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Testing for Directed Information Graphs

Sina Molavipour, Germán Bassi, and Mikael Skoglund

Abstract—In this paper, we study a hypothesis test to de-
termine the underlying directed graph structure of nodes in a
network, where the nodes represent random processes and the
direction of the links indicate a causal relationship between said
processes. Specifically, a k-th order Markov structure is consid-
ered for them, and the chosen metric to determine a connection
between nodes is the directed information. The hypothesis test
is based on the empirically calculated transition probabilities
which are used to estimate the directed information. For a
single edge, it is proven that the detection probability can be
chosen arbitrarily close to one, while the false alarm probability
remains negligible. When the test is performed on the whole
graph, we derive bounds for the false alarm and detection
probabilities, which show that the test is asymptotically optimal
by properly setting the threshold test and using a large number
of samples. Furthermore, we study how the convergence of the
measures relies on the existence of links in the true graph.

I. INTRODUCTION

Causality is a concept that expresses the joint behavior
in time of a group of components in a system. In general, it
denotes the effect of one component to itself and others in the
system during a time period. Consider a network of nodes,
each producing a signal in time. These processes can behave
independently, or there might be an underlying connection,
by nature, between them. Inferring this structure is of great
interest in many applications. In [1], for instance, neurons
are taken as components while the time series of produced
spikes is used to derive the underlying structure. Dynamical
models are also a well-known tool to understand functionals
of expressed neurons [2]. Additionally, in social networks,
there is an increasing interest to estimate influences among
users [3], while further applications exist in biology [4],
economics [5], and many other fields.

Granger [6] defined the notion of causality between two
time series by using a linear autoregressive model and
comparing the estimation errors for two scenarios: when
history of the second node is accounted for and when it is
not. With this definition, however, we can poorly estimate
models which operate non-linearly. Directed information was
first introduced to address the flow of information in a
communication set-up, and suggested by Massey [7] as a
measure of causality since it is not limited to linear models.
There exist other methods which may qualify for different
applications. Several of these definitions are compared in [1],
where directed information is argued as a robust measure for
causality. There are also symmetric measures like correlation
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or mutual information, but they can only represent a mutual
relationship between nodes and not a directed one.

The underlying causal structure of a network of processes
can be properly visualized by a directed graph. In partic-
ular, in a Directed Information Graph (DIG) –introduced
simultaneously by Amblard and Michel [8] and Quinn et
al. [1]– the existence of an edge is determined by the value
of the directed information between two nodes considering
the history of the rest of the network. There are different
approaches to tackle the problem of detecting and estimating
such type of graphs. Directed information can be estimated
based on prior assumptions on the processes’ structure, such
as Markov properties, and empirically calculating probabil-
ities [1], [3]. On the other hand, Jiao et al. [5] propose
a universal estimator of directed information which is not
restricted to any Markov assumption. Nonetheless, in the core
of their technique, they consider a context tree weighting
algorithm with different depths, which intuitively resembles
a learning algorithm for estimating the order of a Markov
structure. Other assumptions used in the study of DIGs,
that constrain the structure of the underlying graph, are tree
structures [9] or a limit on the nodes’ degree [3].

The estimation performance on the detection of edges on
a DIG is crucial since it allows to characterize, for instance,
the optimum test for detection, or the minimum number of
samples needed to reliably obtain the underlying model, i.e.,
the sample complexity. In [3], the authors derive a bound on
the sample complexity using total variation when the directed
information between two nodes is empirically estimated.
Following that work, Kontoyiannis et al. [10] investigate the
performance of a test for causality between two nodes, and
they show that the convergence rate of the empirical directed
information can be improved if it is calculated conditioned
on the true relationship between the nodes. In other words,
the underlying structure of the true model has an effect on
the detection performance of the whole graph. Motivated by
this result, in this paper, we study a hypothesis test over a
complete graph (not just a link between two nodes) when the
directed information is empirically estimated, and we provide
interesting insights into the problem. Moreover, we show
that for every existing edge in the true graph, the estimation
converges with O(1/

√
n), while if there is no edge in the

true model, convergence is of the order of O(1/n).
The rest of the paper is organized as follows. In Section II,

notations and definitions are introduced. In particular, the
directed information is reviewed and the definition of an
edge in a DIG is presented. The main results of our work
are then shown in Section III. First, the performance of
a hypothesis test for a single edge is studied, where we



analyze the asymptotic behavior of estimators based on the
knowledge about the true edges. Then, we demonstrate how
the detection of the whole graph relies on the test for each
edge. Finally, in the last section, the paper is concluded.

II. PRELIMINARIES

Assume a network with m nodes representing processes
{X1, . . . ,Xm}. The observation of the l-th process in the
discrete time interval t1 to t2 is described by the random
variable Xt2

l,t1
, which at each time takes values on the discrete

alphabet X . With a little abuse of notation Yi and Y n1
represent the observations of the process Y at instance i and
in the interval 1 to n, respectively.

The metric used to describe the causality relationship of
these processes is the directed information, as suggested pre-
viously, since it can describe more general structures without
further assumptions (such as linearity). Directed information
is mainly used in information theory to characterize channels
with feedback and it is defined based on causally conditioned
probabilities.

Definition 1. The probability distribution of Y n1 causally
conditioned on Xn

1 is defined as

PY n1 || Xn1 =

n∏
i=1

PYi|Xi1,Y
i−1
1

.

The entropy rate of the process Y causally conditioned on
X is then defined as:

H(Y || X) , lim
n→∞

1

n
H(Y n1 || Xn

1 )

= lim
n→∞

1

n

n∑
i=1

H(Yi|Y i−1
1 , Xi

1).

