations result in that the integrity of a worm (the flit sequence of
a packet) is destroyed. It becomes impossible either to route the flits of a packet
or assemble the flits into a packet. Therefore, both one-to-many and many-to-one
associations must be forbidden, and only one-to-one association is permissible.

2.2.3 Flit Admission
A. The decoupled admission

We assume that a switch receives packets injected via a packet FIFO. A packet is
first flitized into flits that are then stored in flit FIFOs, called flit-admission queues,
before being admitted into the network. There are various ways of organizing
the packet queue and the flit-admission queues. In Figure 2.7(a), flit-admission
queues are organized as a FIFO. In Figures 2.7(b) and 2.7(c), they are arranged as
p parallel FIFO queues (p is the number of PCs). Figures 2.7(a) and 2.7(b) permit
at maximum one flit to be admitted to the network at a time while Figure 2.7(c)
allows up to p flits to be admitted simultaneously. We adopt the organization of
flit-admission queues in Figure 2.7(c) for our further discussions since it allows
potentially higher performance while the other two may lead to under-utilize the
network.

Packet queue Flit— admlssmn queue

I I

I I

I I
¢ | |

1 | flits

packet flit ! packet] flit ! packet
I I
\ \

Figure 2.7. Organization of packet- and flit-admission queues

The organization of p flit-admission queues is also illustrated in the switch ar-
chitecture in Figure 2.5. Initially, packets are stored in the packet queue. When
a flit-admission queue is available, a packet is split into flits which are then put
into an admission queue. Similarly to a lane, a flit-admission queue transits states
to inject flits into the network via the crossbar. Note that flits to be admitted (in
admission) contend with flits already admitted (in delivery) for VCs in the lane-to-
lane association state and PCs in the crossbar arbitration state. This interference

32 Chapter 2. NoC Network Architectures

makes a flit-admission model nontrivial. Our study shows that when the network
is nearly saturated, a faster admission model actually begins to slow down the de-
livery, worsening the network performance. Furthermore, the routing is performed
after flitization. By this scheme, each flit-admission queue is connected to p multi-
plexers. Flits from a flit-admission queue can be switched to anyone of the p output
PCs. To implement this scheme, the crossbar must be fully connected, resulting in
a port size of 2p x p. Since the flit-admission queues are decoupled from the output
PCs, we call this flit-admission scheme decoupled admission.

B. The coupled admission

Although the decoupled admission allows a flit to be switched to anyone of the
p output ports, this may not be necessary since a flit is aimed to one and only
one port after routing. Based on this observation, we propose a coupling scheme
that can sharply decrease the crossbar complexity, as sketched in Figure 2.8. Just
like the decoupled admission, it uses p flit-admission queues, but one queue is
bound to one and only one multiplexer dedicated for a particular output PC. Due
to this coupling, flits from a flit-admission queue are dedicated to the output PC.
Consequently, an admission queue only needs to be connected to one multiplexer
instead of p multiplexers. The size of the crossbar is sharply decreased from 2p x p
to (p+1) xp, as shown in Figure 2.8. The number of control signals per multiplexer
is reduced from [log(2p)] to [log(p + 1)] forany p > 14.

In order to support the coupling scheme, the routing must be performed be-
fore flitization instead. By a routing algorithm, the output physical channel that a
packet requests can be determined. Hence, the corresponding admission queue is
identified. One drawback due to the coupling is that the head-of-line blocking may
be worse if the packet injection rate is high. Specifically, if the head packet in the
packet queue is blocked due to the bounded number and size of the flit-admission
queues, the packets behind the head packet are all unconditionally blocked dur-
ing the head packet’s blocking time. In the decoupled admission, the head-of-line
blocking occurs when the four flit-admission queues are fully occupied. With the
coupled admission, this blocking occurs when the flit-admission queue, which the
present packet targets, is full.

As the crosshar is a power-hungry component in a switch [131], the coupled
admission saves also power in comparison with the decoupled admission due to
the reduction in the gate count and switching capacitance. The study on the power
assumption of the flit admission schemes [74] shows that the coupled admission

*[z] is the ceiling function which returns the least integer that is not less than z.

2.2. Flit Admission and Ejection 33

Lanes (1...v) |Routing

Fis i T
..p

1 4>—D:'j > Flits out
1.
T X a-e)

— 111 —

T
1T mux -2

{113~ —

Flit buffers

Packet queue H

Flit—-admission queues

mux - p

Yy vy

(p+1)-by—p crossbar

Figure 2.8. The coupled admission sharing a (p+1)-by-p crossbhar

decreases the switch power by about 12% on average with the uniform traffic with
random-bit payloads.

2.2.4 Flit Ejection
A. The ideal sink model

An ideal sink model is typically assumed for a wormhole lane switch. With such a
model, flits reaching their destinations are ejected form the network immediately,
emptying the lane buffers they occupy. An ideal flit-ejection model is drawn in
Figure 2.9. Aflit sink is a FIFO receiving the ejected flits. Each lane is connected
to a sink and the crossbar (for packet forwarding) via a de-multiplexer.

To incorporate ejection, the lane state is extended with a reception state in
addition to the four states. If the routing determines that the head flit of a packet
reaches its destination, the lane enters the reception state immediately by establish-
ing a lane-to-sink association. Since flits from different packets can not interleave
in a sink queue, there must be p - v sink queues, each of them corresponding to
a lane, in order to realize an immediate transition to the reception state. Assum-
ing that one sink takes the flits of one packet, the depth of a sink is the maximum
number of flits of a packet. After the lane transits to the reception state, the head
flit bypasses the crossbar and enters its sink. The subsequent flits of the packet are

34 Chapter 2. NoC Network Architectures

Flits
1 av)
2 Crossbar |, »
p (p-by-p) :
: =P
D: Demux
Lanes(1..v) r-— === foomo oo Amvy -~ !
amms, {10 =TT 1] Theideal sink model
1—=— [[D[] S [[TH /
— [[D] = TTTH\ L______ .
(1.v) (1..v) ‘
-0 ~ 11 ‘
2w} 111} | Packets
(T T }+0] — [11 fracketsink |
(1iv) (1..v) !
| D :
p—={TT—B] —[TTT}H 1
(T[] (111} |
Flit FIFOs Flit sinks (p-v) ;

Figure 2.9. The ideal sink model

ejected into the sink immediately upon arriving at the switch. When the tail flit is
ejected, the lane-to-sink association is freed. This model is beneficial in both time
and space. Although a head flit may be blocked by flits situated in front of it in
the same lane, a non-head flit neither waits to be ejected (time) nor occupies a flit
buffer (space) once the lane is in the reception state. Moreover, it does not inter-
fere with flits buffered in other lanes from advancing to next switches downstream
(because the v demultiplexers of a PC share one input of the crossbar, one PC al-
lows one flit from a lane to be switched via the crossbar without interference with
sinking flits from other lanes.). Upon receiving all the flits of a packet, the packet
is composed and delivered into the packet sink. If the packet sink is not empty, the
switch outputs one packet per cycle from it in a FIFO manner.

B. The p-sink model

Implementing the ideal sink model requires p - v flit sinks, which can eject p -
v flits per cycle. This may over-design the switch since there are only p input
ports, implying that at maximum p flits can reach the switch per cycle. Since the

2.2. Flit Admission and Ejection 35

maximum number of flits to be ejected per switch per cycle is p, we can use p sink
queues instead of p - v sink queues to eject flits to avoid over-design. Moreover, in
order to have a more structured design, we could connect the p sink queues to the
crossbar, as illustrated in the dashed box of Figure 2.10.

Switch arbiter
By
Lanes (1...v)
flsin L Flits out
1 - (1..p)
: M H muX—— - 1
o |
B —imux——— = 2
2 - :
— T :
: : ‘mux — p .
m The p-sink model
P I e e o s e [IS~

N I
\—‘—‘—‘. — ‘muxP !
Flit FIFOs ‘ !
V) ! I
| |
] — |
. |mux [T TT1 I | Packets
! -

: |
; - Packet sink !
L |
! I

|

Flit sinks (p)

p-by—2p crossbar

Figure 2.10. The p-sink model

To enable ejecting flits in the p-sink model, we now extend the four lane states
with two new states: an arriving and a reception state. If a head flit reaches its
destination, the lane the flit occupies transits from the routing to the arriving state.
Then it will try to associate with an available sink, i.e., to establish a lane-to-sink
association. If the association is successful, the lane enters the reception state.
Subsequently the other flits of the packet follow this association exactly like flits
advancing in the network. Upon the tail flit entering the sink, the association is
torn down. If the lane-to-sink association fails (when all sinks have already been
allocated), the head flit is blocked in place holding the lane buffer. To speed up flit
ejection, the contentions for the crossbar input channels and crossbar traversal are
arbitrated on priority. A lane in a reception state has a higher priority than a lane
in a state for forwarding flits. The drawback in this sink model is the increase of
blocking time when flits reach their destinations. First, the lane-to-sink association
may fail since all sink queues might be in use. In contrast, an ideal sink model
guarantees an exclusive sink for each lane. Second, only one lane per PC can win
arbitration to an input channel of the crossbar due to sharing the input channel for

36 Chapter 2. NoC Network Architectures

both advancing flits and ejecting flits. In case of more than one lane of a PC are in
the reception state, only one lane can use the channel.

px1Mux | 1x2Demux | Flitsink

The ideal model - p-v D

The p-sink model P - P

Table 2.1. Cost of the sink models

To implement this p-sink model, the crossbar must double its capacity from
p-by-p (p p x 1 multiplexers) to p-by-2p (2p p x 1 multiplexers), as illustrated in
Figure 2.10. The number of control ports of the crossbar is doubled proportionally.
Table 2.1 summarizes the number of each component to implement the sink mod-
els. As can be seen, the ideal sink model requires p - v flit sinks while the p-sink
model uses only p flit sinks. With the p-sink model, the number of flit-sinks be-
comes independent of v, implying that the buffering cost for flit sinks is only 1/v
as much as the ideal ejection model.

2.3 Connection-oriented Multicasting

This section summarizes the research in Paper 3.

2.3.1 Problem Description

As discussed previously, a bus and its variants (segmented, cross-bar and hierar-
chical buses) do not scale well with the system size in bandwidth and clocking
frequency. However, a bus is very efficient in broadcasting since all clients are
directly connected to it. A unicast is in fact broadcasted to all clients in the bus
segment. In a NoC, IP blocks are distributed and communicate through multi-
hop connections. This allows many more concurrent transactions, but does not
directly support multicast. In NoC systems, it often desires to maintain a consis-
tent view on the system state among the distributed cores, for example, in the case
of implementing cache coherency protocols, of passing global states for barrier
synchronization, and of managing and configuring the network. These commu-
nication patterns involve one source but multiple recipients. This type of pattern
distinguishes from one-to-one communication in that the same message from one
source has to be transmitted to multiple destinations. Particularly, real-time con-
strained, throughput-oriented embedded applications for multi-media processing

2.3. Connection-oriented Multicasting 37

exhibit such patterns, for instance, forking one data stream into multiple identical
streams to be processed by multiple processing elements. Providing an efficient
support for such one-to-many communication patterns is desirable.

Implementing multicast by sending multiple unicast messages is intuitive but
neither efficient nor scalable because of excessive link and buffer consumption.
Secondly, these messages are delivered in a best-effort manner without QoS. Our
purpose is to provide an efficient multicast support from the network layer. We
have taken a connection-oriented approach in aware of QoS. This allows dynamic
multicast setup and release, thus consuming resources only if necessary. Our mul-
ticast scheme is realized in wormhole-switched networks. The resulting wormhole
switch supports both unicast and multicast.

2.3.2 The Multicasting Mechanism

Our multicasting mechanism consists of three phases: group setup, data transmis-
sion, and group release. It is connection-oriented, meaning that a multicast con-
nection must be established before one-to-many data transmission can start. The
member visiting order of a multicast group is computed off-line and the multicast
path is set up conforming to the unicast routing algorithm in the group setup phase.
After data transmission, a multicast connection has to be explicitly released. A
multicast connection means that

e There is a group master who owns the connection. The group master is
the source node who has the group member information and determines the
member visiting sequence. It initiates the establishment by sending a multi-
cast setup packet using unicast. The last node in the sequence is responsible
for acknowledging the establishment. In case of setup failure, a negative
acknowledgment is sent from the node where the failure occurs. After data
transmission, the group master sends a multicast release packet to release the
connection.

« A simplex path is defined from the group master to the last member, passing
other member nodes. Data transmission will deterministically follow this
path from upstream to downstream. In addition to the group master, any
upstream node is allowed to send multicast packets downstream.

 Each switch along the multicast delivery path has stored information about
how to deal with a multicast packet (copy, forward or sink) and about the

38 Chapter 2. NoC Network Architectures

connection status. The copy means that the multicast packet has to be for-
warded besides being locally sunk. The record of a multicast connection in-
cludes {MultilD, GroupType, Sadr, VCID, VCID downstream, Output PC,
Next member addr.}, where MultilD is the multicast group identity num-
ber, which is unigque for each multicast group; GroupType is the type of the
multicast group which informs the switches whether the multicast group re-
quires reserving a lane or not; Sadr is the group master address; VCID is
the identity number of the lane that the multicast packets use in the current
switch; VCID downstream is the identity number of the lane allocated in
the next downstream switch; OutputPC is the output physical channel over
which the multicast packets are to be switched; Next member address is the
address of the next member in the multicast group.

During the setup phase, multicasting can be aware of QoS in the sense that a
multicast group may request to reserve a lane. The GroupType indicates if the
group reserves a lane or not. To speed up multicasting, multicast packets enjoy
higher priority than unicast packets for link bandwidth arbitration. After a con-
nection is established, a multicast is realized by sending a single copy of multi-
cast packets to multicast group members along the pre-established path. Multicast
packets carry multilD in their headers. This results in low packet overhead and
efficient use of link bandwidth. The drawback is the setup and release overhead.

The multicasting protocol is designed seamlessly with the unicasting protocol.
The unicast packet format is extended to include different types of packets. In
the implementation, the controller of the unicast switch is enriched to identify and
act according to the different packet types. The data path of the switch remains
the same. In this way, the resulting wormhole switch supports both unicast and
multicast. The network allows mixed unicast and multicast traffic.

2.4 TDM Virtual-Circuit Configuration

This section summarizes the research in Paper 4.

2.4.1 Problem Description

A Virtual Circuit (VC)® is a set of pre-allocated resources to enable performance
guarantees. Since the pre-allocation involves a setup phase, a VC is connection-
oriented. A TDM (Time-Division Multiplexing) VC [34, 81] is a VVC that shares

5In Sections 2.4 and 2.5, we use the shorthand VVC for Virtual Circuit.

2.4. TDM Virtual-Circuit Configuration 39

buffers and link bandwidth in a time-division fashion. Each node along the VC’s
path is equipped with a time-sliced routing table which reserves time slots for in-
put packets to use output links. The routing table partitions link bandwidth and
avoids the simultaneous use of shared links. A VC is simplex. In general, it may
comprise multiple source and destination nodes (multi-node). As long as a VC is
established, packets delivered on it, called VC packets, encounter no contention
and thus have guarantees in latency and bandwidth. Unlike connection-less Best-
Effort (BE) packet delivery that starts as soon as possible, VC packet delivery can
not start until the VVC is successfully set up. Therefore, VC configuration is an in-
dispensable process. Moreover, well-planned VVC configurations can make a better
use of network resources and achieve better performance.

ng Mol nigF—tai2

| Vs - | v : {n1,ne, N11}, by

) U1 ~—g U2:{n2,ng,n11}, bws

7 8| U3 {n47n67n93n1}7bw3

how?

Configurable

BE traffic

U2
[y }—{nb s} 0]

Figure 2.11. The virtual-circuit configuration problem

Figure 2.11 illustrates the multi-node VC configuration problem. It shows a
partial mesh network and a specification of three VCs, vy, vo and vg, to be con-
figured in the network. The network also delivers BE traffic. Each VC comprises
multiple source and destination nodes and is associated with a bandwidth require-
ment. Configuring VCs involves (1) path selection: This has to explore the network
path diversity. It turns out that there exists a huge design space to explore. Sup-
pose that the size of a VC specification set is m, each VC has p alternative paths,
we have p™ solution possibilities; (2) slot allocation: Since VC packets can not
contend with each other, VCs must be configured so that an output link of a switch
is allocated to one VC per slot. Both steps together must ensure that VCs are set
up free from contention and allocated with sufficient slots. The network must be
deadlock-free and livelock-free.

2.4.2 Logical-Network-oriented VC Configuration
A. TDM virtual circuits

Figure 2.12 shows two VCs, v1 and vy, and the respective routing tables for the
switches. An output link is associated with a buffer or register. v, passes switches

40 Chapter 2. NoC Network Architectures

t inoout (v) A

t in out (V)

2k+1S N vg [bg | SW6
|
I
t in out (V) t in out (V) 2k W E v :
2k W E v 2k+1W E v 2k+1S E v |
I
SW1 SWo SW3 E‘]b 7 SWy
v
Bt o 1} - A Tt
b1 bg l bg b4
|
([) t in out (V)
|
N sw 2k W N vg
, Cabs ° AL W E Uy
W= t in out(v) | —_—
2k S N v2 :
S T
|

Figure 2.12. TDM virtual circuits

swi, swp, sws and swy through {b; — by — bz — by}; vy passes switches sws,
sws, swy and swg through {b5 — bs — b, — bg}. v1 and v, only overlap in buffer
bs, i.e., v1 Nwy = {bs}. A routing table entry (¢, in, out) is equivalent to a routing
function R(¢,in) = out, where t is time slot, in an input link, and out an output
link. For example, (2k, W, E) in sw; means that swy reserves its E (East) output
link at slots 2k (k € N) for its W (West) inport (R(2k, W) = E). As can also be
observed, sws configures its even slots 2k for v; and its odd slots 2k + 1 for vs.
As vy and v interleavely use the shared buffer b3 and its associated output link, vy
and vy do not conflict.

