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Sammanfattning

Konceptet autonoma fordon har pa senare tid blivit brett utforskat av bland
annat bilindustrin som ett sétt att exempelvis forbéattra brinsleekonomi eller fa
tillgang till miljoer som utgor en fara for manskliga operatorer. Modell-prediktiv
reglering (MPC) har traditionellt anvénts fér att styra system med langsam
dynamik men i och med uppkomsten av kraftfullare datorer anvinds det nu
i system med avsevirt snabbare dynamik. En av de huvudsakliga styrkorna
hos MPC é&r dess formaga att hantera restriktioner som finns i alla fysikalis-
ka system. Malet med den hér uppsatsen var att utveckla en linjar regulator
bestaende av ett lager for vigfoljning och undvikning av hinder fér en auto-
nom bil. Dess formaga att minimera avvikelser till referensbanan och samtidigt
undvika statiska hinder utvirderades. Fokus placerades pa sparningen av refe-
rensbanan foljaktligen implementeras inte nagot system for planering av banan.
Istéllet anvéndes en fordefinierad bana. Simuleringar utvecklades i matlab base-
rat pa den kinematiska cykelmodellen. Regulatorns prestanda utvirderas vidare
pa Smart Mobility Lab (SML) pa KTH dér en modifierad radiostyrd bil styrdes
via Robotics Operting System (ROS). Resultaten fran experimenten visade pa
att bilen klarar av att undvika hindren samtidigt som den foljde banan. Dock
misslyckades bilen i experimenten att respektera kraven pa maximal avvikelse
fran hindren och banan.



Model Predictive Control for path tracking and
obstacle avoidance of autonomous vehicle

Ahmed Hatem

Abstract—The concept of autonomous vehicles has been widely
explored lately by, among others, automotive companies as a
way to for example improve fuel efficiency or to gain access
to environments which pose a danger to human operators.
Model Predictive Control (MPC) has traditionally been used to
control systems with slower dynamics but with the emergence of
more powerful computers it is now being used in systems with
considerably faster dynamics as well. One of the main strengths
of MPC is its ability to handle constraints which are present in
all physical systems. The aim of this thesis was to develop a single
layer linear controller for path tracking and obstacle avoidance
of an autonomous car. Its ability to minimize the deviations to
the reference path while clearing static obstacles was evaluated.
Focus was placed on the tracking problem hence no trajectory
planning system was implemented. Instead a predefined path
was used. Simulations were developed in MATLAB based on the
kinematic bicycle model. The performance of the controller was
further tested at Smart Mobility Lab (SML) in KTH where a
modified R/C car was controlled through Robotics Operating
System (ROS). The results from the experiments showed that it
was able to successfully evade the obstacles while tracking the
path. However, in the experiments the vehicle failed to respect
the requirements on maximum deviation from the obstacles and
the path.

I. INTRODUCTION

HE concept of autonomous vehicles was for not so long

ago an unrealistic technology. Today autonomous road,
surface and aerial vehicles are reality. One of the challenges
that engineers face is the ability of the vehicle to track a given
path, i.e. the tracking problem. To this end Model Predictive
Control (MPC) has been employed partly due to its ability
to handle constraints which are necessary in the modeling of
all physical systems. The main idea of MPC is to solve a
finite horizon optimal control problem at certain time steps and
compute an optimal control sequence of which only the first
control action is implemented. The procedure is then repeated
at the next sampling step as new information about the state
has been obtained from a model.

Due to an increase in the number of road vehicles in today’s
modern society safety has become a major issue. Studies have
shown that by 2006 road traffic accidents was the leading
cause of death by injury as well as the tenth-leading source
to all deaths globally. Estimations suggest that 1.2 million
people are killed in road crashes each year. Furthermore, as
many as 50 million are injured [1]. If current trends persist
road traffic injuries are predicted to become the third-leading
contributor to the global burden of disease and injuries by
2020 [2]. Although passive as well as active systems have
been developed and implemented in vehicles over the years
[3], there is a desire to further reduce the number of traffic
accidents. Since a great deal of light-duty vehicle crashes occur

due to human error and distracted driving partially-automated
crash avoidance systems can offer a potential reduction in both
the frequency and the severity of accidents [4]. This suggests
that the implementation of fully-automated road vehicles could
possibly provide an even greater improvement.