Consequently, the directed information rate of X to Y
causally conditioned on Z is expressed as below:

I(X→ Y || Z) , H(Y || Z)−H(Y || X,Z)

= lim
n→∞

1

n

n∑
i=1

I(Yi ; Xi
1|Y i−1

1 , Zi1). (1)

Pairwise directed information does not unequivocally de-
termine the one-step causal influence among nodes in a
network. Instead, the history of the other remaining nodes
should also be considered. Similarly as introduced in [1],
[8], an edge from Xi to Xj exists in a directed information
graph iff

I(Xi → Xj || X[m]\{i,j}) > 0, (2)

where [m] , {1, 2, . . . ,m}. Having observed the output of
every process, the edges of the graph can be estimated which
results in a weighted directed graph. However, when only the
existence of a directed edge is investigated the performance
of the detection can be improved. This is presented in
Section III.

There exist several methods to estimate information the-
oretic values which most of them intrinsically deal with
counting possible events to estimate distributions. One such

method is the empirical distribution, which we define as
follows.

Definition 2. Let xn[m] = (xn1,1, x
n
2,1, . . . , x

n
m,1) be a realiza-

tion of the random variables Xn
[m] = (Xn

1,1, X
n
2,1, . . . , X

n
m,1).

The joint empirical distribution of k′ , k+1 consecutive time
instances of all nodes is then defined as:

P̂
(n)

Xk
′

[m]

(ak
′

[m]) =
1

n− k

n−k∑
t=1

m∏
i=1

1[xt+ki,t = ak
′

i,1], ∀ak
′

i,1 ∈ X k
′
.

(3)

The joint distribution of any subset of nodes is then a
marginal distribution of (3).

By plugging in the empirical distribution we can derive
estimators for information theoretic quantities such as the
entropy H , where we use the notation Ĥ to distinguish the
empirical estimator, i.e.,

Ĥ(Xk′) = −
∑

ak′∈Xk′
P̂

(n)

Xk′
(ak
′
) log

(
P̂

(n)

Xk′
(ak
′
)
)
. (4)

A causal influence in the network implies that the past
of a group of nodes affects the future of some other group
or themselves. This motivates us to focus on a network of
joint Markov processes in this paper, since it characterizes
a state dependent operation for nodes, although we may put
further assumptions to make calculations more tractable. For
simplicity, we assume a three-node network (i.e., m = 3) and
the processes to be X,Y, and Z in the rest of the work, since
the extension of the results for m > 3 is straightforward.

Assumption 1. {X,Y,Z} is a jointly stationary Markov
process of order k.

Let us define the |X |3k×|X |3 transition probability matrix
Q with elements

Q(Xk+1, Yk+1, Zk+1|Xk
1 , Y

k
1 , Z

k
1 ).

Then, the next assumption prevents further complexities in
the steps of the proof of our main result.

Assumption 2. All transition probabilities are positive, i.e.,
Q > 0.

This condition provides ergodicity for the joint Markov
process and results in the joint empirical distribution asymp-
totically converging to the stationary distribution1, i.e.,

P̂
(n)

Xk+1
1 ,Y k+1

1 ,Zk+1
1

→ PX̄k+1
1 ,Ȳ k+1

1 ,Z̄k+1
1

In general, the directed information rate I(X → Y || Z)
cannot be expressed with the stationary random variables

1The stationary distribution is denoted either as P
X̄k+1

1 ,Ȳ k+1
1 ,Z̄k+1

1
or

as P̄
Xk+1

1 ,Y k+1
1 ,Zk+1

1
in the sequel.



X̄k+1
1 , Ȳ k+1

1 , and Z̄k+1
1 , since a good estimator requires

unlimited samples for perfect estimation. To see this,

I(X→ Y || Z) = I(Ȳk+1; X̄k+1
1 |Ȳ k1 , Z̄k+1

1 )

− I(Ȳk+1; Ȳ 0
−∞, Z̄

0
−∞|Ȳ k1 , Z̄k+1

1 )

≤ I(Ȳk+1; X̄k+1
1 |Ȳ k1 , Z̄k+1

1 ), (5)

where we use the Markov property in the first equation, and
the inequality holds since the mutual information is non-
negative. Thus, with a limited sampling interval, an upper
bound would be derived. The next assumption makes (5) hold
with equality.

Assumption 3. For processes Y and Z, the Markov chain

Ȳk+1 (Ȳ k1 Z̄
k+1
1 ) (Ȳ 0

−∞Z̄
0
−∞)

holds.

Note that the above assumption should hold for every other
two pairs of processes if we are interested in studying the
whole graph and not only a single edge.

III. HYPOTHESIS TEST FOR DIRECTED INFORMATION
GRAPHS

Consider a graph G, where the edge from node i to node j
is denoted by vij ; we say that vij = 1 if the node i causally
influences the node j, otherwise, vij = 0. A hypothesis test
to identify the graph is performed on the adjacency matrix V ,
whose elements are the vijs, and the performance of the test
is studied through its false alarm and detection probabilities

PF = P (V̂ = V ∗|V 6= V ∗), (6)

PD = P (V̂ = V ∗|V = V ∗), (7)

where V̂ is the estimation of V (properly defined later), and
V ∗ is the hypothesis model to test. In Theorem 1 below, both
an upper bound on PF and a lower bound on PD are derived.