B. Using logical networks to avoid conflict

We draw a simplified picture of Figure 2.12 in Figure 2.13, where a bubble rep-
resents a buffer. VC packets on vy and v9 are fired once every two cycles. Their
bandwidth is bw; = bwy = 1/2 packets/cycle. Suppose that both \VVCs start admit-
ting packets at slot ¢ = 0. vy packets visit the shared buffer b3 at even slots with
an initial latency of two slots; vy packets visit b3 at odd slots with an initial latency
of one slot. This also means that, at even slots, v; packets hold buffers b; and b3
while v, packets hold buffers b5 and b/;; At odd slots, v; packets hold buffers b,
and b4 while v, packets hold buffers b3 and bg. Thus vy and vo never conflict with
each other. Figure 2.13 shows a snapshot of VC packets at even slots.

From the local perspective of buffer b3, the alternate use of this shared buffer by
vy and vy virtually partitions its time slots into two disjoint sets, the odd set and the
even set. The two sets can be regularly mapped to the slot sets of other buffers on

2.4. TDM Virtual-Circuit Configuration 41

A
@ ﬁ\:packet
U2 U1 V20102 U1 be | : time slot
AT
|
012 Sb;\S\\G\ @b4’
V1 \\\\ﬁ; :
o)== -
by by | b3 by
(I @) (O A
01234 . 01234
by 102 bs

Figure 2.13. Using logical networks to avoid conflict

(b17t) (b2at) (b37t) (b5’t)

0 — 0. 0 0 -0
1 - 1 1 1 1
2 - 2. 2 2 -2
3 - 3 3. 3 3
4 4 4 T4 4
5 - 5 S5 5B
6 - 6 \6/4 6 ﬁ\ 6
! vy on the even LN ¢ on the odd LN

Figure 2.14. The view of logical networks

a VC in an unambiguous way. The reason is that, due to the synchronous network
operation and contention-free VVC-packet transmission, a VC packet advances one
step per slot and never stalls, thus a packet visiting b; at even slots will visit b,
at odd slots, visit b3 at even slots, and so on. Therefore the partitioned slots are
networked, as illustrated in Figure 2.14. We can view that v; and vs stay in the
same physical network but in different logical networks. We define a logical net-
work (LN) as a composition of associated sets of time slots in a set of buffers of
a VC with respect to a reference buffer. We call them LNs because the logically
networked slots comprise disjoint networks over time. The overlapping of v; and

42 Chapter 2. NoC Network Architectures

vg results in two LNSs, the even and odd LNSs; b5 is the reference buffer. If v; and
vo subscribe to different LNs, they are conflict-free. In the example, v1 subscribes
to the even LN and v, to the odd LN.

C. Formal conflit-free conditions

The logical-network concept generalizes the concepts of admission classes [16]
and temporally disjoint networks [81]. In Paper 4, we have given formal definitions
on the VC and LN. Formally, we have addressed the key questions for the LN-
oriented VC configuration. Suppose that v; and v9 are two overlapping VCs,

e The maximum number 7" of LNs, which both VCs can subscribe to without
conflict, equals to GCD(D;, Dy), the Greatest Common Divisor (GCD) of
their admission cycles Dy and D,. The admission cycle D of a VC v is
the length (in number of time slots) of its packet-admission pattern. The
bandwidth that a LN possesses equals 1/7" packets/cycle.

» Assigning both VVCs to different logical networks is the sufficient and neces-
sary condition to avoid conflict between them.

« If they have multiple shared buffers, these buffers must satisfy reference con-
sistency in order to be free from conflict. If so, any of the shared buffers can
be used as the reference buffer to construct LNs. Two shared buffers ; and
b are termed consistent if it is true that “v; and vy packets do not conflict in
buffer b,” if and only if “v; and vy packets do not conflict in buffer b,”. The
sufficient and necessary condition for them to be consistent is that the dis-
tances of b, and b, along the two VCs, denoted db;bQ (v1) and dbsz (v2), re-
spectively, satisfy d, ; (v1) —d, 5, (v2) = KT, k € Z. Furthermore, instead
of pair-wise checking, the reference consistency can be linearly checked.

D. The VC configuration method

We have used the theorems to guide the construction of VCs. We use a back-
tracking algorithm to constructively search the solution space while exploring the
path diversity. The algorithm is a recursive function performing a depth-first search.
The solution space in a tree structure is generated while the search is conducted.
The backtracking algorithm trades runtime for memory consumption. At any time
during the search, only the route from the start node to the current expansion node
is saved. As a result, the memory requirement of the algorithm is O(m), where
m is the number of VCs. This is important since the solution space organization

2.5. Future Work 43

needs excessive memory if stored in its entirety. Whenever two VCs overlap, the
assignment of LNs to VCs is performed. If they can be assigned to two different
LNs with sufficient bandwidth, the assignment is done successfully. Otherwise, the
assignment fails. Other path alternatives have to be considered. This VC-to-LN as-
signment serves as a bounding function by which, if it fails, the algorithm prunes
the current expansion node’s subtrees, thus making the search efficient.

With a feasible solution, for each VC v; (1 < ¢ < m) with a normalized band-
width requirement bw;, our VC configuration program returns (E,Dijffi,Ri),
where P, is the sequence of buffers visited by v;, representing its delivery path;
D; is the admission cycle by which v; repeats its packet- |nJect|0n pattern; A; is the
allocated slot vector whose size | 4;| is the number of slots in A4;, and VA;; € A;
(1 < j < |A), Aij € [0,D;) and |4;| € (0, D;]; R; is the reference buffer for
which the time slots are referred to. The LN(s) that v; subscribes to is reflected in
A; explicitly, or implicitly if v; uses only a portion of bandwidth in the allocated
LN(s). In addition, they satisfy the bandwidth constraint:

|Ail

D;

As an example, for the two VCs, v1 and v, in Figure 2.13, D1 = Dy = 2.

The number 7' of logical networks is GC'D(2,2) = 2. The result of configuring

vy IS (< b1, bo,b3,b4 >,2,{0},bs3), which is equivalent to (< by, ba,b3,by >

,2,{0},b1). This means that v; packets are fired from b; at even slots, once every

two cycles. The result of configuring vg is (< bs, bs, b, bs >, 2, {1}, bs), which is

equivalent to (< bs, bs, bly, bg >,2,{0}, bs). This means that v, packets are fired
from b5 at even slots, once every two cycles.

> bw;

2.5 Future Work

NoC communication architectures need to offer various services with different
guarantees and efficient support for different communication patterns such as mul-
ticast, peers and client-server, to provide robust and reliable communication, to
enable re-configuration, and to reduce area and power budget. In the future, our
research may be complemented along the following threads:

* Contract-oriented virtual-circuit configuration: While configuring virtual-
circuits (VCs), the network can satisfy their requirements in two ways. One
is to meet their demand on its own. The other is to eventually generate
contracts through possible negotiation, one for each VC. According to the

44

Chapter 2. NoC Network Architectures

VCs VCs

¢ ¢

Network Traffic Network

. : e Network services <— ’)
configuration injection configuration

Network services <—

!
| T LN

a) non—contract b) contract-oriented

Figure 2.15. Virtual-circuit configuration approaches

contracts, the network nodes configure slot tables. Moreover, VC traffic
is injected obligating to the contracts. We illustrate the two approaches in
Figure 2.15. Figure 2.15a is non-contract oriented while Figure 2.15b is
contract-oriented. As we can see, there is an additional feedback loop intro-
duced in the contract-oriented approach. This loop defines the obligation of
VCs in terms of traffic injection pattern. In this way, both the network and
VCs must fulfill their obligations. Our VVC configuration approach generates
(]3, D, /1 R) for each VC. This in fact constitutes a contract. The network
configures slot tables along the VVC delivery path using the contracts, and
the VCs regularly launch packets using the allocated slots. We expect that a
contract-oriented method can facilitate predictable IP integration and the for-
mal validation of QoS guarantees in comparison with a noncontract-oriented
one. These benefits as stated have not yet been substantiated.

» Reconfigurable QoS network architectures. SoC applications are becom-
ing extremely functionally rich. For example, a personal handheld set does
telephoning, multimedia processing, gaming, and may execute diverse web-
based utilities. A network designed for such systems must be reconfigurable
because different use cases require different configurations. Satisfying all
use cases concurrently may over-design the network, leading to unaccept-
able cost. To have a dynamically re-configurable communication platform
is most cost- and power-efficient since it allows us to allocate and use re-
sources only if it is necessary. The challenge is not to sacrifice performance,
efficiency and predictability when allowing adaptivity. Efficient protocols,
micro-architectures and methods are in a great need to support network re-
configurability. Error-resilient and self-healing mechanisms can be further
incorporated to provide fault tolerance and robustness to cope with the nano-
regime uncertainties.

Chapter 3

NoC Network Performance
Analysis

This chapter summarizes our simulation-based and algorithm-based NoC perfor-
mance analysis [Paper 5, 6, 7]. The simulation-based analysis [Paper 5, 6] is per-
formed within the Nostrum Network-on-chip Simulation Environment (NNSE).
The algorithm-based approach addresses the feasibility test of delivering real-time
messages in wormhole-switched networks [Paper 7].

3.1 Introduction

3.1.1 Performance Analysis for On-Chip Networks
A. On-chip network performance analysis

Network-on-chip provides a structured communication platform for complex SoC
integration. However, it aggravates the complexity of on-chip communication de-
sign. From the network perspective, there exists a huge design space to explore at
the network, link and physical layers. In the network layer, we need to investigate
topology, switching, routing and flow control. In the link layer, we can examine
the impact of link capacity and link-level flow control schemes on performance. In
the physical layer, we could inspect wiring, signaling, and robustness issues. Each
of the design considerations (parameters) also has a number of options to consider.
From the application perspective, the network should not only be customizable but
also be scalable. To design an efficient and extensible on-chip network that suits
a specific application or an application domain, performance analysis is a crucial

45

46 Chapter 3. NoC Network Performance Analysis

and heavy task. The impact of the design parameters at the different layers and
the performance-cost tradeoffs among these parameters must be well-understood.
The customization on optimality and extensibility can sometimes be in conflict
with each other. For instance, a customized irregular topology may be optimal
but not easy to scale. In addition, the analysis task is very much complicated be-
cause of the un-availability of domain-specific traffic models. Due to the separation
between computation and communication, a communication platform may be de-
signed in parallel with the design of computation. The concurrent development
speeds up time-to-market, but leaves the development of the communication plat-
form without sufficiently relevant traffic knowledge. Therefore we must be able
to evaluate network architectures and analyze their communication performance
with various communication patterns extensively so as to make the right design
decisions and trade-offs. Once a network is constructed in hardware, it is diffi-
cult, time-consuming, and expensive to make changes if performance problems are
encountered.

Design decisions include both architecture-level decisions such as topology,
switching, and routing algorithm, and application-level decisions such as task-to-
node mapping, task scheduling and synchronization etc. While evaluating net-
work architectures and analyzing their performance, we can embed design de-
cisions in experiments during the evaluation and analysis process. In turn, this
helps to seek for optimal network and application constructions. Making design
decisions is likely to be an iterative process. The feedback information in such
a process includes functional and nonfunctional measures. Functional criteria are
typically bandwidth, latency, jitter, and reliability, which can be broadly classified
into quality-related metrics. Nonfunctional criteria are network utilization, area
and power consumption, which are all cost-related.

B. Network performance analysis methods

We may classify network performance analysis methods (before prototyping and
implementation) into three categories: simulation-based, algorithm-based and ma-
thematics-based. Below, we give a brief account on them to the extent that is ade-
quate for the introduction.

The simulation-based approach builds network and traffic models and then the
network operation is simulated by loading the traffic into the network. The network
models can be constructed in detail or in an abstract way. For example, a switch
model can model all its functional components such as buffers, crosshar and control
units in detail. Alternatively, a switch can only model the packet shuffling behav-
ior without modeling each component. A switch may model the internal pipeline

3.1. Introduction 47

stages, leading to a multiple-cycle model. Or it can be just a single-cycle model in
which packet switching completes in one cycle. More abstractly, a network may
be modeled without building detailed switch models. But the network behavior
such as routing and arbitration is modeled so that the net effect of packet delivery
such as delay and jitter is reflected in the results. In a simulation-based approach,
both synthetic and realistic traffic models can be applied. Furthermore, it allows
us to perform system-wide simulation where the interaction between the network
and traffic sources/sinks may be captured and the performance-cost tradeoff is ex-
amined [103, 114]. The evaluation of the network performance is conducted after
simulation statistics are collected. The simulation speed can be different depending
on the modeling details [78].

The algorithm-based approach makes assumptions on network communica-
tion models. In the communication model, the network delivery characteristics
and switch arbitration behavior are captured. Additional models may be created
to reflect network contention. The network behavior can thus be approximated.
Based on the models, an algorithm is then developed to conduct the performance
evaluation without resorting to detailed simulation. An algorithm-based approach
usually assumes that traffic has certain properties, for example, periodicity and
independence. Examples using the algorithm-based approach can be found in
[7, 40, 55, 69].

The mathematics-based approach builds mathematical models for network and
traffic. The performance figures are calculated through formal derivation. For in-
stance, two basic analytic tools for network performance evaluation are queuing
theory and probability theory [28]. Queuing theory [36] is useful for analyzing a
network in which packets spend much of their time waiting in queues. Probability
theory is more useful in analyzing networks in which most contention time is due
to blocking rather than queuing. Another example is the use of the network calcu-
lus [22, 23] to compute the end-to-end delivery bounds. The mathematics-based
approach is most efficient but limited in capability. It can model many aspects of a
network, but there are some situations that are simply too complex to express under
the mathematical models. Besides, it often simplifies the real situations by making
a number of approximations that may affect the accuracy of results.

The performance analysis methods, as described above, are not isolated. They
can be used to validate against each other. To validate a model, we need to compare
its results against known good data at a representative set of operating points and
network configurations. They may be composed to take the advantages of each
method. For instance, simulation and formal methods may be combined to speed
up the simulation-based performance analysis [57].

48

Chapter 3. NoC Network Performance Analysis

C. A comparison of network performance analysis methods

Simulation Algorithm Mathematics
Com. model Detailed/Abstracted Simplified Accurate/Simplified
Evaluation Cycle-true/Behavior sim. | Run algorithms | Formal derivation
Execution time Slow/Medium Medium Fast
Accuracy High/Medium Medium High/Medium
Capability High Low Medium

Table 3.1. Network performance analysis methods

All the performance analysis methods require building network and traffic
models. They mainly differ in modeling details, efficiency, quality-of-result (accu-
racy) and capability. We compare the three methods in Table 3.1. The simulation-
based method can offer the highest accuracy but may be very time-consuming.
Each simulation run can take considerable time and evaluates only a single net-
work configuration, traffic pattern, and load point. It is difficult, if not impossible,
to cover all the system states. Depending on the details simulated, runtime and ac-
curacy trade off with each other. However, simulation, in contrast to emulation and
implementation, is flexible and cheap. It can also model complex network designs
for which mathematical or other analytical models are difficult to build. A simula-
tion tool usually enables to explore the architectural design space and assess design
quality regarding performance, cost, power and reliability etc. The algorithm-based
scheme does not run network simulation, but the network behavior is captured in an
algorithm. It is generally faster than simulation-based schemes, but only approxi-
mates the simulated results. The mathematical analysis [2, 35] is the most efficient
one. It provides approximate performance numbers with a minimum amount of
effort and gives insight into how different factors affect performance. It also al-
lows an entire family of networks with varying parameters and configuration to be
evaluated at once by deriving a set of equations that predict the performance of the
entire family. The accuracy of results depends on the accuracy of the mathematical
models for the traffic and network. It can be rough but gives an initial and quick
estimation. A performance bound may be also tight enough.

!Note that the qualitative assessments on run-time, accuracy and capability emphasize the differ-
ences between the methods. They are relative, and should not be considered absolute.

3.1. Introduction 49

As simulation is most powerful, once it is verified, it is typically used to vali-
date the algorithm-based and formalism-based approaches. In the next subsection,
we outline current practices of NoC simulation.

3.1.2 Practices of NoC Simulation

NoC researchers have used general-purpose network simulators and NoC-specific
simulators to simulate the network behavior. OPNET is a commercial network sim-
ulator used in [15, 133]. It provides a tool for hierarchical modeling and includes
processes, network topology description and supports different traffic scenarios.
However, to simulate an on-chip network, it has to be adapted by explicitly mod-
eling synchronous operations and distribution [133]. OMNET is an open-source
C++-based network simulation engine. It is used in [89] to validate a network con-
tention model proposed in [69]. As with OPNET, additional modules are needed
to model synchronous network operations in OMNET. Semla [125, 126] is a dedi-
cated NoC simulator written in SystemC [20]. It implements five layers of the OSI
seven-layer model (without the presentation and session layers), and is equipped
with transaction-level primitives to communicate messages between application
processes. The SystemC kernel provides the concurrent and synchronous opera-
tion semantics, thus a SystemC-based network simulator can take this advantage.
In [8], a VHDL-based RTL model is created for evaluating power and performance
of NoC architectures. It can model dynamic and leakage power at the system-
level. The Orion [131] performance-power simulator models only the dynamic
power consumption.

OCCN (On Chip Communication Network) [21] models on-chip network com-
munication in SystemC using high-level modeling concepts such as transactions
and channels. In [77], an on-chip communication network is treated as a com-
munication processor to reflect servicing demands. The network is modeled us-
ing allocators, schedulers and synchronizers. The allocator decides the resource
requirements such as bandwidth and buffers along a message’s path while mini-
mizing resource conflict. The scheduler executes the message transfer accordingly,
minimizing the resource occupation. The synchronizer performs synchronization
according to dependencies among messages while allowing concurrency. In [32],
network communication is defined as a multiport blackbox communication struc-
ture. A message can be transmitted from an arbitrary port to another but the actual
implementation of the NoC may not be considered.