Recently predictive control for autonomous vehicles has
also been studied, [5] is an example where the vehicle was
instructed to follow a given reference path. In this specific case
the path is assumed to be collision free, a scenario which may
not be useful in case of unknown environments. Nevertheless,
it can be utilized in for instance mining networks which are
well mapped.

Experiments with autonomous vehicles have been success-
fully conducted over the years, [6] and [7] are two such
examples. Although they proved to be successful there are still
some years before the concept of autonomous road vehicles
will be deployed on a large scale. Both tests where performed
on days which were sunny and clear, in the absence of any
heavy rain or snow. Another issue is that some maneuvers were
performed with safety in mind and could sometimes deviate
from common human behaviour. This needs to be considered
in the future to avoid that the behavior of the vehicle becomes
too inefficient when compared to a piloted vehicle. A better
understanding of human behavior still remains a major diffi-
culty to tackle.

While the two above mentioned studies targeted urban areas
off-road path following also receives some attention. Scania
has shown interest in developing autonomous vehicles with
specialized applications such as for deployment in mining
sites. In [8] the authors propose an Economic Model Predictive
Control (EMPC) for smooth path following. The objective
being to track a path while at the same time minimizing the
first as well as the second derivative of the road curvature. The
proposed controller is implemented on a construction truck
and its performance in terms of path tracking accuracy is
compared to a Pure Persuit Controller (PPC). Results show
that the suggested EMPC outperforms the PPC with an average
deviation from the road of 6 cm. Hence the area of autonomous
road vehicles has been widely studied over the years, although
major challenges still remain to be tackled before it can be
widely used in society.

A. Thesis outline

The objective of this thesis is to develop a simple MPC
for path tracking and obstacle avoidance for autonomous
road vehicle. The controller will be developed and tested in
simulations performed in MATLAB. To assess the performance
of the controller it will be implemented on a modified R/C car



with a scale of measure of approximately 1:10. The tests are
carried out at Smart Mobility Lab in KTH. The vehicle should
be able to track a straight line with a velocity of 0.5 /s while
avoiding obstacles placed along the path. More specifically the
vehicle should fulfill the following requirements:

o Handle disturbances in the form of initial lateral devia-
tions from the path on up to 0.4 m.

« In the absence of any obstacles the settling distance must
not exceed double the initial lateral deviation. This is
the distance projected along the path that the vehicle
has to travel in order to recover to the path with an
over/undershoot no larger than 0.1 m.

« Avoid 3 static obstacles by driving around them.

o The vehicle should clear the obstacles with a distance not
larger than 0.07 m.

o Over/undershoots from the path must not exceed 0.07 m.

Moreover, following assumptions are made:

« The vehicle travels with a constant velocity.

o The obstacles are identical with the dimension 0.14 X
0.14 m.

o The shape and position of the obstacles are known to the
controller.

e The estimations of the states are free from errors and
noise. No filters are used to deal with uncertainties and
noise.

o No trajectory planning system is available, instead the
path is predefined.

II. BACKGROUND

A control system for an autonomous vehicle can be regarded
as a system composed of two components. Firstly there is
the path planning algorithm which generates a collision free
trajectory. Work in this area dates back to the 1980s and
focused mainly on calculating a time-optimal and collision-
free path reaching from one point to another [9], [10].
Ever since then many different methods and implementations
have been reported including the Rapidly-exploring Random
Tree Algorithm (RRT), generalized Voronoi diagram and the
visibility graph method. The second component is the path
tracking algorithm which ensures that the vehicle follows the
planned trajectory. In order to achieve this one has to take into
consideration that vehicles are made out of mechanical and
electrical systems which are subjected to physical constraints.
Furthermore, the dynamics of the vehicles are nonlinear. With
its ability to handle both linear as well as nonlinear constraints
in a systematic manner MPC is an attractive method for
tackling this problem. However, the usage of MPC for systems
with fast dynamics is challenging especially for nonlinear
systems. Since an optimization problem has to be solved the
process is computationally heavy and therefore requires pow-
erful computers. Even though there are examples of successfull
implementations of MPC controllers on test vehicles [11],
[12], they are not nonlinear but linear. Hence, implementations
of nonlinear MPC on autonomous vehicles still pose some
challenges [13]. A possible solution to this issue could be to
divide the control structure into two layers where one layer
deals with the nonlinear vehicle model along with constraints