Theorem 1. For a directed information graph with adjacency
matrix V of size m×m, if Assumptions 1–3 hold, the
performance of the test for the hypothesis V ∗ is bounded
as:

PF ≤ 1− PG
(
r

2
, Ith

)
, (8)

PD ≥ max

1−N0

[
1− PG

(
r

2
, Ith

)]
, 0

 , (9)

using the plug-in estimation of n samples with n→∞. The
function PG is the regularized gamma function, and N0 =
m(m − 1) − N1 with N1 denoting the number of directed
edges in the hypothesis graph, and r = |X |mk (|X |m − 1).
Finally, Ith is the threshold value used to decide the existence
of an edge, and its order is O(1).

The proof of Theorem 1 consists of two steps. First, the
asymptotic behavior of the test for a single edge is derived in
Section III-A. Afterwards, the hypothesis test over the whole
graph is studied based on the tests for each single edge. It

TABLE I
DIMENSIONS OF INDEX SETS FOR m = 3.

Set Dimension

Θ r = |X |3k (|X |3 − 1)

Γ d = |X |3k (|X |2 − 1)

Γ′ d′ = |X |2k+1 (|X | − 1)

can be seen later on that, by Remark 1 and Corollary 1, the
performance of testing the graph remains as good as a test
for causality of a single edge.

Remark 1. Note that by increasing Ith while remaining of
order O(1), PG

(
r
2 , Ith

)
gets arbitrarily close to one, which

results in the probability of detection converging to one as
the probability of false alarm tends to zero.

A. Asymptotic Behavior of a Single Edge Estimation

In general, every possible probability transition matrix Q
can be parametrized with θ ∈ Θ, where Θ ⊂ Rr (see Table I).
The vector θ is formed by concatenating the elements of Q
in a row-wise manner excluding the last (linearly dependent)
column. However, if the transition probability could be
factorized due to a Markov property among its variables,
the matrix might thus be addressed with a lower dimension
parameter.

To see this, let us concentrate in our 3-node network
{X,Y,Z}. If vxy = 0, or equivalently I(X → Y || Z) = 0,
then by Assumption 3, the transition probability can be
factorized as follows,

Qφxy (Xk+1, Yk+1, Zk+1|Xk
1 , Y

k
1 , Z

k
1 ) =

Qγxy (Xk+1, Zk+1|Xk
1 , Y

k
1 , Z

k
1 )Qγ′xy (Yk+1|Y k1 , Zk+1

1 ). (10)

Here the transition matrix is parametrized by φxy ∈ Φxy
where φxy has two components: γxy ∈ Γ and γ′xy ∈ Γ′,
and Φxy = Γ× Γ′. The dimensions of the sets are shown in
Table I; note that r > d + d′. The vectors γxy and γ′xy are
also formed by concatenating the elements of their respective
matrices as in the case of θ. More details are found in the
proof of Theorem 2 in Appendix A.

Now consider the Neyman-Pearson criteria to test the
hypothesis Φxy within Θ.

Definition 3. The log-likelihood is defined as

Lθn(Xn
1 , Y

n
1 , Z

n
1 )

= log
(
Qθ(X

n
k+1, Y

n
k+1, Z

n
k+1|Xk

1 , Y
k
1 , Z

k
1 )
)

= log

 n∏
i=k+1

Qθ(Xi, Yi, Zi|Xi−1
i−k , Y

i−1
i−k , Z

i−1
i−k)

 .

Let θ? and φ?xy be the most likely choice of transition
matrix with general and null hypothesis vxy = 0, respectively,



i.e.,

θ? = arg max
Θ

Lθn(Xn
1 , Y

n
1 , Z

n
1 ),

φ?xy = arg max
Φxy

Lφxyn (Xn
1 , Y

n
1 , Z

n
1 ). (11)

As a result, the test for causality boils down to check the
difference between likelihoods, i.e., the log-likelihood ratio:

Λxy,n = Lθ
?

n (Xn
1 , Y

n
1 , Z

n
1 )− Lφ

?
xy
n (Xn

1 , Y
n
1 , Z

n
1 ), (12)

which is the Neyman-Pearson criteria for testing Φxy within
Θ. Then, in the following theorem, Λxy,n is shown to
converge to a χ2 distribution of finite degree. The proof
follows from standard results in [11, Th. 6.1].

Theorem 2. Consider a network with three nodes {X,Y,Z}
and arbitrarily choose two nodes X and Y. Suppose Assump-
tions 1–3 hold, then

2Λxy,n
L→ χ2

r−d−d′ ,

if vxy = 0 as n→∞.

Proof: The conditions of the theorem imply that the true
underlying structure for the transition matrix is from Φxy
which is required as in [11, Th. 6.1]. The rest of the proof
follows similar steps as in [10]. See Appendix A for further
details.

Remark 2. Note that the asymptotic result from Theorem 2
depends only on the dimensions of the sets and not in the
particular pair of nodes involved. Furthermore, the result
also holds for a network with more than three nodes by
properly defining the dimensions of the sets.

Remark 3. Knowledge about the absence of edges other
than vxy in the network results in Λxy,n converging to a
χ2 distribution of higher degree since (10) could be further
factorized. To see this, assume vxy = 0 and consider that
a knowledge S about the links (for example, the whole
adjacency matrix V ) was given. Then, let the transition
probability be factorized as much as possible, so it can be
parametrized by Φ′xy which has lower or equal dimension
than Φxy . Take

Λ′xy,n = Lθ
?

n (Xn
1 , Y

n
1 , Z

n
1 )− Lφ

′?
xy
n (Xn

1 , Y
n
1 , Z

n
1 ),

where

φ′?xy = arg max
Φ′xy

L
φ′xy
n (Xn

1 , Y
n
1 , Z

n
1 ).