Next, we present our NoC simulation tool NNSE in Section 3.2. In Section 3.3,
we present our algorithm-based network performance analysis, focusing on the fea-

50 Chapter 3. NoC Network Performance Analysis

sibility test of delivering real-time messages, i.e., whether their timing constraints
can be met or not.

3.2 NNSE: Nostrum NoC Simulation Environment

3.2.1 Overview

NNSE stands for Nostrum NoC Simulation Environment in which Nostrum is the
name of our NoC concept [81]. NNSE is aimed to be a tool for full NoC sys-
tem simulation so that designers can use it to explore the architecture-level and
application-level design space. Currently, it is capable of

« constructing network-based communication platforms [125],
* generating synthetic and semi-synthetic Traffic Patterns (TPs) [68],
 simulating the communication behavior with the various TPs [76], and

» mapping application tasks onto the platform [71].

The first three functions have been automated and the last function is so far
a manual step. The automation is achieved through parameterizing network and
synthetic traffic configurations. One can configure these parameters, recompile
the program if the parameters are compile-time, and invoke simulations with the
specified network and traffic configurations. This procedure can be conducted in a
Graphical User Interface (GUI). With the GUI, the tool allows us to easily explore
different network architectures and different traffic settings. Network architectures
can thus be efficiently and extensively evaluated. In addition to using synthetic
traffic, the manual application mapping creates realistic traffic scenarios in the
communication platform. The evaluation may be iterative by applying the con-
figured or created traffic on the configured networks, as illustrated in Figure 3.1.
The evaluation criteria can be performance, power and cost. The current version
evaluates only the network performance in terms of packet latency, link utilization
and throughput. Since it simulates the network behavior at the flit-level cycle-by-
cycle, the performance estimates are accurate.

NNSE logically comprises a NoC simulation kernel [124, 125] wrapped with
a GUI. The kernel is developed in SystemC and the GUI written in Python. Fol-
lowing the 1SO’s OSI seven-layer model [135], the simulation kernel called Semla
(Simulation EnviornMent for Layered Architecture) implements five of the seven
layers except for the representation and session layers. The simulation tool presently

3.2. NNSE: Nostrum NoC Smulation Environment 51

TP, TP,) -—--- TP,

Network 1 Network 2 | - - - - - Network n

Figure 3.1. Network evaluation

supports the configuration of the network and application layers in the GUI. The
configuration of the application layer refers to the traffic configuration. In the GUI,
all the network and traffic configurations can be stored and thus reusable. To facil-
itate data exchange, they are stored as eXtensible Markup Language (XML) files.
The simulation results can be shown graphically or in a text format.

3.2.2 The Simulation Kernel

The simulation kernel Semla [124, 125] implements the five communication layers,
namely, the physical layer (PL), the data link layer (LL), the network layer (NL),
the transport layer (TL) and the application layer (AL). The upper three layers are
shown in Figure 3.2, where TG/S stands for Traffic Generator/Sink, and Glue is
the TL component which does packetization/packet-assembly, message queuing,
multiplexing, de-multiplexing and so on.

AL Te/S TG/ TG/
TL interface @ messages @ Teis | oo @
TL Glue Glue Glue —v(
Platform
packets
NL Network i

Figure 3.2. The communication layers in Semla

The transport layer provides transaction-level communication primitives as an
interface to enable communication via channels between application processes. A
channel, similar to a SystemC channel [20], is a transaction-level modeling en-
tity which allows simplex communication from a source process to a destination

52 Chapter 3. NoC Network Performance Analysis

process. In Semla, a compact set of message passing primitives for using the best-
effort service is defined and implemented:

* int open_channel(int src_pid, int dst_pid): it opens a simplex channel from a
source process src_pid to a destination process dst_pid. The method returns
a positive integer as a unique channel identity number cid upon successfully
opening the channel. Otherwise, it returns a negative integer for various
reasons of failure, such as invalid source and destination processes. The
current implementation opens channels statically during compile time and
the opened channels are never closed through simulation.

 bool nb_write(int cid, void msg): it writes msg to channel cid. The size of
messages is finite. It returns the status of the write. The write is nonblocking.

* bool nb_read(int cid, void *msg): it reads channel cid and writes the received
protocol data unit to the address starting at msg. It returns the status of the
read. The read is nonblocking.

Application tasks use the set of communication primitives to communicate
messages with each other. While mapping tasks onto the NoC platform, the net-
work topology is visible. The communication part of the tasks must be written in or
adapted to the communication primitives. The interaction between the tasks creates
realistic workload in the platform, and the system behavior can be simulated.

Thanks to the layering, one can design and implement different structures and
protocols in a layer without modifying other layers as long as one complies with
the interfaces. For instance, Semla originally developed the network layer for de-
flection routing. In order to perform experiments on flit-admission and flit-ejection
schemes in Chapter 2, the network layer for wormhole switching was developed
and integrated into the simulator. The physical layer was skipped because the in-
terest was on the flit-level not the phit-level activities. While the compilation and
simulation were invoked, only the network layer entity was replaced while the up-
per layers remained the same.

3.2.3 Network Configuration

We parameterize a network according to topology, switching mode and routing al-
gorithm. The network configuration is thus straightforward, as illustrated by the
tree in Figure 3.3. The topology is for a 2D regular structure, which can be di-
mensioned along the number of nodes on the X axis, the number of nodes on the
Y axis. The structure may be chosen from one of the options (mesh, torus, tree,

3.2. NNSE: Nostrum NoC Smulation Environment 53

Network e and
(name, size, interface) o or
Topology Switching Routing

(num_nodes_X, num_nodes_Y, (mode: deflection | wormhole) (routing algorithm)
structure (mesh | torus | tree | ring),

connection (simplex | duplex),
link bandwidth)

deflection_routing wormhole_routing
(deflection policy) (VC number, VC depth)

Figure 3.3. Network configuration tree

ring). The link connection may be simplex or duplex with different data width. The
network parameters may be further elaborated resulting in the next level in the tree
since each of them has a number of choices on its own. As can be seen, with the
deflection scheme, different deflection polices may be chosen; with the wormhole
scheme, the number and depth of virtual channels (VCs) may be specified.

3.2.4 Traffic Configuration

This subsection summarizes the research in Paper 5.

A. Traffic configuration approaches

Network evaluation typically employs application-driven and synthetic traffic [28].
Application-driven traffic models the network and its clients simultaneously. This
is based on full system simulation and communication traces. Full system sim-
ulation requires building the client models. Application-driven traffic can be too
cumbersome to develop and control. In NNSE, application-driven traffic is created
by mapping application tasks onto the communication platform. Synthetic traffic
captures the prominent aspects of the application-driven workload but can also be
easily designed and manipulated. Because of this, synthetic traffic is widely used
for network evaluation.

In NNSE, two types of traffic can be configured. One is purely synthetic traffic,
the other application-oriented traffic. For synthetic traffic, we proposed a unified
formal expression for both uniform and locality traffic. With this expression, we
can control the locality of traffic distribution by setting locality factors for the traf-
fic. The application-oriented traffic is semi-synthetic, which can be viewed as a

54 Chapter 3. NoC Network Performance Analysis

traffic type between application-driven traffic and synthetic traffic. It statically
defines the spatial distribution of traffic on a per-channel basis according to appli-
cation, and the temporal and size distributions of each channel may be synthetic or
extracted from communication traces.

B. The traffic configuration tree

Traffic can be characterized and constructed via its distributions over three dimen-
sions: spatial distribution, temporal characteristics, and message size specifica-
tion. The spatial distribution defines the communication patterns between sources
and destinations. The temporal characteristics describe the message generation
probability over time. The size specification gives the length of generated mes-
sages. We use a traffic configuration tree to express the elements and their attributes
in Figure 3.4.

Network Traffic e and
Spatial distribution Temporal distribution Size distribution

(channel-by-channel | traffic pattern)(constant rate | random rate | normal rate) (uniform | random | normal)

Channel-by—-channel Traffic pattern
(channel*) (uniform | locality)

constant random normal uniform random normal

(m [l (md) (m [(md)

(src. node, dst. node) uniform locality
(src. node set, dst. node set) (src. node set, dst. node set, locality factors)

Figure 3.4. The traffic configuration tree

By the spatial distribution, traffic is broadly classified into two categories: traf-
fic pattern and channel-by-channel traffic. In a traffic pattern, all the channels
share the same temporal and size parameters. In contrast, channel-by-channel traf-
fic consists of a set of channels, and each channel can define its own temporal and
size parameters. The temporal distribution has a list of candidates such as constant
rate (periodic), random rate, and normal rate etc. The size distribution has a list of
choices such as uniform, random, and normal. As can be observed, these lists are
just examples of possible distributions. Other useful distributions can be integrated
into the tree with their associated parameters. According to the tree, configuring a
traffic pattern is to select a set of parameters on the three axes. Note that the axes
may not be independent. For instance, scale-invariant burstiness traffic and scale-
variant burstiness (self-similar) traffic [100] involve the variation in the time scale

3.2. NNSE: Nostrum NoC Smulation Environment 55

and message size, thus requiring the synergy between the temporal distribution and
the size distribution.

C. Representation of traffic patterns

As shown in Figure 3.4, the traffic patterns consist of uniform and locality traffic.
They can be uniformly expressed in a formal representation.

We first define communication distribution probability D P from node ¢ to node
Jj DP;_.; as the probability of distributing messages from node ¢ to node j while
node 4 sends messages to the network. Suppose, there are N nodes in the network,
Equation 3.1 means that all messages from node 7 are aimed to the N destination
nodes.

N
> DP_ ;=1 (3.1)
j=1

Next, we relate D P to the minimal distance between nodes. Let the shortest
distance between a source node 7 and a destination node j be d, we define com-
munication distribution probability DP;_,; as a relative probability to a common
probability factor P, (0 < P. < 1) in Equation 3.2.

DP_.; = coef(a,d)- P, (3.2)
where coef (a,d) = 1+ %

In the equation, coef is the distribution coefficient and « called locality factor.
Since DP;_,; > 0, « > —(d + 1). Particularly when o = —(d + 1), DP,_.; =
0; when @ = 0, DP,_,; = P.. Besides, when —(d +1) < o < 0, DP,_,;
is proportional to distance d; When o > 0, DP;_,; is inversely proportional to
distance d. In addition, «(d) can be defined for each possible value of distance d.

Using the traffic expression, the locality of traffic distribution can be easily
controlled by setting a(d) for each possible distance value d. For instance, if
a(d) = —(d+ 1), coef(—(d + 1),d) = 0 meaning that no traffic is generated
between sources and destinations if their shortest distance is d; if «(0) = —1 for
d = 0, coef(—1,0) = 0, meaning that no self-loop traffic is created. If we set
“a(d) = 0” for all possible values of d in the network, their distribution coeffi-
cients coef (0,d) = 1. Then for any source node ¢, it has an equal probability to
distribute traffic to any node j. In this case, the traffic distribution is independent of
distance d, meaning that the traffic is uniform. After setting «(d), we can calculate
coef (o, d) and P, using Equations 3.1 and 3.2. Then DP(d) can be derived. An
example of the calculation is given in Paper 5.

56 Chapter 3. NoC Network Performance Analysis

D. Channel-by-channel traffic

For the traffic patterns, we control the traffic generation and locality by setting a lo-
cality factor « for each possible distance d. Since one distance may cover a number
of pairs of source and destination nodes, we avoid specifying the communication
distribution probabilities for each source node to each and every possible desti-
nation node. For channel-by-channel traffic, as the name suggests, we set traffic
parameters for each individual channel. The set of traffic parameters of a channel
is {s_proc,d_proc,T,8}, where s_proc represents the source process, d_proc the
destination process, T its temporal characteristics, and § its message size specifi-
cation. For each channel, we can determine the source node for s_proc and the
destination node for d_proc after the application task graph is mapped onto the
network nodes. The temporal characteristics T and the message size specification
8 can be synthetically configured using the same set of options in the tree or ap-
proximated using analysis or communication traces [68].

Channel-by-channel traffic differs from the traffic patterns mainly in that the
traffic’s spatial pattern is statically built on a per-channel basis according to an ap-
plication task graph. Since the communication pattern in the task graph is captured,
this type of traffic is used to construct application-oriented workloads.

3.2.5 An Evaluation Case Study

As a case study (Paper 6), we have evaluated deflection networks in NNSE [76].
A deflection-routed network (see Section 2.1 of Chapter 2) has three orthogonal
characteristics: topology, routing algorithm and deflection policy. It is crucial to
explore the alternatives of the three aspects since the decisions on these aspects
may be hardwired and may not be dynamically configurable or too costly to permit
dynamic configuration. Therefore identifying the significance of each factor and
evaluating their alternatives play a vital role in the decision-making.

In the evaluation, we have considered 2D regular topologies such as mesh,
torus and Manhattan Street Network, different routing algorithms such as random,
dimension XY, delta XY and minimum deflection, as well as different deflection
policies such as non-priority, weighted priority and straight-through policies [76].
Our results suggest that the performance of a deflection network is more sensitive
to its topology than the other two parameters. It is less sensitive to its routing
algorithm, but a routing algorithm should be minimal. A priority-based deflec-
tion policy that uses global and history-related criterion can achieve both better
average-case and worst-case performance than a non-priority or priority policy that
uses only local and stateless criterion. These findings are important since they can

3.3. Feasihility Analysis of On-Chip Messaging 57

guide designers to make right decisions on the network architecture, for instance,
selecting a routing algorithm or deflection policy which has potentially low cost
and high speed for hardware implementation.

3.3 Feasibility Analysis of On-Chip Messaging

This section summarizes the research in Paper 7.

3.3.1 Problem Description

System spec. ya Process

B

|/ Partitioning & Mapping

NoC arch. @ K Node

[
%

0

Feasibility analysis

Figure 3.5. Feasibility analysis in a NoC design flow

As illustrated in Figure 3.5, NoC design starts with a system specification
which can be expressed as a set of communicating tasks. The second step is to
partition and map these tasks onto the resources of a NoC. With a mapping, ap-
plication tasks running on these resources load the network with messages, and

58 Chapter 3. NoC Network Performance Analysis

impose timing constraints for delivering messages. The feasibility analysis is per-
formed on the resulting NoC instance. Feasibility analysis could, on its own, cover
a wide range of evaluation criteria such as performance, power and cost. In our
context, we concentrate on the timely delivery of messages, which is essential for
performance and predictability.

Following [110], we distinguish real-time and nonreal-time messages in on-
chip networks. Messages with a deterministic performance bound, which must
be delivered predictably even under worst case scenarios, are real-time (RT) mes-
sages. Messages with a probabilistic bound, which ask for an average response
time, are nonreal-time messages. Our focus in the thesis is on the feasibility anal-
ysis of delivering RT messages in a wormhole-switched network. We follow the
feasibility definition in [7]: Given a set of already scheduled messages, a message
istermed feasible if its own timing property is satisfied irrespective of any arrival
orders of the messagesin the set, and it does not prevent any messagein the set from
meeting itstiming property. We resort to an algorithm-based instead of simulation-
based approach in the analysis to avoid cycle-by-cycle simulations. Since it is the
network contention that makes the message delivery non-deterministic, we formu-
late a contention tree model that captures direct and indirect network contentions
and reflects concurrency in link usage. Based on this model, we investigate mes-
sage scheduling to estimate the worst-case performance for RT messages and de-
velop an algorithm to conduct the feasibility analysis. The analysis returns the pass
ratio, i.e., the percentage of feasible messages, and the network utilization of the
feasible messages.

In the following, we first describe the contention tree model, message schedul-
ing on a contention tree, and then the feasibility analysis flow.

3.3.2 The Network Contention Model
A. The real-time communication model

Wormhole switching divides a message into a number of flits for transmission?.
During the delivery, it manages two types of resources, the lanes and the link band-
width. Lanes are flit buffers organized into several independent FIFOs instead of a
single FIFO. Lane allocation is made at the message level while link bandwidth is
assigned at the flit level. In conventional wormhole switches, the shared lanes are
arbitrated on First-Come-First-Serve (FCFS), and the shared link bandwidth are
multiplexed by the lanes. Messages are not associated with a priority and they are
equally treated. This model is fair and produces average-case performance results.

2The effect of packetization is not considered here.

3.3. Feasihility Analysis of On-Chip Messaging 59

It is suitable to deliver nonreal-time messages, which do not require guarantees.
But, it can not directly support real-time messages because there is no promise
that messages are delivered before deadlines. In order to enable guarantees, real-
time messages must be served with other disciplines, for instance, priority-based
arbitrations [62].

We assume a conventional wormhole switch architecture and a priority-based
delivery model for RT messages. Special RT communication services generally
require special architectural support which may potentially complicate the switch
design. All messages are globally prioritized, and priority ties are resolved ran-
domly. This model arbitrates shared lanes and link bandwidth on priority. The
priority, which may be assigned according to rate, deadline or laxity [40, 62], takes
a small number of flits. With this RT communication model, the worst-case latency
T of delivering a message of L flits is given by :

T"=(L+ Ly)/B"+HR+7=T+7 (3.3)

where B"? is the link bandwidth allocated to the RT message along its route; H is
the number of hops from the source node to the destination node; R is the routing
delay per hop; L,,; is the number of flits used to express the message priority. The
routing delay R is assumed to be the same for head flits and body/tail flits. The
first term counts for the transmission time of all the message flits; the sum of the
first two terms is the non-contentional or base latency 7', which is the lower bound
on T; the last term 7 is the worst-case blocking time due to network contention.

B. Network contention

To estimate the worst-case latency 77 of an RT message M, we have to estimate
the worst-case blocking time 7. To this end, we first determine all the contentions
the message may meet.