and trajectory generation while the design of the second layer
is based on a linearization around a trajectory provided by
the first layer. This layer is used to stabilize the vehicle.
An additional design technique that can be used to further
decrease the computational demand necessary to obtain fast
feedback required by vehicle stabilization is to use a lower
sampling rate for the former control layer and a higher for the
latter. These measures along with others were investigated in
[14] with the aim to develop an MPC for obstacle avoidance.
For the obstacle avoidance ability the authors suggest an
approach where the obstacles are enclosed in circles and a
term is added to the objective function which when penalized
appropriately makes sure that the vehicle does not enter the
region in which the obstacle lays. The results suggest that
the two-level control framework overcomes the issue related
to computational burden and the vehicle is not only able to
track the reference path but also able to evade the obstacles
successfully.

Studies have also been conducted regarding single layer
controllers for nonlinear vehicle models with the aim of track-
ing a reference. In [15] the performance of a nonlinear vehicle
model is compared to another formulation where the nonlinear
model is successively linearized around the current operating
point. The findings in this study show that the computational
burden poses a problem for the former formulation while the
latter is able to stabilize the vehicle for moderate speeds. This
highlights the challenges present for implementation of an
MPC with nonlinear dynamics for obstacle avoidance system.
In this thesis it will be investigated, on the basis of the
requirements, how well a simple linear single layer MPC
performs.

A. Model Predictive Control

MPC is an optimal control strategy which traditionally has
been applied to systems with rather slow dynamics, such as
process control plants. However, as more powerful computing
hardware have emerged over time it is today used in systems
with considerably faster dynamics such as on flight control
computers in airplanes as well as software for combustion
engines. As mentioned above the main strength of the method
lies in its ability to control linear and nonlinear systems while
taking into account state as well as input constraints. The
method uses a predictive control strategy where the future
response of the controlled plant is predicted using a discrete
linear time invariant dynamic model. The system is represented
in state space form

Ter1 = Axy + Buy 0
ye = Oy + uy

where z; € IR" is the state vector, u; € IR™ is the control
input and y; € IRP is the output vector. The time index ¢ € Z
is integer valued. The principle is to find an open loop control
sequence which minimizes a certain cost function over a finite



time horizon. The problem can be formulated as

J(x(t), )

Tttk4+1 = AIt+k + But_;,_k, Vk = O, ey Np -1
Ttk e X, VkZO,...,Np—l

Utk EU, Vk/’:O,,Np—l

It+Np € Xf

xy = x(t),

min
u

subject to

2

where u = (uy,...,us4 N, 1) is a sequence of control inputs,
x4k denotes the state at time ¢ + k as predicted at time ¢ and
N,, is the prediction horizon. The sets X € R"® and U € R?
are the constraints on the state and input respectively. The
terminal constraint set in the state is Xy C X. Now if the goal
is to steer system (2) to the origin the cost function J(z(¢),u)
can be chosen as a quadratic function

N,—1
J(.’I,'(t),ll) = .’L'?JerPfiCtJer“r Z xtT+kat+k+utT+kRut+k7
k=1

3)
where Py, () are positive semidefinite (P, > 0) and R
is positive definite (R > 0). The algorithm starts with a
measurement of the state x(t). Then optimization problem (2)
is solved. In the optimal control sequence found in the previous
step only the first control is applied. The system then evolves
one time step after which the procedure is repeated.

Since there exist standard solvers for convex optimization
problems it is desirable to make (2) convex. This is achieved
if the cost function is convex, the system dynamics are linear
and the constraint sets X, U are convex as well.