Intuitively, by following similar steps as in the proof of
Theorem 2, we obtain that Λ′xy,n behaves as a χ2

q random
variable, where r > q > r − d − d′. Since the cumulative

distribution function of the χ2
q is a decreasing function with

respect to the degree q then,

PG

(
r

2
, a

)
≤ PG

(
q

2
, a

)
= P (Λ′xy,n < a|S, vxy = 0)

≤ P (Λxy,n < a|vxy = 0)

= PG

(
r − d− d′

2
, a

)
, (13)

for sufficiently large n and any a > 0. The lower bound
in (13) allows us to ignore the knowledge about other nodes.

Consider now the estimation of the directed information
defined as plugging in the empirical distribution (instead of
the true distribution) into I(Yk+1;Xk+1

1 |Y k1 , Zk+1
1 ), i.e.,

Î(k)
n (X→ Y || Z) , I(Ŷk+1; X̂k+1

1 |Ŷ k1 , Ẑk+1
1 ).

Then, the following lemma states that Î(k)
n (X → Y || Z), is

proportional to Λxy,n with an O(n) factor.

Lemma 1. Λxy,n = (n − k)Î
(k)
n (X → Y || Z), which is the

plug-in estimator of the directed information.

Proof: The proof follows from standard definitions and
noting that the KL-divergence is positive and minimized by
zero. See Appendix B for the complete proof.

Now, let us define the decision rule for checking the
existence of an edge in the graph as follows:

v̂i,j ,

{
1 if (n− k)Î

(k)
n (Xi → Xj || X[m]\{i,j}) ≥ Ith

0 o.w.,

where Ith is of order O(1). Then for any knowledge S about
states of edges in the true graph, as long as vxy = 0 we have:

P (v̂xy = 1|S, vxy = 0)

= P ((n− k)Î(k)
n (X→ Y || Z) > Ith|S, vxy = 0)

≤ 1− PG
(
r

2
, Ith

)
, (14)

where the inequality is due to Remark 3.
From Theorem 2 and Lemma 1, it is inferred that when

in the true adjacency matrix vxy = 0, then the empirical
estimation of the directed information converges to zero with
a χ2 distribution at a rate O(1/n). The asymptotic behavior
of Î(k)

n (X → Y || Z) is different if the edge is present, i.e.,
vxy = 1, which is addressed in the following theorem.

Theorem 3. Consider a network with three nodes {X,Y,Z}
and arbitrarily choose two nodes X and Y. Suppose Assump-
tions 1–3 hold and let Īxy , I(Ȳk+1; X̄k+1

1 |Ȳ k1 , Z̄k+1
1 ), then,

√
n− k

[
Î(k)
n (X→ Y || Z)− Īxy

]
→ N (0, σ2), (15)

with a finite σ2 as n→∞, if vxy = 1.

Proof: The empirical distribution can be decomposed in
two parts, where the first one vanishes at a rate faster than
O(1/

√
n) and the second part converges at a rate O(1/

√
n).



The condition vxy = 1 keeps the second part positive so it
determines the asymptotic convergence of Î(k)

n (X→ Y || Z).
Refer to Appendix C for further details.

Remark 4. Knowledge about the state of other edges in the
true graph model does not affect the asymptotic behavior
presented in Theorem 3, given that the condition vxy = 1
makes the convergence of the estimator independent of all
other nodes. This can be seen by following the steps of the
proof, where we only use the fact that if the true edge exists
then Īxy > 0 and (10) does not hold.

We can use Remark 4 to conclude that:

P (v̂xy = 0|S, vxy = 1)

= P ((n− k)Î(k)
n (X→ Y || Z) < Ith|S, vxy = 1)

= P ((n− k)Î(k)
n (X→ Y || Z) < Ith|vxy = 1)

= 1−Q

(
Ith − (n− k)Īxy√

n− k σ

)
, (16)

for sufficiently large n, where Q(·) is the Q-function, and
where the last equality is due to Theorem 3. Note that if
vxy = 1 then Īxy > 0.

B. Hypothesis Test over an Entire Graph

The performance of testing a hypothesis V ∗ for a graph
is studied by means of the false alarm and detection proba-
bilities defined in (6) and (7), respectively. The results may
be considered as an extension of the hypothesis test over a
single edge in the graph.

First, let the false alarm probability be upper-bounded as

PF = P (V̂ = V ∗|V 6= V ∗) ≤ min
i,j

P (v̂ij = v∗ij |V 6= V ∗).

If V 6= V ∗, there exist nodes τ and ρ such that vτρ 6= v∗τρ.
Hence,

PF ≤ min
i,j

P (v̂ij = v∗ij |V 6= V ∗) (17)

≤ P (v̂τρ = v∗τρ|V 6= V ∗) (18)

= P (v̂τρ = v∗τρ|V 6= V ∗, vτρ 6= v∗τρ)

=

{
P (v̂τρ = 0|V 6= V ∗, vτρ = 1)

P (v̂τρ = 1|V 6= V ∗, vτρ = 0)

≤

1−Q
(
Ith−(n−k)Īτρ√

n−k σ

)
if vτρ = 1

1− PG
(
r
2 , Ith

)
if vτρ = 0

(19)

where the last inequality is due to (14) and (16).
On the other hand, the complement of the detection

probability may be upper-bounded using the union bound:

1− PD = P (V̂ 6= V ∗|V = V ∗) ≤
∑
i,j

P (v̂ij 6= v∗ij |V = V ∗)

=
∑
i,j

vij=1

P (v̂ij 6= v∗ij |V = V ∗) +
∑
i,j

vij=0

P (v̂ij 6= v∗ij |V = V ∗)

=
∑
i,j

vij=1

P (v̂ij = 0|V = V ∗, vij = 1)

+
∑
i,j

vij=0

P (v̂ij = 1|V = V ∗, vij = 0)

≤ N1

(
1−Q

(
Ith − (n− k)Ī√

n− k σ

))
+N0

(
1− PG

(
r

2
, Ith

))
,

(20)

where N0 and N1 are the number of off-diagonal 0s and 1s
in the true matrix V , i.e., N0 + N1 = m(m − 1), and Ī ,

min
i,j

s.t. vij=1

Īij . The last inequality holds due to (14) and (16).