In flit-buffered networks, the flits of a message M; are pipelined along its rout-
ing path. The message advances when it receives the link bandwidth along the
path. The message may directly and/or indirectly contend with other messages for
shared lanes and link bandwidth. M; has a higher priority set .S; that consists of a
direct contention set Sp, and an indirect contention set Sy,, S; = Sp, + S1,. Sp,
includes the higher priority messages that share at least one link with M;. Mes-
sages in Sp, directly contend with AZ;. S7, includes the higher priority messages
that do not share a link with M;, but share at least one link with a message in Sp,,
and S;; N Sp, = (. Messages in S, indirectly contend with AZ;. As an example,
Fig. 3.6a shows a fraction of a network with four nodes and four messages. The
messages My, M-, M3 and My pass the links AB, BC, AB—BC—CD, and CD,

60 Chapter 3. NoC Network Performance Analysis

respectively. A lower message index denotes a higher priority. The message M,
has the highest priority, thus S; = (). For the message Mo, it directly contends with
M3, but it has a higher priority, thus So = (). The message M3 has a higher priority
message set S3 = Sp, = { M1, Ma}, Sy, = 0. For the message My, Sp, = {Ms}
and Sy, = {M,, My} because M, or Ms may block M5 which in turn blocks M.

E
Ms M3 M, B B
A B C D i
i LB e, @
@) Eas - (b)

Figure 3.6. Network contention and contention tree

C. The contention tree

To capture both direct and indirect contentions and to reflect concurrent scheduling
on disjoint links, we have formulated a contention tree model that is defined as a
directed graph G : M x E. A message M; is represented as a node M; in the
tree. Anedge E;;(i < j) directs from node M; to node M, representing the direct
contention between M; and M;. M; is called parent, M; child. Given a set n of
RT messages, after mapping the messages to the target network, we can build a
contention tree with the following three steps:

Step 1. Sort the message set in descending priority sequence with a chosen prior-
ity assignment policy.

Step 2. Determine the routing path for each of the messages.

Step 3. Construct a tree, starting with the highest priority message M+, and then
My...M,. If M; shares at least one link with A/; where i < j < n, an edge
E;; is created between them. Each node in the tree only maintains a list of
its parent nodes.

In a contention tree, a direct contention is represented by a directed edge while
an indirect contention is implied by a walk via parent node(s). A walk is a path
following directed edges in the tree. The contention tree for Fig. 3.6a is shown in
Fig. 3.6b, where the three direct contentions are represented by the three edges F3,
FE»3 and E34, and the two indirect contentions for My are implied by the two walks
Fi3 — FEs34 and Eog — FE3y via My’s parent node Ms. Since determining the

3.3. Feasihility Analysis of On-Chip Messaging 61

routing path is a priori, creating a contention tree is more suitable for deterministic
routing. For adaptive routing, it is difficult to figure out the worst-case routing path.

D. Assumptions and simplifications

The estimation of latency bounds are based on messages’ schedules on links. A
schedule is a timing sequence where a time slot is occupied by a message or left
empty. The latency bound of a message is the earliest possible completion time for
delivery under the worst case. Before introducing schedules of messages, we list
the assumptions, limitations and simplifications as follows:

The messages we consider are periodic and independent. There is no data
dependency among messages so that each message can be periodically fired
or activated, meaning that the messages are sent to the network and start to
compete for shared resources, i.e., buffers and links.

We focus on link contentions. Similarly to [7, 40], we assume that there
is a sufficient number of Virtual Channels (VCs) so that priority inversion
due to VC unavailability does not occur. Priority inversion happens when
a message with a lower priority holds shared resources, leading to blocking
messages with a higher priority. As discussed in [7, 40], this problem can be
alleviated by packetization.

In this communication model, messages are allocated with time slots de-
pending on their priorities and contentions. Whenever there is a contention
for a link, a message with a higher priority will be scheduled first. In addi-
tion, a higher priority message can preempt a lower priority message.

The worst case is assumed to occur when all the messages are fired into the
network at the same time.

The bandwidth of a link is assumed to transmit one flit in one time slot. The
routing delay per hop takes one time slot. We simplify the pipeline latency
on links so that the flits of a message are available to compete all the link
bandwidth along the message’s path simultaneously for the duration of its
communication time. To explain this, we illustrate a message transmission
in Figure 3.7, where M- passes through three hops (A, B, C) and two links
(AB, BC). M, contains four flits (one head h flit, two body b flits and one
tail t flit). It has a base latency of 7 (1 - 3 + 4). If My fires at time instant 0,
by the assumption, it will compete for both links AB and BC from slot 1 to
7, 1.e., for its entire base latency period.

62 Chapter 3. NoC Network Performance Analysis

A 2B l—+{c
O: t=1

i t=2 by h
i t=3 bo b1 h
| t:4 t b2 b]_ h
| t=5 t by |b1
i t=6 t bs
| t=7 t

Figure 3.7. Message contention for links simultaneously

* We assume that a message advances only if it simultaneously receives all
the link bandwidth along its path. This means that the flits are delivered
either concurrently via the links or blocked in place. As a result, a message
competes for links only for its base latency period. It does not happen that
a flit advances via a link while another flit is blocked in place. As shown in
Figure 3.8, at time slot 3, the head flit h has advanced from node B to C but
the first body flit by is blocked in node A. As a consequence, the pipeline
latency is increased by one slot. According to our assumption, this scenario
in time slot 3 is avoided and thus not considered. Apparently, if flits are
individually routed via links, the contention period may become larger than
its base latency and unpredictable.

E. Scheduling on the contention tree: an example

Table 3.2 shows an example of message parameters for Fig. 3.6, where the priority
is assigned by rate, and the deadline D equals period p. The worst-case schedules
for the three links are illustrated separately in Fig. 3.9a. Initially, all messages are
fired. M is allocated 7 slots on link AB. M5 is allocated 3 slots on link BC. M3
is blocked by M7 and Ms. My is blocked by Ms. After My and My complete
transmission, Ms is allocated 3 slots concurrently on link AB, BC and CD. At time
slot 10, M, fires again and holds slots [11,17] on link AB, preempting Ms. At
time slot 15, M5 fires the second time and holds slots [16, 18] on link BC. After
My and M5y complete their second transmission, Mz continues its first transmis-
sion by holding slots [19, 20]. After M3 finishes its first delivery, M, is allocated

3.3. Feasihility Analysis of On-Chip Messaging

Figure 3.8. Avoided flit-delivery scenario

My My
A B C

O: t=1

1 B2 b h__
=3 b h _ '

i t=4 bo b1

i t=5 t bs b1

i t=6 t b

| t=7 t

1 t=8

Table 3.2. Message parameters and latency bounds

Message Period p | Deadline D | Base latency T’ Latency bound 7t
M, 10 10 7 7
Mo 15 15 3 3
Ms 30 30 5 20
M, 30 30 8 28

63

slots [21, 28] on link CD. M starts its third round and holds slots [21, 27] on link
AB. Since the four messages have a Least Common Multiple (LCM) period of 30,
the four messages are scheduled in the same way at each LCM period. From the
schedules, we can find that the latency bounds for M, Ms, M3, M4 are 7, 3, 20,
28, respectively. Equivalently, the worst-case blocking times for the four messages
are 0, 0, 15, 20. The latency bounds for the four messages are also listed in Table
3.2. We can see that all the four messages are feasible.
Looking into the schedules, we can observe that

(1) M; and M, are scheduled in parallel. This concurrency is in fact reflected by
the disjoint nodes in the tree. We call two nodes digjoint if no single walk
can pass through both nodes. For instance, M; and Ms in Fig. 3.6b are
disjoint, therefore their schedules do not interfere with each other.

Chapter 3. NoC Network Performance Analysis

inkAB |, My [0 ..%..IM R
0 57 10 15 1320 25 2830 37
Message fires My, Ms My Ml Ml, Ms
link BC Mo Ms |]L[2 7€ My
10 15 120 28 30 37
Message fires "My, M ' My My, M3
link CD Ms g My |
X 10 15 20 28 30 37
Message fires 'Ms, My Ms, My

(a) Link schedules of the messages

]‘/[1| Afl .|..|..A/[l.|..|..].v[.1..|---Unro||3times
0 5 10 15 20 25

AJQ]}/[? L]yj? tir vy Unroll twice
10 15 20 25 30
]
Ms|||||||Ms|||||| 4 Il
15 1820 30 Directly Indirectly
M, M, Contended slots
0 7 10 15 18 20 28 30

(b) Global schedules of the messages

Figure 3.9. Message scheduling

(2) M3 is scheduled on the overlapped empty time slots [8, 10] and [19, 20] left
after scheduling M, and M. This is implied in the tree where M3 has two
parents, M7 and M>. The contended slots [1,7] and [11,18] are occupied
by M, or Ms. A contended slot is a time slot occupied by a higher priority
message when the contention occurs. A contention occurs only when two
competing messages are fired.

(3) My is scheduled only after A3 completes transmission at time 20. The indirect
contentions from My and M, which are reflected via slots [1,7] and [11,18],
propagate via its parent node Ms. For Mg, these slots are directly contended

3.3. Feasihility Analysis of On-Chip Messaging 65

slots. For My, they become indirectly contended slots.

The four message schedules are individually depicted in Fig. 3.9b. If the direc-
tion contention is not distinguished from the indirect contention as the lumped-link
model [7] does, M3 and M, would be considered infeasible since M, would oc-
cupy the slots [8, 10] and [18, 20], leaving only three slots [28, 30] for M3 and Mjy.
If the concurrent use of the two links, AB by A, and BC by M5, was not properly
captured as the blocking-dependency model [55] does, M3 and M, would also be
considered infeasible since Ms would occupy the slots [8, 10] and [18, 20] before
slot 30.

In a contention tree, all levels of indirect contentions propagate via the inter-
mediate node(s). This is pessimistic since many of them are not likely to occur at
the same time. Also, a lower priority message can actually use the link bandwidth
if a competing message with a higher priority is blocked elsewhere.

The validation of the contention-tree model as well as the comparisons with
other proposed contention models are provided in [89].

3.3.3 The Feasibility Test
A. The feasibility test algorithm

Based on the contention tree and priority-based message scheduling, each feasible
message obtains a global schedule. A message schedule is based on its parents’
schedules. If a node has no parent or feasible parent, it is scheduled whenever it
fires, thus it is always feasible. If a node has feasible parent(s), we must first mark
the contended slots as occupied and then schedule the node.

M Mz Erg —~ P2
ArviBls e ==
(a) (b

Figure 3.10. A three-node contention tree

Note that a slot occupied by a higher priority message is not necessarily a con-
tended slot. Consider the contention tree in Figure 3.10 where the three messages
use the parameters in Table 3.2. The message schedules are depicted in Figure
3.11. M, has the highest priority and schedules whenever it fires. Consider the
LCM period for the three messages, which is 30 in this case, M, fires three times
and occupies slots [1, 7], [11, 17] and [21, 27]. M, fires twice at time 0 and 15.

66 Chapter 3. NoC Network Performance Analysis

Ml 1 Mll 11 11 11 Mll 1 11 1 I]I\4I-1I 1 11 1 I]I\4;1I 1

0 5 10 15 20 25 30 37
M2]}4;2 1111]I\4I’2) I N Y Y |

0 7 10 15 1820 30 37
M3 % I]I\4I3I | S Y Y v | %

0 7 10 15 18 30 37

Figure 3.11. Message scheduling and contended slots

Although the slots [10, 15] and [21, 27] are occupied by M4, My does not contend
with Ms during these time slots since Ms is not fired or has already been sched-
uled. The directly contended slots with M are slots [1, 7] and [16, 17], implying
that M5 can not be scheduled on these slots. Hence, M5 schedules on slots [8, 10]
and [18, 20]. M3 fires once at time 0. The contended slots are [1, 7] (indirectly
with M;) and [8, 10] (directly with Ms). Hence, Mj is scheduled on slots [11,
15]. In summary, a slot is regarded as a contended slot only if two conditions are
true: (1) it is occupied by a higher-priority message; (2) competing messages must
fire at the time slot. Particularly, for indirectly contended slots, the intermediate
message(s) must also fire in order to pass the contention downwards; otherwise,
the slots are not contended. As illustrated in Figure 3.11, for M3, slots [11, 15] are
occupied by M, but not contended slots, since M, are not fired during these slots.
Therefore M3 is scheduled on these slots.

The indirect contentions propagate via parent nodes. Disjoint nodes are sched-
uled concurrently. 1f a node M has & feasible parents, M can only be scheduled on
the overlapped empty or free (non-contended) slots of the % parents’ schedules. The
feasibility of a message can be determined by comparing the number N of empty
slots available for scheduling M with its non-contentional or base latency T'. We
distinguish messages with a deadline constraint D or a jitter constraint .J. For a
deadline constrained message, its latency bound 7 must satisfy 7"t < D; For a
jitter constrained message, its latency bound 7 must satisfy D — J < T < D.
For a message M with a base latency 1', we denote that the number of available
slots for scheduling M before its jitter range D — J and before its deadline D
is Ny and Np, respectively. If M is deadline-constrained and 1" < Np, M is
feasible (feasible(1/)=1); otherwise, M is infeasible (feasible(A7)=0). If M is
jitter-constrained and Ny < T < Np, M is feasible; otherwise, M is infeasible.

3.3. Feasihility Analysis of On-Chip Messaging 67

Algorithm 1 Contention-Tree-based Feasibility Test for Real-Time Messages
Input: A sorted set of n messages and a contention tree for the messages;
Output: Feasible(M;) = 1/0,fori =1,2,---n;

1 Find the LCM for the periods of all n messages;
2 Foramessage M;, initially s = 1, do {

3 Feasible(M;) = 0;

4 find M;,’s feasible parent(s) Fp;

5 if Fp=¢
6

7

8

9

fire M; and schedule it to the length of LCM; Feasible(M;) = 1;

else
do {
fire M; once;
10 mark M;’s contended slots as occupied and the rest as empty within
M;’s deadline D;;
11 compute the length N ;; and Np;, which are the overlapped empty slots

on F'p’s schedules within M;’s jitter range D; — J; and deadline D;,
respectively;

12 if (M; is jitter-constrained and Nj; < T; < Np;)
or (M; is deadline-constrained and 7; < Np;), Feasible()/;)=1,;
and schedule M; on these free time slots;

13 else Feasible(M;) = 0; release the scheduled slots for M;;
14 }+ while (M; fires not reaching LCM) and (Feasible(1;) = 1);
15 i=1i+1;

16} while (i <=n);

We formulate this contention-tree-based feasibility test in Algorithm 1. The
input to the algorithm is a sorted set of messages with parameters and constraints,
and a contention tree for these messages. The output is the feasibility for each
of the n messages, either pass (feasible, Feasible(1/;) = 1) or miss (infeasible,
Feasible(M;) = 0). After obtaining the feasible messages, we can further estimate
the link utilization of the feasible messages. Finding the LCM of the messages’
periods is the necessary and sufficient condition in order to terminate the algorithm
since the rest of a feasible schedule can be repeated after the LCM.

B. The feasibility analysis flow

Using the feasibility test, we can efficiently conduct feasibility analysis by explor-
ing the application-level, partitioning/mapping-stage and architecture-level design

68 Chapter 3. NoC Network Performance Analysis

START

Application task graph

Task partitioning

Message characterization

messages

Message priority policy

Topology Message mapping

messages and ?ontentions

Routing algorithm Build contention tree

Feasibility test

Pass ratio and network utilization

Satisfied?

Figure 3.12. A feasibility analysis flow

space. Figure 3.12 shows a feasibility analysis flow. First, we partition the tasks
and then characterize the messages from the application task graph. Then we build
a contention tree. Since the contention tree is affected by several design decisions
such as task partitioning, priority policy, message mapping strategy and the routing
algorithm etc., we can build different contention trees by exploring these possibil-
ities. After creating a contention tree, the feasibility test algorithm can perform
the analysis. The outcome of the test is the pass ratio and network utilization of
feasible messages. These two measures may serve as the criteria to calibrate the
design decisions. Clearly, this procedure is iterative until satisfaction.

3.4. Future Work 69

3.4 Future Work

NNSE has been demonstrated in the University Booth EDA (Electronic Design Au-
tomation) Tool Program of DATE 2005 [73]. After publicity, it has been requested
for research use by a number of NoC research groups in Europe, U.S.A. and Asia.
In the future, we plan to improve it in the following directions:

e Parameterize more layers. Current tunable parameters include topology,
routing, and switching schemes. Each of the parameters may be extended
with more options. These are all network-layer parameters. In NNSE, the
layered structure allows us to orthogonally consider other layers’ parame-
ters. In the physical layer, we can build wire, noise and signaling models
to examine the reliability and robustness issues. We may consider the link
layer parameters such as the link capacity, link-level flow control schemes
etc. The upper layer like the transport layer allows us to investigate buffer
dimensioning and buffer sharing schemes, as well as end-to-end flow control
methods.

 Configure dependent traffic. We have so far configured independent traf-
fic, both synthetic and semi-synthetic. This means that traffic from different
channels is independent from each other. This is easy to control and generate,
but realistic traffic exhibits dependency and correlation. The way to gener-
ate traffic with various dependencies such as data, control, time, causality
etc. is worth investigating. For example, traffic with the requirement of lip-
synchronization shows correlated delivery requirements on video and audio
traffic streams.

» Support Quality-of-Service (QoS): This requires the implementation of QoS
in the communication platform, and accordingly QoS generators and sinks.
Monitoring service may be necessary to collect statistics on whether the per-
formance constraints of a traffic stream have been satisfied or not.

* Integrate application mapping: A tool that only explores communication
performance is not sufficient. System performance is the result of interactive
involvement of both communication and computation. Therefore, supporting
application-mapping onto NoC platforms is surely desirable. To this end, we
need to build and/or integrate resources models for cores, memories and 1/0
modules.

* Incorporate power estimation: As power is as sensible as performance for a
quality SoC/NoC product, NNSE should incorporate the estimation of power

70 Chapter 3. NoC Network Performance Analysis

consumption so that the performance and power tradeoffs can be better in-
vestigated and understood.

Extending further the traffic generation for performance evaluation ends up
with benchmarking different on-chip networks. The diverse NoC proposals neces-
sitate standard sets of NoC benchmarks and associated evaluation methods to fairly
compare them.