III. VEHICLE MODEL

A kinematic model representing the lateral motion of a
vehicle can under some specific assumptions described below
be developed. In contrast to a dynamic model where the forces
acting on the system are taken into account the kinematic
model is derived from mathematical relationships governing
the system. Furthermore, compared to higher fidelity vehicle
models the system identification on the kinematic model is
easier because of the low number of system parameters needed
to describe the system. In addition to that studies have shown
that the kinematic model is under some conditions able to
actually perform similarly well compared to a more complex
and computationally heavy dynamic model [16]. For this
application where the velocity of the vehicle as well as the
lateral acceleration are low the kinematic model performs well
[17]. This motivates the design of the controller based on a
kinematic model.

A. Kinematic model

Consider a bicycle model of the vehicle where the two
wheels in each axle are represented by a single wheel aligned
with the center of gravity of the vehicle, see Figure 1. The

nonlinear continuous time equations that describe this model
in an inertial frame rate are [18]

z = veos(¥) (4a)
¥ = vsin(vy) (4b)
)= %tan(é) (4c)

where = and y are the coordinates of the vehicle given in the
global coordinate system. The yaw angle is denoted v and the
wheelbase is given by [. The longitudinal component of the
velocity is v. In the kinematic bicycle model it is assumed
that the slip angles at both wheels are zero. Consequently the
lateral component of the velocity is zero. This is a reasonable
assumption to make for low velocities [19]. The steering angle
of the front wheels with respect to the longitudinal axis of the
car is denoted 9.

Fig. 1. The nonlinear kinematic bicycle model.

Note that in this model it is assumed that both left and right
front wheel have the same steering angle. In reality the inner
wheel turns with a greater angle due to the fact that it covers
a shorter distance than that of the outer wheel. However, this
difference is in this case small enough to be neglected.

B. Road-aligned coordinates

In order to formulate the tracking problem a model trans-
formation from time-dependent vehicle dynamics to a track-
dependent (also known as Frenet-Serret frame or curvelinear
frame) dynamics is proposed. Similar ideas have previously
been developed in the area of robotics [20]. To this end a new
variable s, which represents the the distance traveled along the
reference path, is introduced. The system dynamics presented
in the previous section are modeled in terms of the independent
variable s. In this frame of reference the states of interest are
the lateral deviation to the reference path and the error in the
heading angle here denoted e, and e, respectively. Figure 2
shows the road-aligned coordinate system where p; is the road
radius and v, is the heading angle of the reference path. The
two components of the velocity & and y are in the body frame
of reference. The velocity projected along the direction of the
center line, represented in Figure 2 by a solid arrow, is denoted
V.



Fig. 2. The road-aligned coordinate system. The dynamics are derived about
a curve defining the centerline of a path.

With the assumption that the lateral component of the vehicle
velocity is zero, i.e y=0 the following equations can be derived
from Figure 2

éy = vsin(1s), (5a)

ép =1 — s, (5b)

o _ psveos(ey) (50
Ps — €y

In order to derive the spatial dynamics the following relation
is used

d() d() dt
ds T dds (©)
If $ # 0 is assumed at any time, by the inverse function
theorem it holds that
@l ™
ds §
The d/erivatives of (5a) - (5b) with respect to s, represented
by (-) , are

. dey €y  ps

—e
VS g T Tytan(ew), (8a)
o _dey ey (ps —ey)tan(d) .

= — = — = — b

T e 5 pslcos(ey) Ve (8)

which is a spatial-based representation of the vehicle dynam-
ics. In order to switch from the spatial coordinates to the
global coordinates X, Y and v the following transformation
is necessary:

X =X, — eysin(vs), (9a)
Y =Y, +eycos(i), (9b)
¢ = ’(/}S + €y, (9C)

where X, Y and 15 denote the the global coordinates as well
as the heading angle of the desired path [21],[22].

C. Linearization

The proposed models are both nonlinear which results in
a non-convex optimal open-loop control problem. One can
expect conventional solvers for nonlinear problems to find
local rather than global solutions. On the other hand for linear
systems, quadratic cost functions and constraint sets which are
polyhedral the problem reduces to a quadratic one for which
efficient solvers exist. Furthermore, these solvers yield a global
optimal solution [23]. In order to obtain good performance
for the tests it is necessary to keep the solving time for the
optimization down. This will be easier achieved with the use
of a linear model. Consequently, it is highly preferable to work
with linear systems. It is therefore necessary to linearize the
systems around an appropriate point. For simplicity this point
was chosen as ¢, = 0, ey, = 0 and § = 0. The system
was discretized using forward Euler’s method with sampling
distance As = vTs where T} is the sampling time.