Since Īij = I(X̄j,k+1; X̄k+1
i,1 |X̄k

j,1, X̄
k+1
[m]\{i,j},1) > 0 and

it is of order O(1), then as n→∞ and noting that

lim
a→∞

1−Q(−a) = 0,

we have that,

PF ≤ 1− PG
(
r

2
, Ith

)
(21)

1− PD ≤ N0

[
1− PG

(
r

2
, Ith

)]
. (22)

This concludes the proof of Theorem 1.

Corollary 1. In the special case the hypothesis test is
performed on a single edge, for the false alarm probability,
(17) and (18) become equal and we have

P ′F , P (v̂xy = 1|vxy = 0) = 1− PG
(
r − d− d′

2
, Ith

)
,

and for the detection probability,

P ′D , P (v̂xy = 1|vxy = 1) = 1,

as n→∞, which is in the same lines as the argument in [10,
Sec. III-C] for m = 2.

C. Numerical Results

The bounds derived in Theorem 1 state that the detection
probability can be desirably close to one while the false alarm
probability can remain near zero with a proper threshold test.
In Fig. 1, these bounds are depicted with respect to different
values of Ith for a network with m = 5 nodes. The joint
process is assumed to be a Markov process of order k = 2,
and the random variables take values on a binary alphabet
(|X | = 2).

It can be observed in the figure that, for fixed Ith, PD
improves as N0 decreases, i.e., when the graph becomes
sparser. Furthermore, by a proper choice of Ith, we can reach
to optimal performance of the hypothesis test, i.e., PD = 1
and PF = 0.



Fig. 1. Lower bound for detection probability PD and upper bound for PF ,
derived by varying the threshold of the test Ith, and with k = 2, m = 5 and
binary alphabet. Since PF ≥ 0 and PD ≤ 1 by increasing Ith, PF → 0
and PD → 1.

Ã A

Fig. 2. The matrix Ã is formed by removing the last column of A.

IV. SUMMARY AND REMARKS

In this paper, we investigated the performance of a hy-
pothesis test for detecting the underlying directed graph
of a network of stochastic processes, which represents the
causal relationship among nodes, by empirically calculating
the directed information as the measure. We showed that
the convergence rate of the directed information estimator
relies on the existence or not of the link in the real structure.
We further showed that with a proper adjustment of the
threshold test for single edges, the overall hypothesis test
is asymptotically optimal.

This work may be expanded by considering a detailed
analysis on the sample complexity of the hypothesis test.
Moreover, we assumed in this work that the estimator has
access to samples from the whole network while in practice
this might not be the case (see e.g. [12]).

APPENDIX A
PROOF OF THEOREM 2

For any right stochastic matrix A of dimensions na×ma,
let the matrix Ã denote the first ma−1 linearly independent
columns of A, as depicted in Fig. 2.

Without loss of generality, consider X to be the set of inte-
gers {1, 2, . . . ,|X |} which simplifies the indexing of elements
in the alphabet. Let ukx,1 denote (ux,1, ux,2, . . . , ux,k) ∈ X k,
and u′x, u

′
y, u
′
z ∈ X excluding (u′x, u

′
y, u
′
z) = (|X | ,|X | ,|X |).

Next define the 3k + 3 vector

~u , (ukx,1, u
k
y,1, u

k
z,1, u

′
x, u
′
y, u
′
z) (23)

which is associated with an element of Q̃ (the sub-matrix of
the transition probability matrix Q).

Every ~u can be addressed via the pair (l~u, g~u) where l~u ∈
[1 : |X |3k] and g~u ∈ [1 : |X |3 − 1] indicate the row and
column of that element, respectively. Also, let f~u , (l~u −
1)(|X |3 − 1) + g~u, which denotes the index of that element
when vectorizing Q̃. Any possible transition matrix can then
be indexed with a vector

θ = (θ1, θ2, . . . , θr) = (θf~u) ∈ Θ

as Qθ, where Θ has dimension r (see Table I) and θ is
constructed by concatenation of rows in Q̃θ.

Suppose now that vxy = 0 or equivalently, by definition
(2), I(X→ Y || Z) = 0. Then

Q(Xk+1, Yk+1, Zk+1|Xk
1 , Y

k
1 , Z

k
1 )

= P (Xk+1, Zk+1|Xk
1 , Y

k
1 , Z

k
1 )P (Yk+1|Y k1 , Zk+1

1 ). (24)

Thus, the transition matrix Q is determined by the elements
of two other matrices T1 and T2 given by (24). Define the
vectors

~w , (ikx,1, i
k
y,1, i

k
z,1, i

′
x, i
′
z),

~w′ , (iky,1, (i
k
z,1, i

′
z), i

′
y),

which are associated with an element in T̃1 and T̃2, such that
(i′x, i

′
z) 6= (|X | ,|X |) in ~w and i′y 6= |X | in ~w′. Then

f~w , (l~w − 1)(|X |2 − 1) + g~w,

f~w′ , (l~w′ − 1)(|X | − 1) + g~w′ ,

where the pairs of row and column indices for each element
in T̃1 and T̃2 are then (l~w, g~w) and (l~w′ , g~w′), respectively.