Chapter 4

NoC Communication Refinement

This chapter presents our NoC communication refinement approach [Paper 8, 9].
We start with a system model specified in the synchronous model of computation.
Through a top-down procedure, we refine the communication in the system model
into NoC communication via the communication interface of a NoC platform.

4.1 Introduction

4.1.1 Electronic System Level (ESL) Design

The rapid advancement of technology constantly fuels the SoC revolution [79]. As
we mentioned previously, the state-of-the-art SoC design methodologies cannot
sufficiently exploit the abundant transistor capacity. An on-going trend to shrink
the productivity gap is Electronic System Level (ESL) design. This trend is mixed
with the platform-based design concept [54] and the promotion of using formal
models for system specification and verification.

Traditional Register Transfer Level (RTL) for hardware design, which was in-
troduced in the 90s, allows synthesized standard cell design. A synthesizable RTL
description is presently often the starting point for an ASIC/FPGA design flow. The
design productivity cannot keep pace with the exponential expansion of the number
of transistors on a chip. Traditional C-based design for embedded software devel-
opment shows even slower enhancement in design productivity. To shrink the gap
between the design capability and the chip capacity, raising the design abstraction-
level is an essential step forward. The current activities in Electronic System Level
(ESL) [29] is consistent with this direction. The ITRS [46] defined ESL to be a

71

72 Chapter 4. NoC Communication Refinement

level above RTL, that consists of “a behavioral (before hardware/software partition-
ing) and architectural level (after)”. The ESL raises the abstraction level in which
systems are expressed. A system-level design allows larger function-architecture
co-exploration [63], which is more than traditional hardware-software codesign.
The final implementation can benefit in performance and cost. Using system-level
models, hardware and software design can be developed in parallel. This breaks
the sequential flow of hardware-first-software-second, thus compressing the de-
sign cycle. Besides, the benefits of ESL include enabling new levels of design
reuse and offering design chain integration across tool flows and abstraction levels.
Using formal models is also advocated for system-level design [54, 116, 118]. As
noted in [54], using formal models and transformations in system design is pro-
moted so that verification and synthesis can be applied to advantage in the design
methodology. Verification, which is a key design activity, is effective if complexity
is handled by formalization, abstraction and decomposition. Besides, the concept
of synthesis can be applied only if the precise mathematical meaning of a system
specification is defined.

A formal model is associated with Models of Computation (MoCs). As de-
fined in [118], a MoC refers to mathematical models that specify the semantics of
computation and of concurrency. Loosely defined, MoC specifies the operational
semantics governing how processes interact with each other. There are a variety of
MoCs that exist for embedded system design, such as finite state machines [39],
Petri nets [86], Kahn process networks [51], and synchronous models [11, 12] etc.
A comprehensive digest of the various models can be found in [31, 118]. The
tagged-signal model [59] defines a denotational, semantic framework of signals
and processes within which models of computation can be studied and compared.
In [48], a formal classification and description of these models is presented com-
prehensively. Essentially, how time and concurrency are expressed distinguishes
one MoC from another.

4.1.2 Communication Refinement

Communication refinement is a key step in a system-level design approach. It is
a top-down process of synthesizing abstract communication in the system model
into concrete communication in the system implementation architecture [31, 54].
Abstraction defines the type of information present in a model. Unlike hierarchy,
abstraction is not concerned with the amount of information visible, but with the
semantic principles of a model. In general, the movement from high to low ab-
straction levels involves a decision-making process. By making design decisions
and increasing information about implementation details, we replace more abstract

4.1. Introduction 73

models with less abstract models, until the system is manufacturable. Through the
refinement process, system properties and application constraints must be incorpo-
rated and satisfied.

Communication refinement may be conducted in the functional domain or in
the implementation domain and usually comprises well-defined steps. A system
model, after steps of refinement, is derived into a refined model. The three key
issues for refinement are correctness, constraint and property satisfaction and ef-
ficiency. As the refined model is an elaborate version of the original model, they
must be functionally equivalent. This is achieved by preserving semantics during
refinement, i.e., a refinement step should not introduce semantic deviation. The
second requirement means that the refined, correct model must satisfy design con-
straints for performance and ensure properties to achieve design objectives. The
third one here refers to resource consumption in the system implementation archi-
tecture. It can be very specific, depending on whether our application is aimed for
low power or low cost.

In the NoC case, the communication architecture is preferably predefined as
a platform and the Application Level Interface (ALI), which provides primitives
for inter-process communication, is the only way to access the communication
services. The NoC communication refinement is therefore to refine the abstract
communication in a system specification onto the NoC platform via the ALI. We
have proposed a three-step top-down procedure to refine the communication of a
system model specified in the synchronous MoC into NoC communication. Before
we present the refinement steps, we introduce the synchronous MoC.

4.1.3 Synchronous Model of Computation (MoC)
A. Synchronous modeling paradigm

The synchronous modeling paradigm [11, 12] is based on an elegant and simple
mathematical model, which has been shown successful and is the ground of syn-
chronous languages [38] such as Esterel, Signal, Argos and Lustre. The basis is the
perfect synchrony hypothesis, i.e., both computation and communication take non-
observable time. The critical requirement from specification to implementation is
that the implementation has to be fast enough both in communication and computa-
tion. This means that the implementation phase has to take worst-case into account.
Synchronous MoC was initially introduced for reactive and safety-critical embed-
ded control systems where reasoning about the functional correctness is supreme.
It has to verify that at each tick over time the system works properly.

74 Chapter 4. NoC Communication Refinement

In a synchronous MoC, a system is modeled as a set of fully concurrent com-
municating processes via signals. Processes use ideal data types and assume infi-
nite buffers. By following the tagged-signal model [59], a signal can be defined as
a set of ordered events, with each event taking a value and a tag. The value is the
informative data to be communicated, and the tag indicates a time slot. This means
that each event is conceptually and explicitly accompanied by a time slot to convey
data. If the data contains a useful value, the event is present and called a token,;
otherwise, the event is absent and modeled as a LI ! representing a clock tick. With
the introduction of LJ, multi-rate systems can be modeled since every nth event in
one signal aligns with the events in another. A synchronous MoC is a timed MoC
where events are globally and totally ordered. Each signal can be related to the
time slots of another signal in an unambiguous way. The output events of a pro-
cess occur in the same time slot as the corresponding input events. Moreover, they
are instantaneously distributed in the entire system and are available to all other
processes in the same slot. Receiving processes in turn consume the events and
emit output events again in the same time slot. Processes can thus be viewed as
communicating events via an ideal channel, which is delay-free. In addition, the
ideal channel is buffer-less and has unlimited bandwidth because any type of event
values passes through it instantaneously. This communication channel is in con-
trast to that of other MoCs. For example, the Kahn and dataflow process networks
[58] assume unbounded FIFO channels between actors (processes).

Two events are synchronous if they have the same tag. Two signals are syn-
chronous if each event in one signal synchronous with an event in the other signal
and vice versa. A process is synchronous if every signal of the process is syn-
chronous with every other signal of the process. A system is synchronous if all
processes are synchronous locally and globally (synchronous with each other). A
system specified in the synchronous paradigm is a synchronous system. For feed-
back loops, the perfect synchrony leads to cyclic dependency between an input
signal and an output signal. If such cyclic communication is allowed in system be-
havior, some mechanism must be used to resolve it. One possibility is to introduce
a delay in the output signal. Another possibility is to use fixed-point semantics,
where the system behavior is defined as a set of events that satisfy all processes.
The third possibility is to leave the results undefined, resulting in nondetermin-
ism or infinite computation within one tick. If only one precise result is defined
for a feedback loop using the delayed time tag, a synchronous model is determin-

In Paper 9, we used L (pronounced “bottom”) to represent absent. Since L has been used in
dataflow process networks to represent don't-care [58], we later used LI in Paper 8 to represent absent
in order to distinguish it from _L. This notation is also consistent with [48].

4.1. Introduction 75

istic, i.e., given the same input sequence of events, it generates the same output
sequences of events.

B. The ForSyDe methodology

ForSyDe stands for FORmal SYstem DEsign. It is a system-level design methodol-
ogy for SoC applications developed in the Royal Institute of Technology, Sweden.
The ForSyDe methodology [116] is based on the synchronous MoC. It uses pro-
cess constructors to cleanly separate communication from computation. Commu-
nication is captured by the process constructors and computation by the function
of the processes. It employs transformations in the functional domain to refine a
system model into a less-abstract model optimized for implementation [115, 117].
The transformations, which are conducted step by step, can be either semantic-
preserving or a design decision. Semantic-preserving transformations are correct
by construction while design decision is not. But, formal verification of design
decisions is possible by defining an appropriate notion of equivalence [108]. Af-
ter refinement, the refined model is partitioned into hardware and software and
mapped onto the implementation architecture [70]. In ForSyDe, the zero-delay
feedback is forbidden. A delay is introduced in the feedback loop. ForSyDe uses
the functional language Haskell [127] to express its system models. The models
are executable.

Our refinement approach has been conducted in the ForSyDe framework in
order to experiment and validate our concepts with executable models, but our
refinement approach applies also to a general synchronous model.

C. Modeling NoC applications with the synchronous MoC

The reason to start our refinement from a synchronous model is two fold. One is
to adopt a formal MoC for the specification of system function. A synchronous
model is formal and purely functional. This highest abstraction level leaves the
greatest design space to explore, and the advantage of formalism can be used for
well-defined refinement, synthesis and verification. The second reason lies in the
appropriateness of the synchronous MoC. To model a NoC application, one can
ask which MoC is more appropriate? In general the answer depends on which
kind of NoC applications to be designed. Considering the strength and weakness
of various MoCs, most probably there is no such a one-size-fits-all MoC but dif-
ferent MoCs find their own roles for different applications. However, as the days
of cheap communication are gone, expressing communication in a system specifi-
cation is necessary. A model for a NoC application has to capture communication

76 Chapter 4. NoC Communication Refinement

properly. Besides, as NoC is a concurrent-processing platform, capturing concur-
rency in the system model is also necessary. We believe that the synchronous MoC
is a good candidate to specify some NoC applications because it captures concur-
rent computation and communication, and explicitly expresses them in the simplest
form possible.

In the following, we first formulate and analyze the communication refinement
problem in order to identify the exact sub-problems to be addressed, and then we
summarize our solutions presented in Papers 8 and 9.

4.2 The Communication Refinement Approach

4.2.1 Problem Description and Analysis

Our task is to refine synchronous communication into on-chip communication.
Specifically, the problem can be formulated as follows: Given is a synchronous
system model, refine the system communication onto a network-based communi-
cation platform. During the refinement, design constraints should be satisfied and
the network should be efficiently utilized.

A synchronous model provides globally synchronous, concurrent and instant
communication for inter-process communication. The properties of synchronous
communication can be summarized as follows:

 Global synchrony: There is logically a global clock triggering the consump-
tion and generation of events. Since computation takes non-observable time,
input and output events are distributed synchronously in each and every tick.

* Instancy: Events pass via an ideal communication channel. The channel pro-
vides zero-delay (instantaneous), unlimited bandwidth, ordered, and lossless
delivery. The unlimited bandwidth is due to that a signal can have a value
type of any kind, such as any primitive and compound types, demanding an
arbitrary communication bandwidth. Consequently, if an output signal of a
process is connected to an input signal of another process (as long as they
have the same value type), the two signals are identical. Thus we can use
a single signal to represent both. Together with the global synchrony, ideal
channels maintain a global event order.

* Full-scale concurrency: In the topology of a process network, all events are
communicated in parallel. Each communication channel is point-to-point

4.2. The Communication Refinement Approach 77

and dedicated. No serialization on the use of the channels is necessary. Full-
scale communication concurrency makes the full-scale process computation
concurrency possible because input events are available each tick and pro-
cesses can evaluate the input events and generate output events each tick.

As/ignal
S
P1 R P2
ideal channel

a) Specification domain

stream
4 N

st’

ready communication process ready

b) Implementation domain

Figure 4.1. Computation and communication elements

The computation elements in the specification domain are processes, which
produce and/or consume events. The communication elements are signals, which
are ordered sequences of events, and conceptually ideal channels. We illustrate
these elements with two processes, P, and P, in Figure 4.1a.

In the implementation domain, NoC has a very different communication model
and associated properties. We consider a message-passing NoC platform where
each core has its own local memory. As we discussed in Chapter 1, NoC communi-
cation can be represented using the layered and interfaced model. The inter-process
communication is offered by the Application-Level Interface (ALI). The appli-
cation processes use communication primitives such as open_channel(), read()
and write() to communicate messages. Logically we can view that process-to-
process communication is conducted through a dedicated, point-to-point service
channel. The service is mapped directly to an underlying network communica-
tion service. We simplify the consideration of the session/transport layer, which
performs packetization/de-packetization, interleaving for using shared buffers and
bandwidth, and re-ordering for maintaining the message causality, if necessary.
We assume that the net effect of the session/transport layer is the addition of delay

78 Chapter 4. NoC Communication Refinement

and in-order message delivery. This delay contributes to the delay in the service
channel model.

The service-channel communication model differs drastically from the syn-
chronous communication model.

e Multiple clock domain communication: There is no a global clock trigger-
ing system computation and communication. Instead the cores and the net-
work reside in different clock domains. We assume that the network itself is
clocked by a single clock, which has the same phase as the core clocks. The
core frequencies can be different from each other. The communication be-
havior of the cores and network can be modeled in their own clock domains
following the synchronous model. But the cross-domain time structures must
be arbitrated.

» Bandwidth-limited and delay-variant channel: Although we can abstract the
inter-process communication as logically a point-to-point service channel
at the application layer, these channels share physical communication re-
sources such as buffers and links in the session/transport and network layers.
The service channel has a capacity limitation and in general introduces de-
lay and delay variation (jitter). It provides in-order message delivery within a
service channel, but there is no message ordering between service channels.

» Conditional concurrency: As a service channel is bandwidth-limited, it is
impossible to send and receive arbitrary amount of data (any kind of data
structure) within a fixed-length time window. The communication concur-
rency is restricted by available bandwidth. This limitation leads to condi-
tional computation concurrency, i.e., computation concurrency is communi-
cation dependent.

In the implementation domain, we must introduce a communication process in
order to glue a signal to a service channel. The communication elements in the
implementation domain are communication processes, streams and service chan-
nels. Streams are ordered sequences of messages. The elementary communica-
tion processes either generate messages by consuming events or produce events by
consuming messages. Service channels are where the streams are transported. The
computation processes must be stallable if the required input tokens for computa-
tion are not available. We illustrate the three communication elements with the two
computation processes, P; and P, in Figure 4.1b.

4.2. The Communication Refinement Approach 79

As we can observe from the above analysis, the ideal communication in the
synchronous model does not exist at all in the implementation domain. The imme-
diate questions to answer while refining the synchronous communication into NoC
communication are:

¢ How to compromise global synchrony into multiple-clock synchrony?

How to refine ideal communication into shared communication?

How to refine fully concurrent computation and communication into condi-
tionally concurrent computation and communication?

How to satisfy performance constraints and communication properties?

How to make a good utilization of network resources during the refinement?

These questions may not be addressed in isolation because they are inherently
correlated. For example, refining ideal communication into shared communication
results in reducing the concurrency level in the system model. Throughout the
communication refinement, the system behavior can not be changed. Maintaining
the correct system behavior during the refinement is the first concern because of
the violation of the ideal communication assumption in the implementation do-
main. This task is burdened with the requirements of satisfying constraints such
as processing n samples/second and of not over-dimensioning the underlying net-
work.

4.2.2 Refinement Overview

In Papers 8 and 9, we have proposed a three-step approach for the NoC communi-
cation refinement problem. Paper 8 mainly focuses on refinement for correctness
and Paper 9 for performance and efficiency. In this section, we unify the concepts
presented in the two papers in order to give a coherent view of the proposed com-
munication refinement approach.

Our refinement approach consists of three steps, namely, channel refinement,
process refinement and communication mapping, as illustrated in Figure 4.2.

Step 1. Channel refinement (Section 4.2.3): An ideal channel is refined into a ser-
vice channel. The service channel models the characteristics of the underly-
ing network communication service. We also model the interfaces between
different clock domains assuming that the network resides in a clock domain
different from cores.

80

Chapter 4. NoC Communication Refinement

Specification
Model

—

Channel

Refinement

R —

Process

Refinement

{ Back—-annotation } Refined

Model

A
Functional /—$—\

Dbomain | | Communication | Architecture | __

Implementation Mapping Model

Domain N J

Communication
Implementation

Figure 4.2. NoC communication refinement

Step 2. Process refinement (Section 4.2.4): In the specification model, a pro-

cess may be viewed as only performing functionality since communication
is ideal (unlimited bandwidth and zero-delay). This will not be the case once
the ideal channel is replaced by a service channel. To reuse the original
computational process, we leave it untouched. But we need to encapsulate
the process with a communication process. This communication process
(a) interfaces with the service channel; (b) fulfills the computation synchro-
nization requirement of the process, which we call process synchronization
property. This synchronization property must be consistent during the re-
finement. With the introduction of the service channel, the process cannot
fire automatically with the clock. Instead, it requires additionally a synchro-
nization ready signal from the communication process to control its execu-
tion; (c) satisfies communication property and performance constraints by
refining communication protocols, for example, performing end-to-end flow
control for reliability and overlapping computation with communication to
hide the communication latency; (d) deals with feedback loops, if any. A
zero-delay feedback loop is resolved by introducing an initial delay in the

4.2. The Communication Refinement Approach 81

loop to break the cyclic dependency in our specification model. However,
in implementation, it results in excessive delay when the feedback is looped
through service channels. If the process sticks to this synchronization point,
the feedback loop becomes a serious performance bottleneck.

Step 3. Communication mapping (Section 4.2.5): After the above two steps, we
obtain a refined model. To further optimize for the use of shared network
resources, two or multiple service channels (a) may be converged to share
one implementation channel and (b) may be merged into one service channel
S0 as to use one implementation channel. After the optimization, we move
from the functional domain to the implementation domain. With a process-
to-core mapping plan, we map the service channels and the communication
processes in the refined and optimized model onto the NoC platform.