IV. OBSTACLE AVOIDANCE SYSTEM

The size and position of the obstacles are as previously
mentioned assumed to be known. The system works in such
a way that as soon as a collision is predicted a soft constraint
will be set on the lateral deviation e,. This allows the vehicle
to pass the obstacle either by making a left or right hand turn.
How the vehicle chooses to act is predefined in the algorithm.
If the center of the obstacle is placed above the path the vehicle
will make a right hand turn to pass it. Likewise, if the obstacle
is centered below the path the vehicle is instructed to make a
left hand turn. If on the other hand the obstacle is placed along
the path the vehicle will make a turn based on the placement
of the upcoming obstacle. In other words the controller will
choose the way which minimizes the lateral distance to the
reference path. In the simulations the center of gravity of
the vehicle was chosen as the point which must avoid the
obstacles. In reality the vehicle cannot be represented by a
point so to take the width of the vehicle into consideration the
size of the obstacles were simply increased.

V. CONTROL PROBLEM FORMULATION

Based on the spatial representation of the vehicle model and
the objective to follow a desired path while evading obstacles
the following MPC formulation was formulated:

Np
min Z Qiey? + Qaey? + Q36 + Quui—1” + R A}
= (10a)
st i1 = Az +B(u—1 + Awy) +C VE=0,...,N,

(10b)

|ue] — € < Umae VE=0,...,N, (10c)

|Au_y| < Atipay ¥E=0,.... N, (10d)

€ >=0 Vt=0,....N, (10e)

To achieve the goal of following the desired path the objective
function is defined such that the square of e, and e, are
minimized. As mentioned in the previous section a bound is set
on ey in order for the vehicle to avoid the obstacles. To prevent



the optimization problem from becoming infeasible those
constraints along with the hard constraints on the steering
angle u; had to be softened with a slack variable ¢;. As in
any physical system the control input u; at step ¢ and the
control correction variable Aw;_;1 at step ¢ — 1 are limited.
In this case the maximum steering angle is upper bounded by
Umae While the change of rate is limited by Aty,q,. In this
formulation the control correction variable is treated as the
input to the system while the steering angle is considered as
a state. With this formulation the control input at time ¢ can
be computed recursively with

(1)

The state vector [e, e, s]7 is denoted z; and the matrix A, the
vectors B and C' are obtained by linearizing and discretizing
(5¢), (8a) and (8b). Moreover, since the intention is to drive
in a straight line the limit of the above mentioned equations
as p — oo had to be calculated. The final results are

Up = U1 + Auy.

1 oT, 0] 0 0
A=10 1 0of,B=|Y%| C=]|0 (12)
0 0 1] 0 vT

The system dynamics can now as described in [24] be written

as
Te41| A 13- Tt B C
o i 1 e R v e RS
—— ~~~

~—~

A B C

VI. EXPERIMENTAL SETUP

The simulations were initially performed in MATLAB us-
ing YALMIP, a toolbox for modeling and optimization. The
toolbox uses quadprog as standard for solving quadratic
programming problems. At a later stage this simulation was
replaced with a more efficient one where the problem was
reformulated as a quadratic programming problem. The results
are presented in the following sections. To assess the perfor-
mance of the controller it was implemented and tested on a
modified R/C car, see Figure 3. It is equipped with an Nvidia
Jetson TX2 embedded computer. The position, orientation as
well as velocity of the vehicle were tracked using a set of
motion capture cameras (MOCAP) from Qualisys.

Fig. 3. Test vehicle.

A. Robotics Operating System

The optimization problem was solved on a separate com-
puter using MATLAB. The communication between the com-
puter, the vehicle and the sensors was carried out through the
Robotics Operating System (ROS). Each of the components
constitute a node in the system. A ROS master is set up
making sure that the individual nodes are able to locate
each other. The nodes communicate with each other through
messages. As soon as the sensors publish new data to the
topic /qualisys_odom the computer, being a subscriber
to that topic, receives the data. The computer then solves the
optimization problem and publishes the control input in the
topic /cmd to which the vehicle is a subscriber. See Figure 4
for a schematic of the setup.