A matrix Q such as the one in (24) can be parametrized
by a vector φxy ∈ Φxy , where Φxy = Γ× Γ′ has dimension
d · d′ (see Table I). Then

Qφxy =

Qγxy (Xk+1, Zk+1|Xk
1 , Y

k
1 , Z

k
1 )Qγ′xy (Yk+1|Y k1 , Zk+1

1 ),

where

γxy = (γf~w) ∈ Γ and γ′xy = (γ′f~w′ ) ∈ Γ′

determine φxy , are vectors of length d and d′, and are
constructed by concatenating the rows of Q̃γxy and Q̃γ′xy ,
respectively. There exists then the mapping h : Φxy → Θ
such that component-wise:

(h(φxy))f~u = γf~w · γ
′
f~w′
. (25)

Consider the matrix K(φxy) of size (r+1)×(d+d′) such
that for every element:

(K(φxy))f~u,f =


∂Qh(φxy)(u

′
x,u
′
y,u
′
z|u

k
x,1,u

k
y,1,u

k
z,1)

∂γf
f ≤ d

∂Qh(φxy)(u
′
x,u
′
y,u
′
z|u

k
x,1,u

k
y,1,u

k
z,1)

∂γ′f−d
f > d.

(26)

In other words, every row of the matrix K(φxy) is a deriva-
tive of an element of Qh(φxy) with respect to all elements of
γxy followed by the derivatives with respect to γ′xy .



According to [11, Th. 6.1], and by the definition of θ? and
φ?xy in (11),

2

{
Lθ

?

n (Xn
1 , Y

n
1 , Z

n
1 )− Lφ

?
xy
n (Xn

1 , Y
n
1 , Z

n
1 )

}
L→ χ2

r−d−d′ ,

if Qh(φxy) has continuous third order partial derivatives and
K(φxy) is of rank d+d′. The first condition holds according
to the definition of h in (25). To verify the second condition
we can observe that there exist four types of rows in K(φxy):
• Type 1: Take the rows ~u1 = (ik1 , j

k
1 , l

k
1 , i
′, j′, l′) in (26)

such that (i′, l′) 6= (|X | ,|X |) jointly and j′ 6= |X |. This
means that in the (f~u1

)-th row of K, the derivatives are
taken from

Qh(φxy)(i
′, j′, l′|ik1 , jk1 , lk1) = γf~w1

· γ′f~w′1
,

where ~w1 = (ik1 , j
k
1 , l

k
1 , i
′, l′) and ~w′1 = (jk1 , (l

k
1 , l
′), j′).

So all elements in such rows are zero except in the
columns f~w1

and (d+f~w′1), which take the values γ′f~w′1
and γf~w1

, respectively.
• Type 2: Now consider the rows ~u2 = (ik1 , j

k
1 , l

k
1 , i
′, j′, l′)

such that (i′, l′) = (|X | ,|X |) and j′ 6= |X |. This means
that in the (f~u2

)-th row of K, the derivatives are taken
from

Qh(φxy)(i
′, j′, l′|ik1 , jk1 , lk1)

=

(
1−

∑
(a,b) 6=(|X |,|X |)

γf~w2(a,b)

)
γ′f~w′2

,

where we define ~w2(a, b) = (ik1 , j
k
1 , l

k
1 , a, b) and ~w′2 =

(jk1 , (l
k
1 , l
′), j′). So all elements in such rows are zero

except in the (|X |2 − 1) columns (among the first d
columns) from f~w2(1,1) to f~w2(|X |,|X |−1) which are equal
to −γ′f~w′2

, and the column (d+ f~w′2) which is equal to

1−
∑

(a,b) 6=(|X |,|X |)

γf~w2(a,b)
.

• Type 3: Consider the rows ~u3 = (ik1 , j
k
1 , l

k
1 , i
′, j′, l′) such

that (i′, l′) 6= (|X | ,|X |) and j′ = |X |. Also let ~w3 =
(ik1 , j

k
1 , l

k
1 , i
′, l′) and ~w′3(a) = (jk1 , (l

k
1 , l
′), a). Then, all

elements of such rows are zero except in the column
f~w3

which takes the value

1−
∑
a6=|X |

γ′f~w′3(a)
,

and the (|X | − 1) columns (among the last d′ columns)
from d+ f~w′3(1) to d+ f~w′3(|X |−1) that are equal −γf~w3

.
• Type 4: Lastly, consider rows ~u4 = (ik1 , j

k
1 , l

k
1 , i
′, j′, l′)

such that (i′, l′) = (|X | ,|X |) and j′ = |X |. As-
sume vectors ~w4(a, b) = (ik1 , j

k
1 , l

k
1 , a, b) and ~w′4(a) =

(jk1 , (l
k
1 , l
′), a). Then , the only non-zero elements

belong to the (|X |2 − 1) columns from f~w4(1,1) to
f~w4(|X |,|X |) (among the first d columns) which are equal
to

−
(

1−
∑
a 6=|X |

γ′f~w′4(a)

)
,

and the (|X | − 1) columns from d + f~w′4(1) to d +
f~w′4(|X |−1) (among the last d′ columns) which are equal
to

−
(

1−
∑

(a,b)6=(|X |,|X |)

γf~w4(a,b)

)
.