In Step 1, ideal channels are replaced by service channels, which involve multi-
ple clock-domain communication. We use communication processes in Step 2a and
Step 2b to refine the ideal communication into shared communication and to refine
full-scale concurrency into conditional concurrency. Particularly, we have focused
on Step 2b of synchronization consistency, which is proposed for correctness. Step
2c aims to satisfy communication property and performance requirements by com-
munication protocol refinement. Step 2d deals with the feedback problem. It aims
also to enhance system performance. In Step 3a and Step 3b, we consider channel-
convergence and channel-merge to make efficient use of network resources. In
summary, we have taken into account correctness, performance as well as resource
utilization during the refinement.

4.2.3 Channel Refinement
A. The clock-domain interface

A synchronous model is very simplified in the sense that a single clock drives the
system computation and communication. We assume that NoC communication is
partitioned into multiple clock domains. While each clock domain is synchronous,
the time structures of cross-domain communications have to be correctly arbitrated.
Our assumption is that the cores and the network have their own clock domains. In
addition, we assume that all clock phases are aligned.

To refine a single clock domain into multiple clock domains, we introduce
clock sub-domains into the system’s main domain. Each sub-domain is modeled
synchronously, and a clock domain interface arbitrates the time structures of differ-
ent clock domains. Introducing a synchronous sub-domain into the system model

82 Chapter 4. NoC Communication Refinement

was presented in [115] where the event rate of the sub-domain is % (n is a positive
integer) of the main domain. The main domain is interfaced to the sub-domain by
a single down-sampling process Py, (n). The sub-domain is interfaced back to the
main domain by a single up-sampling process P,,,(n). We extend this work by con-
sidering a generic domain interface that connects a clock domain with event rate
/1 to another clock domain with event rate f>. The simplest form of the fraction
% is %, where m and n are coprime.

The generic interface from domain f; to domain f5 is constructed by using two
processes as I, . s, = Pan(m) o Pyy(n), where o is the composition operator. The

processes, P, (n) and Py, (m), are formally defined as follows:

P,(n){z1,22,...}) ={L,..., L1, L,..., L ozo,...}
———— ———
n—1 n—1
Pin(m)({x1, 22, .., Ty Tnp1, Ly ooy Lo oo }) = {@m, Tong1, - - }

The up-sampling process P,,(n) samples out » times of the input events, and
does not result in event loss. The down-sampling process Py, (m) samples out
% times of the input events. At each down-sampling cycle, m — 1 events are
discarded and only the last token (non-absent value) is kept. The interface first
does up-sampling and then down-sampling. If f; < f2, no event drops, hence no
token is lost. If f; > fo, events are cyclically dropped. But this may or may not
lead to the loss of tokens because the token rate may be less than the event rate. To
guarantee that there is no data loss at the clock domain interface, the token rate of
domain f; can not be faster than the event rate of domain f,. This is to say, that a
producer in domain f; can not use bandwidth (by generating tokens) more than the
consumer domain’s capacity. In our further analysis, we assume that this condition
is satisfied and there is no data loss at the clock domain interfaces.

B. The service channel model

As we mentioned previously in the analysis, we consider a generic service channel
that provides inter-process communication using message passing. In our context,
we are interested in that different processes are distributed in different cores. Thus,
an inter-process communication corresponds to an inter-core communication. Such
kind of communication involves the session/transport layer and the network layer.
As having discussed previously, we focus on the network services and simplify the
session/transport layer effects.

A service channel is logically a simplex point-to-point channel, offering in-
order, lossless and bounded-in-time communication between two end-processes. A

4.2. The Communication Refinement Approach 83

service channel is mapped to a communication service in the underlying network.
A basic distinction of network services is the guaranteed service and best-effort ser-
vice. The guaranteed service requires the establishment of a virtual circuit before
data transmission can start. Once a virtual circuit is set up, the message delivery is
bounded in time. The best-effort service delivers messages as fast as possible. As
long as the network does not drop packets and is free from deadlock and livelock,
the delivery completion property is honored. Since no resources are pre-allocated,
there is no guarantee on a delivery bound in general. This nondeterminism is due
to that message delivery experiences dynamic contentions in the network. How-
ever, if such a bound does not exist, further analysis may be meaningless since the
system performance becomes unpredictable. Therefore we assume that the best-
effort service provides a delivery bound, but with an additional condition. The
condition can be that the processes (the network clients) and the network interact
on a contract basis. Processes inject traffic into the network in a controlled man-
ner according to a traffic specification. Such a traffic specification may conform
to, for example, the regulated (o, p) flow model [22, 23]. The network performs a
disciplined arbitration on resource sharing. In this way, the network saturation is
avoided and the delivery bound can be derived. But, in our current analysis, this
regulated traffic admission as well as traffic discipline has not been modeled. In-
stead we have assumed that such a scheme exists and even the best-effort network
service can guarantee the bounded-in-time delivery.

With this assumption, we concentrate on considering the net effect of mes-
sage delivery, i.e., the delay and its variation (jitter) by resorting to a stochas-
tic approach. Formally, we develop a unicast service channel as a point-to-point
stochastic channel: given an input stream of messages {mi, ma, -+ ,m,} to the
service channel, the output stream is {d, m1,da, ma,- -, d,,, m,}, Where d; de-
notes the delay of m; (i € [1,n]), which may be expressed as the number of ab-
sent (L) values and is subject to a distribution with a minimum d,,,;,, and max-
imum d,,. value. The actual distribution, which may differ from channel to
channel, is irrelevant here. We do not make any further assumptions about this.
If d; = k (K is a positive integer), it means that there are & absent values between
m;_1 and m;. We can identify two important properties of the generic service chan-
nel: (1) d; may be varying; (2) d; is bounded. This behavior is purely viewed from
the perspective of application processes and the implementation details are hidden.

Together with clock-domain interfaces, a service channel provides transparent
communication for processes in different clock domains. Since the effect of clock-
domain interfaces can be modeled by the delay distribution in a service channel,
we do not explicitly consider them further.

84 Chapter 4. NoC Communication Refinement

4.2.4 Process Refinement
A. Interfacing with a service channel

Once an ideal channel is replaced by a service channel, the original process can
not be directly connected to the service channel because a service channel uses a
different data unit, message, and has limited bandwidth. A communication process
must be introduced as an interface to connect the original process with the service
channel. This communication process implements necessary data conversion and
handshake-like control functionality, detailed as follows:

« Data conversion: The input/output data type of a service channel is a mes-
sage that is of a bounded size. But a signal in the specification assumes an
ideal data type, whose length is finite but arbitrary, e. g., a 32/64-bit integer,
a 64-bit floating point or a user-defined 512-bit record type. Matching the
data types requires data conversion, such as decomposition and composition.

» Bandwidth-regulated control: The service channel has limited bandwidth
while a signal uses unlimited resources. The sending and receiving of mes-
sages using the service channel is subject to the available bandwidth. A
control function is needed in the communication process to co-ordinate the
message sending and receiving.

These adaptations are achieved by writer and reader processes. Specifically, to
interface with the service channel, a producer needs to be wrapped with a writer,
a consumer with a reader. As shown in Figure 4.1, P, is a producer and P, a
consumer. C7 implements the writer function and Cs the reader function.

B. Synchronization consistency

Replacing the ideal channel (zero delay and unlimited bandwidth) with a stochas-
tic channel (varying delay and limited bandwidth) leads to the violation of the
synchrony hypothesis. Consequently, two synchronous events in the specification
model may not have the same time tag any more because they may experience dif-
ferent delays in the service channels. Two synchronous signals in the specification
model may no longer be synchronous. Furthermore, the synchronous system be-
comes globally asynchronous. This leads to possible behavior deviation from the
specification. The entire system may not function properly. Correctness becomes
the first issue to address in refinement.

We restrict our discussions to continuous processes [48]. Informally, we say a
process continuous if, given partial input events, it generates partial output events.

4.2. The Communication Refinement Approach 85

In addition, adding more input events, more output events are generated but it will
not affect the previously generated results. For a continuous process to work cor-
rectly, two conditions for delivering its input signals must be satisfied: (1) the event
order of each signal must be maintained; (2) the synchronization requirement on
the input events, called process synchronization property, must be satisfied before
the process can fire. In the synchronous model, events are delivered in order and
fully concurrent, the two conditions are satisfied cycle by cycle. However, with
the NoC service channel model, the first condition is met but the second is not
guaranteed. Our objective is to satisfy the process synchronization property, i.e., to
maintain synchronization consistency. Our approach is to refine the system-level
global synchronization into process-level local synchronization. We first classify
the process synchronization properties and then use synchronizers to achieve syn-
chronization consistency during refinement.

The synchronization in the system model requires all signals are synchronous
and all processes are synchronous. This might over-specify the whole system,
limiting implementation alternatives. We derive the synchronization property of a
process according to its evaluation conditions. This is similar to firing rules that are
used to discuss dataflow processes in [58]. By using evaluation conditions, we are
able to decouple local computation synchrony from global computation synchrony.
In effect, this refines the computation concurrency in the system model from being
fully concurrent into being conditionally concurrent.

For a synchronous process with n input signals, PI is a set of N input patterns,
PI = {L,I,--- ,Iy}. The input patterns of a synchronous process describe its
firing rules, which give the conditions of evaluating input events at each event cy-
cle. I; (i € [1, N]) constitutes a set of event patterns, one for each of n input sig-
nals, I; = {I; 1, 1;2,- - , I; n }. A pattern I; ; contains only one element that can be
either a token wildcard = or an absent value LI, where x does not include LI. Based
on the definition of firing rules, we define four levels of process synchronization
properties as follows:

» Strict synchronization: All the input events of a process must be present
before the process evaluates and consumes them. The only rule that the
process can fire is PI = {I;} where I = {[«], [*],--- , [*]}.

* Nonstrict synchronization: Not all the input events of a process are absent
before the process can fire. The process can not fire with the pattern I =
{1U], [], -+ ,[u]}. This also includes cases where the process can not fire
if one or more particular input events are L.

86 Chapter 4. NoC Communication Refinement

e Srong synchronization: All the input events of a process must be either
present or absent in order to fire the process. The process has only two firing
rules PI = {1, Is},where I} = {[x], [«],- -, [*]}and Iy = {[U], [L], - -, [L]}.

» \Weak synchronization: The process can fire with any possible input patterns.
For a 2-input process, its firing rules are PI = {1y, Is, I3, 1,} where I; =

{0, B3 T2 = {00 (W] s = {1+, [0} and Iy = {[u], [+]}.

Apparently, for processes with a strict or strong synchronization, their synchro-
nization properties can not be satisfied if any of their input signals passes through a
service channel since the delays via the channel are stochastic. Although globally
asynchronous, the processes can be locally synchronized by using synchronization
processes, called synchronizers, to satisfy their synchronization properties.

{iosypy e, U Uy ag, Uy ag, U} {ioy @y ey ag, U U aq, U}
- sync -
T =
{ooi by ooy Uy bo, L, L LT by) (o by bo, UL by, L}

a) An align-synchronization process

{anv"'7a27|—|7|—|7a17u} {an7'~-7a27a1}
=1 deSync -
 E——— ﬁ
{b",...,bz,l_l,U,bl,u} {b'ru---a 2761}
b) A de-synchronization process
{a7l7"'7a27u7u7a17|—|} {a’n7""a‘2’a‘1} {a”7"'7a27u7uﬁa17u}
=1 deSync addSync -
{bns .., ba, U, L1, by I} {bny oy b, b1} /F (b, ba, L, L, by, LI}

¢) An add-synchronization process
Figure 4.3. Processes for synchronization

We use a two-input process to illustrate these synchronizers in Figure 4.3. In
the figure, we follow the direction of the signals and place the earlier events in
the right side of a signal, i.e., {--- ,zy, -+ ,z2,21}. An align-synchronization
process sync aligns the tokens of its input events, as illustrated in Figure 4.3a. It
does not change the time structure of the input signals. A desynchronizer deSync
removes the absent values, as shown in Figure 4.3b. All its input signals must
have the same token pattern, resembling the output signals of the sync process.

4.2. The Communication Refinement Approach 87

Removing absent values implies that the process is stalled. The desynchronizer
changes the timing structure of the input signals, which must be recovered in order
to prevent from causing unexpected behavior of other processes that use the timing
information. An add-synchronizer addSync adds the absent values to recover the
timing structure, as shown in Figure 4.3c. It must be used in relation to a deSync
process. If the input events of the deSync is a token, the addSync reads one token
from its internal buffers for each output signal; otherwise, it outputs a LI event. The
two processes deSync and addSync are used as a pair to assist processes to fulfill
strictness.

{.@n, .., U U as, U ag, LI} {iypyyag, U, U ag, U} {eoyCny ey o, L Uy g, LU}
sync Pstrong
L
oo by ey Uy b, L, L, L By) {ooes by ey bo, U, U, By, LY {ondn, oy dy U U, dy, LY

Figure 4.4. Wrap a strong process

{”n:»»“a%al} {f'n>~~««,f‘2-,f‘1} {(‘ co, L L ¢ |_|}
ooy ooy Uy Uy a9, U, ag, U {an, ...;a,U,1, a1, U} e O S s By
{...a LU, U ag, U aq, U} - — B

deSync Pairict | | addSync |
oy U B, L L U B } 0} (b s b b1 (ds oo, di]} (ds oo dy, U Uy dy, L}

Figure 4.5. Wrap a strict process

e 5 e 5
{-,5,4,3,1,2,1} {-,5,4,3,2,1} . 15,10,6,3,1,0}
—_— =
cSum f——m——= cSum —
{--5,4,3,0,2,1} {---,10,8,6,1,4,2} i

sSum

a) b) clk

Figure 4.6. A strong and a strict process

¢ctr| ¢ ctrl

0)
L select switch

Figure 4.7. Two non-strict processes

To achieve strong synchronization, we use an align-synchronization process sync
to wrap a strong process, as shown in Figure 4.4. To achieve strict synchroniza-
tion, we use three processes, sync, deSync and addSync, to wrap a strict process,

88 Chapter 4. NoC Communication Refinement

as illustrated in Figure 4.5. A strong process is typically a combinational process,
which is state-less. As long as both input tokens and delays are aligned, the delays
on the input signals do not change the behavior of the process. For example, a
combinational sum process cSum in Figure 4.6a consumes two input events, one
from each signal, adding them together. Delays on both input signals are tolerable
as long as they are aligned. A strict process is typically a sequential process, which
has states and thus is sensitive to the delay on its input signals. For instance, the
sequential process sSwum in Figure 4.6b calculates the running sum of its input
events by adding its state and the token value on the input signal. Its initial state is
0. Any delay on its input signal changes the output sequence. A non-strict process
is often a control process, which can not fire if a control token is not available. For
example, as shown in Figure 4.7, the select and switch processes can not fire if the
control signal ctrl is neither 0 nor 1. Feeding control tokens is particularly impor-
tant while refining non-strict processes. The refinement of processes with weak
synchronization should be individually investigated. Practical examples of using
synchronizers are given in Paper 8.

C. Protocol refinement

Message passing between a producer process and a consumer process is essen-
tially a process of moving data from the producer side buffer to the consumer
side buffer. This requires a co-ordination between the producer process and the
consumer process in order to guarantee some properties, such as reliability, com-
pletion and buffer-overflow freedom. As the communication via a service channel
introduces variable delay, it is important to overlap computation with communica-
tion in order to hide the communication latency. Protocol refinement is to refine
the communication protocol for various reasons, for example, coordinated and im-
proved communication. We have shown in Paper 9 that our refinement approach
can formally incorporate different communication protocols in the step of process
refinement to satisfy reliability and to improve throughput. For reliability, we have
introduced acknowledgment in the protocol. For throughput, we have shown that
data pipelines may be elaborated to hide communication latency and thus increase
concurrency in computation and communication.

D. Feedback loop

Figure 4.8a illustrates a feedback loop in the specification. The loop passes through
n processes, Py, P, -+, P,. In the synchronous model, we insert a single Delay

4.2. The Communication Refinement Approach 89

)

S ORORONO-!

a) Specification model

relax

P Py Py == P |— =

b) Refined model

Figure 4.8. Feedback loop

process (can be viewed as a register) to break the zero-delay loop. In an implemen-
tation domain as shown in Figure 4.8b, even if one process has one cycle delay,
it will take n cycles for the feedback signal to loop back. If process P; sticks
to this synchronization point, the system throughput can never be faster than 1/n
samples/cycle. A similar and even worse situation occurs in the NoC refinement
case. If a feedback signal passes through a best-effort service channel, the delays
are nondeterministic. Depending on the length of such a loop, the varying delays
may be very long. If strictly observing the dependency, the process has to wait for
the availability of the feedback events and cannot fire. The entire system is slowed
down and becomes unpredictable due to the feedback loop.

{CL,,,I,.-.,GQ,U,U,CH} {CL,,“...,ClQ,.TO,.’IIO,CLl} s
——= relax 3
S1 P
82

{bna ey b47 b3a b27 bl}
Figure 4.9. A relax-synchronization process

In our current proposal, we have used a relaxed synchronization method to
force the synchronization satisfied. The synchronizer for this purpose is the relax-
synchronization process relax, as illustrated in Figure 4.9. If the input event is a

90 Chapter 4. NoC Communication Refinement

token, it outputs the token; otherwise, a token x is emitted. The exact value of xg is
application dependent. Note that relaxing synchronization is a design decision
leading to behavior discrepancy between the specification model and the refined
model. Care must be taken to validate the resulting system.