Registration 2 Registration

y i
Script ‘ Vehicle

Publish

-

Publish Subscribe Subscribe

/qualisys_odom

Fig. 4. Schematics of ROS setup.

B. MPC formulated as Quadratic Programming

In order to obtain good performance in the experiments
the sampling time for the controller had to be minimized.
The sensors fed the controller with new data with a rate of
20 Hz meaning that the optimization could not take longer
than 50 ms to complete. Otherwise no feedback will be
provided to the vehicle which could lead to slow responses
and collision with obstacles. The simulations developed in
YALMIP proved not to fulfill this requirement. To improve
the efficiency of the controller the problem was rewritten



as a quadratic programming problem [25]. To start with the
optimization problem was rewritten on the form

1

min §ZTHZ
subject to Acgz = beq (14)
Az =<}

where z = (xtT+1|t7 . 71'7]\}?'“ Up—1fgs -+ - »Ut+Np71)T~ The
matrix H associated with the objective function is a diagonal
square matrix of the size 4N, + N, +1 x 4N, + N, + 1. The
structure of the matrix is

Q o 0

0 Q O 0
H= 0

:: ... R 0

0 0 ... ... we

where the submatrices are defined as
Q = diag(we, , We,, , s, W), R = diag(r,...,r). (15)

The size of Q is 4 x 4 while R is N, x N,,. Note also that w,
is the weight for the slack variable and is a scalar. The matrix
A., along with the vector b., are attained by considering the
system dynamics as

where Z = (zﬂl‘tw)z; ‘t)T and U = (uy|g, .-, Uy Np—1Jt)-
The matrices A and B and the vector C are given as
_ B 0 . ... 0
A AB B 0 ... 0
A? - .
A= |, B= AB
i, ; NS
AN»—-1B AM»-2B . AB B
C
C+AC
C= .
C+AC,...,+AN—1C
equation (16) can be rewritten as
Z — BU = Az +C. a7

Note that z = (ZTUT)T hence the matrix A, and the vector
beq can now be identified as

Aeq = [I_B]? beq :AZﬂt +C. (18)

As for the limitation on the input and steering angle the matrix
A and the vector b are introduced. These are defined as

_umaz_
0 ... I .
o ... —I 1_7
0 -1 :

L 71 -

The identity matrices are of size IV, x N,. The last element
in both the matrix A and the vector b is for the non-negativity
constraint on the slack variable. The submatrix A of size
N, x N,Ns + N, + 1 along with the subvector b of size
N, x 1 define the upper or lower constraints on the lateral
deviation necessary for for the vehicle to evade an obstacle. If
for instance the center of the obstacle is aligned with the path
and the goal is to pass it from above there will be a positive
bound on the lateral deviation equal to half of the width of
the obstacle. As for the constraint on the control correction
variable they are represented by the matrix A which is of size
N, x N,Ns + N, + 1.

It is evident from Figure 5 and Table I that the QP formula-
tion of the MPC problem is significantly faster than the initial
one developed in YALMIP. It shows the time to complete
an optimization step for sampling time 0.05 s and with a
prediction horizon of 20. Note that the first two iterations
have been excluded since they take significantly longer to run
because of the initialization in MATLAB. Because of their short
duration they do not affect the performance of the controller.
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Fig. 5. Time to complete optimization for each sampling step.

YALMIP | QP

Max [ms] 166 37

Mean [ms] 142 18
TABLET

COMPARISON OF PERFORMANCE OF SCRIPTS.

C. Evaluation of performance

In this section the results from both the simulation as well
as the experiments are presented. The performance of the
controller was evaluated on basis of the requirements given
in the introduction. To start with the ability of the controller
to track a reference path was investigated. In these tests no
obstacles were present.