We show now that if a linear combination of all columns
equals the vector zero, then all coefficients should be zero as
well. Let cf be the f -th column of K(φxy) then if

d+d′∑
f=1

αfcf = ~0, (27)

then, αf = 0,∀f . To see this, consider the Type 1 row with
ik1 = jk1 = lk1 = 1k and i′ = l′ = 1. Since it only has two
non-zero elements, we have that

∀j′ ∈ [1 : |X | − 1] : α1γ
′
j′ + αj′γ1 = 0. (28)

Then, take the Type 3 row with ik1 = jk1 = lk1 = 1k and
i′ = l′ = j′ = 1, where we have that

α1

( ∑
a 6=|X |

1− γ′a
)
−
∑
b 6=|X |

αbγ1 = 0. (29)

From (28) and noting that we have assumed Q > 0, if
α1 > 0 then αj′ < 0 for all j′ ∈ [1 : |X | − 1]. Hence,
the left-hand side of (29) is strictly positive and not zero. An
analogous result is found assuming α1 < 0. By contradiction,
we conclude that α1 = 0, and from (28),

∀j′ ∈ [1 : |X | − 1] : αj′ = 0.

By varying (i′, l′) and for all combinations of (ik1 , j
k
1 , l

k
1) we

derive that all αf s are zero, and as a result, K(φxy) has
d+d′ linearly independent columns which meets the second
condition. The proof of Theorem 2 is thus complete.

APPENDIX B
PROOF OF LEMMA 1

The proof follows similar steps as the one in [10, Prop. 9].
Using the definition of log-likelihood,

Lθ
?

n (Xn
1 , Y

n
1 , Z

n
1 )

= max
θ∈Θ

n∑
i=k+1

log(Qθ(Xi, Yi, Zi|Xi−1
i−k , Y

i−1
i−k , Z

i−1
i−k))

= max
θ∈Θ

∑
xk+1
1 yk+1

1 zk+1
1

(n− k)P̂Xk+1
1 Y k+1

1 Zk+1
1

(xk+1
1 yk+1

1 zk+1
1 )

× log(Qθ(xk+1yk+1zk+1|xk1yk1zk1 ))

= −(n− k)

[
min
θ∈Θ

{
D
(
P̂Xk+1

1 Y k+1
1 Zk+1

1
|| Qθ ⊗ P̂Xk1 Y k1 Zk1

)}
+

∑
xk+1
1 yk+1

1 zk+1
1

P̂ (xk+1
1 yk+1

1 zk+1
1 ) log

(
P̂ (xk1y

k
1z
k
1 )

P̂ (xk+1
1 yk+1

1 zk+1
1 )

)]
,

(30)

where

(Qθ ⊗ P̂Xk1 Y k1 Zk1 )(xk+1
1 yk+1

1 zk+1
1 ) ,

P̂Xk1 Y k1 Zk1 (xk1y
k
1z
k
1 )Qθ(xk+1yk+1zk+1|xk1yk1zk1 ).



Since the KL-divergence is minimized by zero, then

Lθ
?

n (Xn
1 , Y

n
1 , Z

n
1 ) = (n− k)·

[Ĥ(Xk
1 , Y

k
1 , Z

k
1 )− Ĥ(Xk+1

1 , Y k+1
1 , Zk+1

1 )]. (31)

On the other hand, for the second log-likelihood, we have:

Lφ
?

n (Xn
1 , Y

n
1 , Z

n
1 )

= max
φ∈Φ

n∑
i=k+1

log(Qφ(Xi, Yi, Zi|Xi−1
i−k , Y

i−1
i−k , Z

i−1
i−k))

= max
φxz

n∑
i=k+1

log(Qφxz (Xi, Zi|Xi−1
i−k , Y

i−1
i−k , Z

i−1
i−k))︸ ︷︷ ︸

A1

+ max
φy

n∑
i=k+1

log(Qφy (Yi|Y i−1
i−k , Z

i
i−k))︸ ︷︷ ︸

A2

.

With a similar approach as in (30), we can expand A1 and
A2 as it is shown in (32) at the bottom of the page. As a
result,

Lφ
?

n (Xn
1 , Y

n
1 , Z

n
1 )

= (n− k)
[
Ĥ(Xk

1 , Y
k
1 , Z

k
1 )− Ĥ(Xk+1

1 , Y k1 , Z
k+1
1 )

+ Ĥ(Y k1 , Z
k+1
1 )− Ĥ(Y k+1

1 , Zk+1
1 )

]
. (33)

Finally, combining (31) and (33), we obtain

Λxy,n = Lθ
?

n (Xn
1 , Y

n
1 , Z

n
1 )− Lφ

?
xy
n (Xn

1 , Y
n
1 , Z

n
1 )

= (n− k)[Ĥ(Yk+1|Y k1 , Zk+1
1 )− Ĥ(Yk+1|Xk+1

1 , Y k1 , Z
k+1
1 )]

= (n− k)Î(k)
n (X→ Y || Z), (34)

which concludes the proof of Lemma 1.

APPENDIX C
PROOF OF THEOREM 3

We begin by expanding the expression Î(k)
n (X → Y || Z)

using the definition of the empirical distribution in (3) and
we obtain (35), found at the bottom of the next page. We then
proceed to analyze the asymptotic behavior of the estimator.

The first four terms in (35), i.e., the KL-divergence
terms, decay faster than O(1/

√
n). This is shown later

in the proof. On the other hand, since vxy = 1,
I(Ȳk+1; X̄k+1

1 |Ȳ k1 , Z̄k+1
1 ) > 0 due to (5) and Assumption 3,

and thus, the last term in (35) is non-zero and dominates
the convergence of the estimator, as we see next. Here, one
observes that conditioning on vxy = 1 is sufficient to analyze

the convergence of Î(k)
n (X→ Y || Z) and further knowledge

about other edges is irrelevant (see Remark 4). We then
conclude that,

lim
n→∞

√
n− k Î(k)

n (X→ Y || Z) = lim
n→∞

1√
n− k

n∑
i=k+1

Si,

where

Si , logPȲk+1X̄
k+1
1 |Ȳ k1 Z̄

k+1
1

(yix
i
i−k|yi−1

i−kz
i
i−k)

− logPȲk+1|Ȳ k1 Z̄
k+1
1

(yi|yi−1
i−kz

i
i−k)

− logPX̄k+1
1 |Ȳ k1 Z̄

k+1
1

(xii−k|yi−1
i−kz

i
i−k).