An example of using relax is given in Paper 8 where an equalizer regulates
the volume of an input audio stream to protect the speaker by preventing the audio
bass from exceeding a threshold. It analyzes the power spectrum of the resulting
output audio stream after the regulation. In case a certain level is reached, it feeds
a control signal back to adjust the amplification level of the audio bass amplifier.
In the specification, the equalizer has an immediate response whenever surpass-
ing the threshold occurs. However, after mapping the signals to best-effort service
channels, the feedback signal takes long and nondeterminate delays to reach the
amplifier. If the amplifier sticks to this over-specified synchronization point by fol-
lowing exactly the specification model, the equalizer may not be able to process
enough audio samples per second. The system performance might become unac-
ceptable. In this case, a relax is inserted to generate an amplification level when a
token is not available. The equalizer can thus fulfill the requirement on throughput.
The side-effect of this refinement is that the response to the audio-volume control
buttons is delayed by some cycles. We can validate that the small amount of delay
is acceptable for users. Therefore this design-decision is justified.

4.2.5 Communication Mapping
A. Channel convergence and channel merge

In the mapping phase, a refined channel, i.e., a service channel, is to be mapped to
an implementation channel. A simple way of doing this is to map one service chan-
nel to one implementation channel. This one-to-one channel mapping may lead to
inefficient use of network resources. For example, considering a guaranteed service
using TDM virtual-circuits, for low-delay low-bandwidth traffic, bandwidth has to
be reserved to satisfy the low-delay requirement. This results in extra time slots
reserved but under-utilized. Therefore, an implementation channel should allow
multiplexing, i.e., shared by more than one service channel, if possible. Consid-
ering these effects, the refined model can be further optimized for efficiency. In
Paper 9, we have introduced channel convergence and channel merge. Channel
convergence is for two or multiple service channels to share one implementation
channel provided the implementation channel can support their total bandwidth re-
quirement. Channel merge means that two or multiple service channels may be

4.3. Future Work 91

merged into one service channel so as to use one implementation channel by pack-
ing messages at the sender side and splitting them at the receiver side.

B. Channel and communication process mapping

The inputs to this task are the refined and optimized model as well as a process-
to-core allocation scheme; the output is a communication implementation. We
have used the NoC simulator Semla [125] as our implementation platform. The
Application-Level Interface (ALI) is the set of message-passing primitives intro-
duced in Chapter 3. The mapping stage involves channel mapping and communi-
cation process mapping.

With channel mapping, each pair of processes communicating via a service
channel in the refined model results in its dedicated unicast implementation chan-
nel, which is mapped to the open channel primitive open_channel().

In communication-process mapping, communication processes for interfac-
ing service channels (reader and writer), maintaining synchronization consistency
(synchronizers such as sync, deSync, addSync and relax), elaborating protocol and
optimizing resource usage, are mapped onto cores. The original computation pro-
cesses do not change, but their executions are controlled by their respective com-
munication processes. Besides, with a single-thread implementation on a core,
a static schedule has to be found to sequentialize the process executions and co-
ordinate write and read operations [70]. With a multi-thread implementation on a
core, processes may be dynamically fired when their synchronization requirements
are met according to their evaluation conditions [121]. The reader and writer pro-
cesses access the ALI by directly calling the communication primitives read() and
write() defined in the NoC simulator. The resulting implementation is executable
in the simulation framework.

4.3 Future Work

Our refinement proposal has sketched a way of refining synchronous communica-
tion into on-chip network-based communication. Through the refinement, correct-
ness, constraint and efficiency have been taken into account. This approach has
been validated in the ForSyDe framework and with our NoC simulator. The con-
cept of synchronization consistency is independent of a particular communication
implementation scheme. It can be applied to pure hardware, software and bus-
based mixed hardware/software architectures. The proposed synchronizers have
been implemented in hardware, software and mixed hardware/software [121].

92 Chapter 4. NoC Communication Refinement

To make our refinement approach fully-fledged, we realize that the research
can be further carried on along the following three tracks:

» Embed formal semantics in the refinement approach: This is to give formal
definitions for the synchronization issues and develop transformation rules
for using synchronizers to represent and check the equivalence between the
specification model and the refined model.

e Conduct performance analysis and optimization: The refined model allows
us to derive performance figures. This requires that a stochastic process must
be annotated with good-enough values. So far we just consider the effect
of varying delay of the stochastic process. How to estimate the delay/jitter
values and further system performance analysis are not addressed yet. Par-
ticularly, we will treat feedback using TDM virtual-circuits [34, 81] in order
to obtain strong guarantees on delay and jitter bounds.

» Automate the design flow: With the well-defined synchronizers and well-
controlled use of the synchronizers, automation is possible. Currently a
process’s synchronization property is annotated manually. But this can be
done automatically. The reason is that, in the system model, a process can
be defined using pattern matching evaluation [116], which nicely matches
the process synchronization property. We are building synchronizer libraries
in hardware, software and mixed hardware/software, and plan to develop
programs that can automatically instantiate synchronizers for processes to
maintain synchronization consistency. Optimization for performance and
efficiency will be part of the automation.

Chapter 5

Summary

This chapter summarizes the thesis and outlines future directions.

5.1 Subject Summary

Moore’s law has sustained in the semiconductor industry for 42 years. Following
this law, the process technology has been ever-advancing. Meanwhile, the desire
to exploit the technology capacity is ever-aggressive. However, the advancement
of the chip capacity and the system integration capability is not evenly developed.
The slower development of SoC integration is due to the extremely high level of
complexity in system modeling, design, implementation and verification. As com-
munication becomes a crucial issue, NoC is advocated as a systematic approach
to address the challenges. NoC problems span the whole SoC spectrum in all do-
mains at all levels. This thesis has focused on on-chip network architectures, NoC
network performance analysis, and NoC communication refinement.

» Research on wormhole-switched networks has traditionally emphasized the
flit delivery phase while simplifying flit admission and ejection. We have ini-
tiated investigation of these issues. It turns out that different flit-admission
and flit-ejection models have quite different impact on cost, performance and
power. In a classical wormhole switch architecture, we propose the coupled
flit-admission and p-sink flit-ejection models. These optimizations are sim-
ple but effective. The coupled admission significantly reduces the crossbar
complexity. Since the crossbar consumes a large portion of power in the
switch, this adjustment is beneficial in both cost and power. The network
performance, however, is not sensible to the adjustment before the network

93

94

Chapter 5. Summary

reaches the saturation point. The p-sink model has a direct impact on de-
creasing buffering cost, and has negligible impact on performance before
network saturation. As the support for one-to-many communication is nec-
essary, we design a multicasting protocol and implement it in a wormhole-
switched network. This multicast service is connection-oriented and QoS-
aware. For the TDM virtual-circuit configuration, we utilize the generalized
logical-network concept and develop theorems to guide the construction of
contention-free virtual circuits. Moreover, we employ a back-tracking al-
gorithm to explore the path diversity and systematically search for feasible
configurations.

On-chip networks expose a much larger design space to explore when com-
pared with buses. The existence of a lot of design considerations at different
layers leads to making design decisions difficult. As a consequence, it is de-
sirable to explore these alternatives and to evaluate the resulting networks ex-
tensively. We have proposed traffic representation methods to configure var-
ious workload patterns. Together with the choices of the traffic configuration
parameters, the exploration of the network design space can be conducted in
our network simulation environment. We have suggested a contention-tree
model which can be used to approximate network contentions. Using this
model and its associated scheduling method, we develop a feasibility analy-
sis test in which the satisfaction of timing constraints for real-time messages
can be evaluated through an estimation program.

As communication is taking the central role in a design flow, how to refine
an abstract communication model onto on-chip network-based communica-
tion platform is an open problem. Starting from a synchronous specifica-
tion, we have formulated the problem and proposed a refinement approach.
This refinement is oriented for correctness, performance and resource usage.
Correct-by-construction is achieved by maintaining synchronization consis-
tency. We have also integrated the refinement of communication protocols
in our approach, thus satisfying performance requirements. By composing
and merging communication tasks of processes to share the underlying im-
plementation channels, the network utilization can be improved.

5.2 Future Directions

With only a short history, Network-on-Chip (NoC) has become a very active re-
search field. Looking into the future, we believe that NoC will continue to be vivid.

5.2. Future Directions 95

We list some key issues that have not been sufficiently addressed or emphasized in
the community as follows:

» Heterogeneous modeling: In current SoC design flows, a number of model-
ing techniques have been used ranging from sequential to concurrent mod-
els, from untimed to timed models. Application complexity and heterogene-
ity have driven the need to model a system using heterogeneous models.
The Ptolemy project [60] is such an example. This is particularly true for
NoC since it also targets highly complex and heterogeneous applications.
To which extent to model the underlying architecture characteristics is one
issue. While a model itself does not necessarily reflect the detailed character-
istics, refinement may be facilitated if the architecture characteristics such as
concurrency, time and adaptivity are captured in the model properly. Since
there does not exist a one-size-fits-all Model-of-Computation (MoC), multi-
MoC modeling will be highly necessary. Based on our understanding on the
various MoCs, one challenge is the cross-MoC-domain modeling, i.e., from
untimed domain to timed domain, from discrete time to continuous time,
from a sequential model to a concurrent model, and vice versa. The follow-
up challenges include multi-MoC refinement, synthesis, and verification.

e Programmability: To reduce cost, making a NoC soft is essential. This re-
quires the support of operating systems that offer various services such as
1/0 handling, memory management, system monitoring, process scheduling
and migration, and inter-process communication, and provide programming
models balancing ease-of-programming and efficiency. Efficient application-
level interfaces and standardized core-level interfaces are the hard part. As
NoC is a distributed (not centralized) system in nature, investigating parallel
computing models beyond von Neumann models for NoC systems to achieve
high performance will become hot. For example, the MultiFlex system [101]
supports an object-oriented message passing model.

e Composability: To build complex systems, we are moving away from creat-
ing individual components from scratch towards methodologies that empha-
size composition of re-usable components via the network paradigm. NoC
systems should allow one to plug new validated components and upgrade
old components with linear design efforts and without compromising per-
formance, reliability and verifiability. This feature makes a NoC easy-to-
integrate and easy-to-extend, leveraging the reuse to the system level and
shrinking the time-to-market.

96 Chapter 5. Summary

e Autonomy: There are several reasons to hope for an autonomous NoC. A
nano-chip is an extremely condensed device where transient and permanent
faults on wires and nodes are increasingly possible. Power consumption
is workload-dependent and performance-sensible. System optimization in-
volves the re-organization and orchestration of its computation and com-
munication components to tradeoff power and performance and to balance
the thermal distribution on the chip. These reliability, performance, power
and thermal issues call for an intelligent way like human self-healing, self-
vaccinating and self-adjusting systems to dynamically and autonomously
adapt the NoC to suit its application demands and operating environments.
Along this thread, a simulation tool may be aimed to be intelligent in, for ex-
ample, pinpointing performance bottlenecks and suggesting hints on buffer
dimensioning.

« Design flow integration: Present design flows for SOC/NoC are not seam-
lessly integrated. From application specification down to chip fabrication,
there exist a number of concerns from physical issues (electrical and ther-
mal), clocking, power, performance, verification, manufacturability and testa-
bility. A design flow usually targets one or a small subset of the design
aspects. To enable a truly automated design flow, all relevant issues are
preferably handled in an integrated design flow to leverage efficiency and
overcome the inconsistency between different tools which may come from
different vendors.

Technically, NoC has a huge potential to expand. It would come no sur-
prise when yesterday’s 1000-node supercomputers become tomorrow’s 1000-node
networks-on-chips. In addition, NoC will be driven not only for application-specific
applications but also for general-purpose applications. Finally, SoC/NoC technol-
ogy will be combined with other technologies, such as sensor-technology, nano-
chemistry, biotechnology, micro-mechanics etc., into a multi-disciplinary technol-
ogy. Innovative application domains will be further inspired by the needs of im-
proving our life quality such as health care, entertainment, safety, information pro-
duction and exchange, non-restricted communications and of improving our living,
developing and ecological environment.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. A. Zeferino.
SPIN: A scalable, packet switched, on-chip micro-network. In Design, Au-
tomation and Test in Europe Conference and Exhibition - Designers’ Forum,
March 2003.

A. Agarwal. Limits on interconnection network performance. |EEE Trans-
actions on Parallel and Distributed Systems, 2(4):398-412, October 1991.

V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate
versus IPC: the end of the road for conventional microarchitectures. In Pro-
ceedings of the 27th Annual International Symposium on Computer Archi-
tecture, pages 248 — 259, 2000.

A. Allan, D. Edenfeld, J. W. Joyner, A. B. Kahng, M. Rodgers, and Y. Zo-
rian. 2001 technology roadmap for semiconductors. |EEE Computer,
35(1):42-53, January 2002.

D. Andreasson and S. Kumar. Slack-time aware routing in NoC systems. In
|EEE International Symposium on Circuits and Systems, May 2005.

ARM. AMBA advanced extensible interface (AXI) protocol specifcation,
version 1.0. http://www.amba.com, 2004.

S. Balakrishnan and F. Ozgiiner. A priority-driven flow control mechanism
for real-time traffic in multiprocessor networks. |EEE Transactions on Par-
allel and Distributed Systems, 9(7):664—-678, July 1998.

N. Banerjee, P. Vellanki, and K. S. Chatha. A power and performance model
for network-on-chip architectures. In Proceedings of the Design Automation
and Test in Europe Conference, pages 1250-1255, 2004.

97

98 References

[9] L. Benini and G. D. Micheli. Networks on chips: A new SoC paradigm.
|EEE Computer, 35(1):70-78, January 2002.

[10] L. Benini and G. D. Micheli, editors. Networks on Chips: Technology and
Tools. Morgan Kaufmann, 2006.

[11] A. Benveniste and G. Berry. The synchronous approach to reactive and real-
time systems. Proceedings of the IEEE, 79(9):1270-1282, 1991.

[12] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and
R. D. Simone. The synchronous languages 12 years later. Proceedings of
The IEEE, 91(1):64-83, January 2003.

[13] T. Bjerregaard and S. Mahadevan. A survey of research and practices of
network-on-chip. ACM Computing Survey, 38(1):1-54, 2006.

[14] T. Bjerregaard and J. Sparso. A router architecture for connection-oriented
service guarantees in the MANGO clockless network-on-chip. In Proceed-
ings of the Design, Automation and Test in Europe Conference, pages 1226-
1231, 2005.

[15] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. QNoC: QoS architecture
and design process for network on chip. The Journal of Systems Architec-
ture, December 2003.

[16] J. T. Brassil and R. L. Cruz. Bounds on maximum delay in networks with
deflection routing. |EEE Transactions on Parallel and Distributed Systems,
6(7):724-732, July 1995.

[17] L.P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory of
latency-insensitive design. |EEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 20(9):1059-1076, September 2001.

[18] S.Chalasani and R. V. Boppana. Fault-tolerant wormhole routing algorithms
for mesh networks. |EEE Transactions on Computers, 44(7):848-864, 1995.

[19] T. Claasen. An industry perspective on current and future state-of-the-art in
system-on-chip (SoC) technology. Proceedings of the IEEE, 94(6):1121—
1137, June 2006.

[20] M. Coppola, S. Curaba, M. Grammatikakis, and G. Maruccia. IPSIM: Sys-
temC 3.0 enhancements for communication refinement. In Proceedings of
Design Automation and Test in Europe, 2003.

References 99

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

M. Coppola, S. Curaba, M. Grammatikakis, and G. Maruccia. OCCN: A
network-on-chip modeling and simulation framework. In Proceedings of
Design Automation and Test in Europe, 2004.

R. L. Cruz. A calculus for network delay, part I: Network elements in iso-
lation. IEEE Transactions on Information Theory, 37(1):114-131, January
1991.

R. L. Cruz. A calculus for network delay, part Il: Network analysis. |EEE
Transactions on Information Theory, 37(1):132-141, January 1991.

M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and L. Benini.
Xpipes: a latency insensitive parameterized network-on-chip architecture
for multi-processor SoCs. In Proceedings of the 21st International Confer-
ence on Computer Design, September 2003.

W. J. Dally. Virtual-channel flow control. 1EEE Transactions on Parallel
and Distributed Systems, 3(2):194-204, March 1992.

W. J. Dally and C. L. Seitz. The torus routing chip. Journal of Distributed
Computing, 1(3):187-196, 1986.

W. J. Dally and B. Towles. Route packets, not wires: On-chip interconnec-
tion networks. In Proceedings of the 38th Design Automation Conference,
2001.

W. J. Dally and B. Towles. Principles and Practices of Interconnection
Networks. Morgan Kaufman Publishers, 2004.

D. Densmore, R. Passerone, and A. Sangiovanni-Vincentelli. A platform-
based taxonomy for ESL design. IEEE Design and Test of Computers,
23(5):359- 374, September-October 2006.

J. Duato, S. Yalamanchili, and L. Ni. Interconnection Network - An Engi-
neering Approach. IEEE Computer Society Press, 1997.

S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli. Design
of embedded system: Formal models, validation and synthesis. Proceedings
of the |IEEE, 85(3):366-390, March 1997.

A. Gerstlauer, S. Dongwan, R. Domer, and D.D.Gajski. System-level com-
munication modeling for network-on-chip synthesis. In Proceedings of Asia
and South Pacific Design Automation Conference, pages 45-48, 2005.

100

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

References

K. Goossens, J. Dielissen, J. Meerbergen, P. Poplavko, A. Radulescu, E. Ri-
jpkema, E. Waterlander, and P. Wielage. Networks on Chip, chapter Guar-
anteeing The Quality of Services. Kluwer Academic Publisher, 2003.

K. Goossens, J. Dielissen, and A. Radulescu. The Athereal network on
chip: Concepts, architectures, and implementations. |EEE Design and Test
of Computers, 22(5):21-31, Sept-Oct 2005.

A. G. Greenberg and J. Goodman. Sharp approximate models of deflec-
tion routing in mesh networks. |EEE Transactions on Communications,
41(1):210-223, January 1993.

D. Gross and C. M. Harris. Fundamentals of Queueing Theory. Wiley, 1998.

P. Guerrier and A. Greiner. A generic architecture for on-chip packet-
switched interconnections. In Proceedings of the Design, Automation and
Test in Europe Conference, pages 250-256, March 2000.

N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer
Academic Publishers, 1993.

D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231-274, June 1987.