1) Reference tracking: Figure 6 shows the path of the
vehicle starting with a lateral offset of approximately 0.4 m
from the reference line being the x axis. The experiments were



conducted for a set of different weights on the control input. To
begin with the control correction variable was not limited, the
prediction horizon was set to 25 and the mean speed, excluding
the short time where the vehicle accelerates, was about 0.55
m/s. Only the lateral deviation was penalized with the weight
we,=0.8. The objective of this test was to investigate the effect
different weights on the steering angle had on the performance.

Fig. 6. Experiment showcasing the effect an increasing weight on the control
input has on the ability of the vehicle to track the reference.

In the first test represented by the blue line the control
input was not penalized but limited by the steering servo to a
maximum of 30°. The result suggests that the vehicle travels
with an oscillatory movement along the path. This is caused
by the fact that since the input is not penalized even a small
deviation from the desired path will result in the controller
asking for maximum steering angle. This in combination with
the fact that the steering servo in reality has a limitation on
the change of rate cause the oscillations. If on the other hand
the weight on the control input is increased the oscillations
will be dampened. However, it is evident that even a too large
value will result in oscillations although with longer periods.
Note that the size of the oscillations visible in curves for
w, = 0.01 to w, = 0.3 can be deceiving. In reality they
are small and hardly visibly to the eye because of the small
steering angles typically 1-2°. The results indicate that by
choosing the weights carefully it might be possible to bring
the vehicle to the reference path and stabilize it without taking
the limitation in change of control input into account. Surely
as can be seen in Figure 7 this is in fact possible. In this case
w,,=0.0015, and the weight on the error in heading angle had
to be increased to 0.03. From these results it is evident that
the controller is indeed able to cope with a disturbance in the
form of an initial lateral deviation from the path. Furthermore,
the settling distance is just about the required 0.8 m. Hence,
the vehicle fulfills the requirements although with no margin
of safety.

0.1 T T T

Experiment

0.05 - —— Simulation

>-0.15 | q
02 | |

-0.25 - / ]
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Fig. 7. Comparison of experiment and simulation, vehicle starting with a
lateral offset of roughly 0.4 m.

In Figure 8 the control input and the error in heading
angle as well as the velocity of the vehicle from both the
experiment and simulation are presented. Since the vehicle
does not accelerate in the simulation but starts instantly to
travel with a constant velocity it reached the path faster. This
could also explain why it changes steering earlier than in the
experiment.
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Fig. 8. Comparison of steering angle, error in heading angle and velocity of
vehicle in both experiment (blue) and simulation (orange).

2) Obstacle avoidance: Having shown that the vehicle is
able to successfully track a reference the next step is to
introduce obstacles in its path. Three boxes in the shape of
rectangles were used for this purpose.

Although the results so far suggest that it is possible to
track a reference and stabilize the vehicle without taking
the dynamics of the steering, namely limitation in change of
rate of steering, into account this will as shown here pose a
problem. In Figure 9 the path of the vehicle is illustrated for
3 different cases. While the weights on the control input as
well as the states remain the same as in the previous tests i.e



we, = 0.8, we,, = 0 and w, = 0.1 the parameter that was
changed was the limitation on the control correction as well as
the prediction horizon. It is evident that an increase in A4
will cause a slower change of rate in the steering resulting in
a larger lateral deviation when evading the obstacles. As the
orange curve suggests the vehicle will at some point not be
able to recover fast enough to avoid a collision with the next
obstacle. An increase in prediction horizon is on the other
hand enough to solve the problem.

0.6 : : :
Au__ =00, N =25
max P
oal Au, =190, N =25 |
Au__ =m/90,N =35
max P

0.8 . . . . . . . . . .

Fig. 9. Experiment with obstacles for showing the effect the limitation on
the rate of change of the steering has on the vehicle. Red rectangles represent
the obstacles while the line encircling them show the region which the center
of gravity of the vehicle must not enter to avoid collision.

However, the increase in prediction horizon with 10 units
comes with the cost of a rise in the time to solve the
optimization problem. The average time increases from 28 ms
to 37 ms. While the mean value is below the limit of 50 ms
there were still peaks which surpassed it. In this case they
were not many enough to affect the controller. However, if the
prediction horizon is further increased the controller might not
be able to solve the optimization problem in time which will
result in no feedback and possibly a collision. With the same
sets of parameters but an increase in the maximum allowed
control correction to pi/60 the vehicle was able to evade the
obstacles. The results from the experiments along with the
simulation are presented in Figure 10.
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Fig. 10. Comparison between results obtained from experiment and simula-

tion.