We note that Si is a functional of the chain {(Xi
i−k, Y

i
i−k,

Zii−k)} and its mean is E[S] = I(Ȳk+1; X̄k+1
1 |Ȳ k1 , Z̄k+1

1 ).
The chain is ergodic and we can thus apply the central limit
theorem [13, Sec. I.16] to the partial sums to obtain

√
n− k

 1

n− k

n−1∑
i=k+1

Si − E[S]

→ N (0, σ2), (36)

where σ2 is bounded.
Now, to complete the proof, it only remains to show that

the KL-divergence terms in (35) multiplied by a
√
n− k

factor converge to zero as n→∞. We present the proof for
one term and the others follow a similar approach. We first
recall the Taylor expansion with Lagrange remainder form,

f(x) = f(a) + f ′(a)(x− a) +
f ′′(x∗)(x− a)2

2!
,

for some x∗ ∈ (a, x). Then, let us define ρ ,
P̄ (xk+1

1 yk+1
1 zk+1

1 )

P̂ (xk+1
1 yk+1

1 zk+1
1 )

, so we can expand the first KL-divergence
term as:

D(P̂Xk+1
1 Y k+1

1 Zk+1
1
|| P̄Xk+1

1 Y k+1
1 Zk+1

1
)

= −
∑

xk+1
1 yk+1

1 zk+1
1

P̂ (xk+1
1 yk+1

1 zk+1
1 ) log ρ

= −
∑

P̂ (xk+1
1 yk+1

1 zk+1
1 )

[
(ρ− 1)− (ρ− 1)2

2!τ2

]
=
∑

P̂ (xk+1
1 yk+1

1 zk+1
1 )(ρ− 1)2 1

2τ2
(37)

=
∑(

P̂ (xk+1
1 yk+1

1 zk+1
1 )− P̄ (xk+1

1 yk+1
1 zk+1

1 )
)2

C,

(38)

for some τ ∈ (1, ρ), where

C ,
1

2P̂ (xk+1
1 yk+1

1 zk+1
1 )τ2

,

A1 = −(n− k)

[
min
φxz

{
D
(
P̂Xk+1

1 ,Y k1 ,Z
k+1
1
|| Qφxz ⊗ P̂Xk1 ,Y k1 ,Zk1

)}
+

∑
xk+1
1 ,yk1 ,z

k+1
1

P̂ (xk+1
1 , yk1 , z

k+1
1 ) log

(
P̂ (xk1 , y

k
1 , z

k
1 )

P̂ (xk+1
1 , yk1 , z

k+1
1 )

)]

A2 = −(n− k)

[
min
φy

{
D
(
P̂Y k+1

1 ,Zk+1
1
|| Qφy ⊗ P̂Y k1 ,Zk+1

1

)}
+

∑
yk+1
1 ,zk+1

1

P̂ (yk+1
1 , zk+1

1 ) log

(
P̂ (yk1 , z

k+1
1 )

P̂ (yk+1
1 , zk+1

1 )

)]
. (32)



and (37) follows due to∑
P̂ (xk+1

1 yk+1
1 zk+1

1 )(ρ− 1)

=
∑

P̄ (xk+1
1 yk+1

1 zk+1
1 )− P̂ (xk+1

1 yk+1
1 zk+1

1 ) = 0.

Since the Markov model is assumed to be ergodic (Assump-
tion 2), P̂ (xk+1

1 yk+1
1 zk+1

1 ) 9 0, and therefore C is bounded.
Now ∀i ∈ [1 : n− k] consider the sequence

Ti(x
k+1
1 yk+1

1 zk+1
1 ) , 1[Xk+i

i Y k+i
i Zk+i

i = xk+1
1 yk+1

1 zk+1
1 ]

with mean P̄ (xk+1
1 yk+1

1 zk+1
1 ). According to the law of

iterated logarithms,

lim sup
n→∞

∑n−k
i=1 (Ti − P̄ (xk+1

1 yk+1
1 zk+1

1 ))√
(n− k) log log(n− k)

=
√

2 a.s.

Using the definition of the empirical distribution, this implies

lim sup
n→∞

(n− k)(P̂ (xk+1
1 yk+1

1 zk+1
1 )− P̄ (xk+1

1 yk+1
1 zk+1

1 ))√
(n− k) log log(n− k)

= lim sup
n→∞

P̂ (xk+1
1 yk+1

1 zk+1
1 )− P̄ (xk+1

1 yk+1
1 zk+1

1 )√
log log(n− k)/

√
n− k

=
√

2 a.s. (39)

As a result we can rewrite (38) and conclude that

lim sup
n→∞

√
n− kD(P̂Xk+1

1 Y k+1
1 Zk+1

1
|| P̄Xk+1

1 Y k+1
1 Zk+1

1
)

= lim sup
n→∞

log log(n− k)√
n− k

∑
xk+1
1 yk+1

1 zk+1
1

2C = 0,

given that each term in the finite sum is bounded. Therefore,
as n→∞, the four KL-divergence terms in (35) multiplied
by a

√
n− k factor tend to zero and the proof of Theorem 3

is thus complete.
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