S. L. Harry and F. Ozgiiner. Feasibility test for real-time communication
using wormhole routing. 1EE Proceedings of Computers and Digital Tech-
niques, 144(5):273-278, September 1997.

A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. (")berg, M. Millberg, and
D. Lindqvist. Network on chip: An architecture for billion transistor era. In
Proceeding of the IEEE NorChip Conference, November 2000.

W. D. Hills. The Connection machine. Scientific American, 256(6), June
1987.

R. Ho, K. Mai, and M. Horowitz. The future of wires. Proceedings of the
|EEE, 89(4):490-504, April 2001.

J. Hu and R. Marculescu. Exploiting the routing flexibility for energy/per-
formance aware mapping of regular NoC architectures. In Proceedings of
the Design Automation and Test in Europe Conference, 2003.

References 101

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

IBM. CoreConnect bus architecture - A 32-, 64-, 128-bit core on-chip bus
structure. http://www-03.ibm.com/chips/products/coreconnect/.

ITRS. International technology road map for semiconductors 2004 update:
Design, 2004, wwww.itrs.net.

A. lyer and D. Marculescu. Power and performance evaluation of globally
asynchronous locally synchronous processors. In Proceedings of the 29th
Annual International Symposium on Computer Architecture, pages 158-
168, 2002.

A. Jantsch. Modeling Embedded Systems and SoCs. Morgan Kaufmann
Publishers, 2004.

A. Jantsch. Models of computation for networks on chip. In Proceedings of
the Sxth International Conference on Application of Concurrency to System
Design, June 2006.

A. Jantsch and H. Tenhunen, editors. Networks on Chip. Kluwer Academic
Publisher, 2003.

G. Kahn. The semantics of a simple language for parallel programming.
Information Processing, 1974.

F. Karim, A. Nguyen, and S. Dey. An interconnect architecture for network-
ing systems on chips. |EEE Micro, 22(5):36-45, Sep/Oct 2002.

P. Kermani and L. Kleinrock. Virtual cut-through: A new computer com-
munication switching technique. Computer Networks, 3:267-286, January
1979.

K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-
Vincentelli. System-level design: Orthogonalization of concerns and
platform-based design. IEEE Transaction on Computer-Aided Design of
Integrated Circuits, 19(12):1523-1543, December 2000.

B. Kim, J. Kim, S. Hong, and S. Lee. A real-time communication method for
wormhole switching networks. In Proceedings of International Conference
on Parallel Processing, pages 527-534, Aug. 1998.

S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg,
K. Tiensyrjd, and A. Hemani. A network-on-chip architecture and design
methodology. In IEEE Computer Society Annual Symposiumon VLS, 2002.

102

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

References

S. K. Kunzli, F. Poletti, L. Benini, and L. Thiele. Combining simulation
and formal methods for system-level performance analysis. In Proceedings
of Design, Automation and Test in Europe Conference, pages 1-6, March
2006.

E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the
IEEE, 83(5):773-799, May 1995.

E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing
models of computation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 17(12):1217-1229, December 1998.

E. A. Lee and Y. Xiong. A behavioral type system and its application in
Ptolemy I1. Formal Aspects of Computing, August 2004.

A. Leroy, P. Marchal, A. Shickova, F. Catthoor, F. Robert, and D. Verkest.
Spatial division multiplexing: a novel approach for guaranteed throughput
on NoCs. In Proceedings of the 3rd I nter national Conference on Hardware/-
Software Codesign and System Synthesis, pages 81-86, 2005.

J.-P. Li and M. W. Mutka. Real-time virtual channel flow control. Journal
of Parallel and Distributed Computing, 32(1):49-65, 1996.

P. Lieverse, T. Stefanov, P. van der Wolf, and E. Depretter. System level de-
sign with SPADE: an M-JPEG case study. In Proceedings of the IEEE/ACM
Inter national Conference on Computer-Aided Design, 2001.

Z. Lu and R. Haukilahti. Networks on Chip, chapter NoC Application Pro-
gramming Interfaces. Kluwer Academic Publisher, 2003.

Z. Luand A. Jantsch. TDM virtual-circuit configuration in network-on-chip
using logical networks. In submission to IEEE Transactions on Very Large
Scale Integration Systems.

Z. Lu and A. Jantsch. Flit admission in on-chip wormhole-switched net-
works with virtual channels. In Proceedings of International Symposium
on System-on-Chip (1SSoC’ 04), pages 21-24, Tampere, Finland, November
2004.

Z. Luand A. Jantsch. Flit ejection in on-chip wormhole-switched networks
with virtual channels. In Proceedings of the IEEE Norchip Conference
(Norchip’ 04), pages 273-276, Oslo, Norway, November 2004.

References 103

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Z. Luand A. Jantsch. Traffic configuration for evaluating networks on chips.
In Proceedings of the 5th International Workshop on System on Chip for
Real-time applications (IWSOC’ 05), pages 535-540, July 2005.

Z. Lu, A.Jantsch, and I. Sander. Feasibility analysis of messages for on-chip
networks using wormhole routing. In Proceedings of the Asia and South Pa-
cific Design Automation Conference (ASPDAC’ 05), pages 960-964, Shang-
hai, China, January 2005.

Z. Lu, I. Sander, and A. Jantsch. A case study of hardware and software
synthesis in ForSyDe. In Proceedings of the 15th International Symposium
on System Synthesis (1SSS 02), pages 86-91, Kyoto, Japan, October 2002.

Z. Lu, I. Sander, and A. Jantsch. Applications of Specification and Design
Languagesfor SoCs- Selected papersfromFDL 2005, chapter Refining syn-
chronous communication onto network-on-chip best-effort services, pages
23-38. Springer, 2006.

Z. Lu, 1. Sander, and A. Jantsch. Towards performance-oriented pattern-
based refinement of synchronous models onto NoC communication. In
Proceedings of the 9th Euromicro Conference on Digital System Design
(DSD’06), pages 37—44, Dubrovnik, Croatia, August 2006.

Z. Lu, R. Thid, M. Millberg, E. Nilsson, and A. Jantsch. NNSE: Nostrum
network-on-chip simulation environment. In The University Booth Tool-
Demonstration Program of the Design, Automation and Test in Europe Con-
ference, March 2005.

Z. Lu, L. Tong, B. Yin, and A. Jantsch. A power-efficient flit-admission
scheme for wormhole-switched networks on chip. In Proceedings of the 9th
World Multi-Conference on Systemics, Cybernetics and Informatics, July
2005.

Z. Lu, B. Yin, and A. Jantsch. Connection-oriented multicasting in
wormhole-switched networks on chip. In Proceedings of the IEEE Com-
puter Society Annual Symposium on VLS, pages 205-210, Karlsruhe, Ger-
many, March 2006.

Z. Lu, M. Zhong, and A. Jantsch. Evaluation of on-chip networks using
deflection routing. In Proceedings of the 16th ACM Great Lakes Symposium
on VLS (GLSVLY'06), pages 296-301, Philadelphia, USA, May 2006.

104

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

References

J. Madsen, S. Mahadevan, K. Virk, and M. Gonzalez. Network-on-chip
modeling for system-level multiprocessor simulation. In International Real-
Time Systems Symposium, 2003.

S. Mahadevan, F. Angiolini, M. Storgaard, R. Olsen, J. Sparsg, and J. Mad-
sen. A network traffic generator model for fast network-on-chip simulation.
In Proceedings of the Design, Automation and Test in Europe Conference,
pages 780-785, March 2005.

G. Martin and H. Chang, editors. Winning the SoC Revolution. Kluwer
Academic Publishers, 2003.

J. W. McPherson. Reliability challenges for 45nm and beyond. In Pro-
ceedings of the 43rd Design Automation Conference, pages 176— 181, July
2006.

M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed bandwidth
using looped containers in temporally disjoint networks within the Nostrum
network on chip. In Proceedings of the Design Automation and Test in Eu-
rope Conference, February 2004.

M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch. The Nostrum
backbone - a communication protocol stack for networks on chip. In Pro-
ceedings of the VLS Design Conference, Mumbai, India, January 2004.

G. E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(5), 1965.

F. G. Moraes, N. Calazans, A. Mello, L. Moller, and L. Ost. HERMES:
an infrastructure for low area overhead packet-switching networks on chip.
Integration, the VLS Journal, 38(1):69-93, 2004.

T. Mudge. Power: A first-class architectural design constraint. |EEE Com-
puter, 34(4):52-58, April 2001.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541-580, April 1989.

M. D. Nava, P. Blouet, P. Teninge, M. Coppola, T. Ben-Ismail, S. Picchiot-
tino, and R. Wilson. An open platform for developing multiprocessor SoCs.
|EEE Computer, 38(7):60-67, July 2005.

References 105

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

C. Neeb, M. Thul, and N. Wehn. Network-on-chip-centric approach to in-
terleaving in high throughput channel decoders. In |EEE International Sym-
posiumon Circuits and Systems, pages 1766—1769, 2005.

K.-H. Nielsen. Evaluation of real-time performance models in wormhole-
routed on-chip networks. Master’s thesis, Department of Microelectronics
and Information Technology, Royal Institute of Technology, Sweden, 2005.

E. Nilsson, M. Millberg, J. Oberg, and A. Jantsch. Load distribution with
the proximity congestion awareness in a network on chip. In Proceedings of
the Design Automation and Test in Europe Conference, 2003.

E. Nilsson and J. Oberg. Reducing peak power and latency in 2D mesh
NoCs using globally pseudochronous locally synchronous clocking. In Pro-
ceedings of the International Conference on Hardware/Software Codesign
and System Synthesis, September 2004.

V. Nollet, M. Marescaux, and D. Verkest. Operating-system controlled net-
work on chip. In Proceedings of the 41st Design Automation Conference,
pages 256-259, Los Alamitos, CA, USA, 2004.

J. Nurmi, H. Tenhunen, J. Isoaho, and A. Jantsch, editors. |nterconnect-
Centric Design for Advanced SoCs and NoCs. Kluwer Academic Publisher,
2004.

J. Oberg. Networks on Chip, chapter Clocking Strategies for Networks on
Chip. Kluwer Accademic Publisher, 2003.

OCP International Partnership. Open core protocol specification, version
2.0. http://www.ocpip.org, 2003.

U. Y. Ogras, R. Marculescu, H. G. Lee, and N. Chang. Communica-
tion architecture optimization: making the shortest path shorter in regular
networks-on-chip. In Proceedings of Design, Automation and Test in Eu-
rope Conference, March 2006.

M. Palesi, R. Holsmark, and S. Kumar. A methodology for design of appli-
cation specific deadlock-free routing algorithms for NoC systems. In Pro-
ceedings of the 4th International Conference on Hardware/Software Code-
sign and System Synthesis, pages 142-147, October 2006.

106

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

References

D. Pamunuwa, J. Oberg, L.-R. Zheng, M. Millberg, A. Jantsch, and H. Ten-
hunen. A study on the implementation of 2D mesh based networks on chip
in the nanoregime. Integration - The VLS Journal, 38(2):3-17, October
2004.

P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh. Performance eval-
uation and design trade-offs for network-on-chip interconnect architectures.
|EEE Transactions on Computers, 54(8):1025-1040, August 2005.

K. Park and W. Willinger, editors. Self-Smilar Network Traffic and perfor-
mance Evaluation. New York: Wiley, 2000.

P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, D. Lyonnard,
O. Benny, B. Lavigueur, D. Lo, G. Beltrame, V. Gagne, and G. Nicolescu.
Parallel programming models for a multiprocessor SoC platform applied to
networking and multimedia. 1EEE Transactions on Very Large Scale Inte-
gration (VLS) Systems, 14(7):667-680, July 2006.

L. S. Peh and W. J. Dally. A delay model for router microarchitectures.
|EEE Micro, 21(1):26-34, Jan.-Feb. 2001.

S. G. Pestana, E. Rijpkema, A. Radulescu, K. Goossens, and O. P. Gang-
wal. Cost-performance trade-offs in networks on chip: A simulation-based
approach. In Proceedings of the Design, Automation and Test in Europe
Conference, 2004.

Philips Semiconductors. Device transaction level (DTL) protocol specifica-
tion, version 2.2, 2002.

V. Raghunathan, M. B. Srivastava, and R. K. Gupta. A survey of techniques
for energy efficient on-chip communication. In Proceedings of Design Au-
tomation Conference, June 2003.

R. Ramaswami and K. N. Sivarajan. Optical Networks: A Practical Per-
spective. Morgan Kaufmann Publishers, 1998.

P. Rashinkar, P. Paterson, and L. Singh. System-On-A-Chip Verification:
Methodology and Techniques. Kluwer Academic Publishers, 2001.

T. Raudvere, I. Sander, A. K. Singh, and A. Jantsch. Verification of design
decisions in ForSyDe. In Proceedings of CODES+ISSS California, USA,
October 2003.

References 107

[109] E. Rijpkema, K. Goossens, and P. Wielage. A router architecture for net-
works on silicon. In Proceedings of Progress 2001, 2nd Workshop on Em-
bedded Systems, Veldhoven, The Netherlands, Oct. 2001.

[110] E. Rijpkema, K. G. W. Goossens, A. Radulescu, J. Dielissen, J. van Meer-
bergen, P. Wielage, and E. Waterlander. Trade offs in the design of a router
with both guaranteed and best-effort services for networks on chip. In Pro-
ceedings of Design Automation and Test in Europe Conference, Mar. 2003.

[111] C. Rowen. Engineering the Complex SoC. Prentice Hall PTR, 2004.

[112] J. A. Rowson and A. Sangiovanni-Vincentelli. Interface based design. In
Proceedings of the 34th Design Automation Conference, 1997.

[113] A. Radulescu, J. Dielissen, P. S. Gonzalez, O. P. Gangwal, E. Rijpkema,
P. Wielage, and K. Goossens. An efficient on-chip network interface offer-
ing guaranteed services, shared-memory abstraction, and flexible network
programming. |EEE Transactions on CAD of Integrated Circuits and Sys-
tems, 24(1):4-17, 2005.

[114] E. Salminen, T. Kangas, V. Lahtinen, J. Riihiméaki, K. Kuusilinna, and T. D.
Hamaldinen. Benchmarking mesh and hierarchical bus networks in system-
on-chip context (in press). Journal of System Architectures, 2007.

[115] 1. Sander and A. Janstch. Transformation based communication and clock
domain refinement for system design. In Proceedings of the 39th Design
Automation Conference, pages 281 — 286, June 2002.

[116] I. Sander and A. Jantsch. System modeling and transformational design
refinement in ForSyDe. |EEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 23(1):17-32, February 2004.

[117] 1. Sander, A. Jantsch, and Z. Lu. Development and application of design
transformations in ForSyDe. In Proceedings of Design, Automation and Test
in Europe Conference, pages 364-369, Munich, Germany, March 2003.

[118] M. Sgroi, L. Lavagno, and A. Sangiovanni-Vincentelli. Formal models for
embedded system design. |EEE Design & Test of Computers, pages 2-15,
April-June 2000.

[119] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vencentelli. Addressing the system-on-a-chip interconnect

108

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

References

woes through communication-based design. In Proceedings of the 38th De-
sign Automation Conference, 2001.

K. G. Shinand S. W. Daniel. Analysis and implementation of hybrid switch-
ing. In Proc. of the 22nd International Symposium on Computer Architec-
ture, pages 211-219, 1995.

J. Sicking. Implementation of asynchronous communication for ForSyDe
in hardware and software. Master’s thesis, Royal Institute of Technology,
Sweden, IMIT/LECS/[2005-73].

D. Siguenza-Tortosa, T. Ahonen, and J. Nurmi. Issues in the development
of a practical NoC: the Proteo concept. Integration, the VLS Journal,
38(1):95-105, 2004.

K. Srinivasan, K. S. Chatha, and G. Konjevod. Linear programming based
techniques for synthesis of network-on-chip architectures. |EEE Transac-
tionson VLS Systems, 14(4):407-420, 2006.

R. Thid. A network on chip simulator. Master’s thesis, Department of Mi-
croelectronics and Information Technology, Royal Institute of Technology,
Sweden, 2002.

R. Thid, M. Millberg, and A. Jantsch. Evaluating NoC communication back-
bones with simulation. In Proceedings of the IEEE NorChip Conference,
November 2003.

R. Thid, I. Sander, and A. Jantsch. Flexible bus and NoC performance anal-
ysis with configurable synthetic workloads. In Proceedings of the 9th Eu-
romicro Conference on Digital System Design, August 2006.

S. Thompson. Haskell - The Craft of Functional Programming. Addison-
Wesley, 2 edition, 1999.

A. S. Vaidya, A. Sivasubramaniam, and C. R. Das. Impact of virtual chan-
nels and adaptive routing on application performance. |IEEE Transactions
on Parallel and Distributed Systems, 12(2):223-237, 2001.

P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and G. Essink.
Design and programming of embedded multiprocessors: an interface-centric
approach. In International Conference on Hardware/Software Codesign and
System Synthesis, pages 206-217, 2004.

References 109

[130] VSI Alliance. Virtual component interface, standard version 2.
http://www.vsi.org, 2000.

[131] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: A power-performance
simulator for interconnection networks. In Proceedings of the 35th Interna-
tional Symposium on Microarchitecture (MICRO), November 2002.

[132] D. Wiklund and D. Liu. SoCBUS: Switched network on chip for hard real
time embedded systems. In International Parallel and Distributed Process-
ing Symposium, 2003.

[133] J. Xu, W. Wolf, J. Henkel, S. Chakradhar, and T. Lv. A case study in
networks-on-chip design for embedded video. In Proceedings of the De-
sign Automation and Test in Europe Conference, 2004.

[134] L.-R. Zheng. Design, Analysis and Integration of Mixed-Sgnal Systems for
Sgnal and Power Integrity. PhD thesis, Royal Institute of Technology, 2001.

[135] H. Zimmermann. OSI Reference Model — the 1ISO model of architecture
for open systems interconnection. |EEE Transactions on Communications,
28(4):425-432, April 1980.