The obtained results suggest that although the vehicle was
able to clear the obstacle there is a significant difference be-
tween what the simulation predicts and the experiment. While
the simulation determines that the vehicle should be able to
meet the requirements on maximum clearing distance from
the obstacles and the over/undershoot this is obviously not
the case in the experiment. The differences in the trajectories
between the simulation and the experiments could be caused
by modelling errors or inaccuracy in the linearized model
that arise when the vehicle moves further away from the
linearization point. While the wheelbase could be determined
with a fairly high accuracy the maximum rate of change in
the steering angle could not be decided with high accuracy.
Therefore, it had to be estimated. Because of the uncertainty
it is likely subjected to error and could therefore be a possible
explanation to the differences in the different trajectories. To
investigate the effect it has on the behaviour of the vehicle a
series of tests were run in the simulation. To further ensure
that the linearization is not to blame the tests were run with
two different methods for linearization. The first being the lin-
earization performed around a fixed point as described earlier
while the second was performed around the last calculated
state. As Figure 11 shows an increase in Au,q, results in
larger oscillations when turning. If increased too much the
vehicle started departing further away from the linearization
point which resulted in the simulation crashing. On the other
hand, if the the linearization was performed for every sampling
instance the vehicle proved, as expected, to be able to cope
with larger values on Au,,,,. The difference in trajectories
obtained with the two methods of linearization turned out not
to be significant for Au,., = /60, the value used for the
test shown in Figure 9. Moreover, the differences between the
trajectories are most evident only for the last obstacle.
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Fig. 11. Comparison of trajectories for linearization around fixed point and
linearization around last calculated states for different limits on Aumaz.

VII. CONCLUSION

The objective of this thesis was to develop a controller to
be used in an autonomous car for path tracking and obstacle
avoidance. The vehicle should as put forward in this paper
be able to deal with initial lateral deviation and recover to
the desired path within a specified settling distance. All this
while clearing the obstacles and at the same time keeping
the distance to the reference path to a minimum. The results
obtained from the simulations as well as the experiments show
that the vehicle in general failed to do so. It did manage to
fulfill the requirement on settling distance in absence of any
obstacle. However, although it was able to clear the obstacles
it did not respect the limit on the clearing distance from the
obstacles. It was higher than necessary.

This should be regarded as a feasibility study or an inves-
tigation of the capabilities of a simple MPC. To determine
whether or not it is possible to control a small scale vehicle
using only a linear MPC, with no other components such as
Kalman filter, through MATLAB. It can be concluded, on the
basis of the obtained results, that even though it was able to
track the path and avoid the obstacles it did not exhibit the
level of accuracy required for a real life scenario. The main
reasons why it is not suitable for controlling a vehicle in reality
is partly because of the performance and the circumstances
under which the tests were conducted. If scaled to the size
of a real vehicle the results from the experiments suggest
that a vehicle would clear obstacles with a distance several
times larger than the width or length of the obstacle itself.
Hence, the controller does not show the level of precision
required for dealing with a traffic situation on a highway
where the distance separating vehicles and/or obstacles is
sometimes less than a meter. Moreover, in a real scenario
when travelling at high speed one would like to include
an additional control variable being the acceleration of the
vehicle. Simply relying on lateral control may not be enough
to avoid a collision without performing sudden turns at high
speed which pose a danger not only to passengers but also to
other vehicles. Therefore longitudinal control should also be

taken into account for this purpose. Another important point
to be made here is the velocity with which the vehicle was
travelling in the test, around 0.5 m/s. Although the kinematic
vehicle model allows for significantly higher velocities before
the model becomes too inaccurate it is not suitable to use for
modelling high speed maneuvers. At that point lateral forces
and interaction between the wheels and the ground would have
to be modelled as well.

Nonetheless, the results should be regarded as relatively
good for several reasons. First and foremost the vehicle that
was used was an R/C car intended to be controlled manually
by humans and not by a computer. Therefore one cannot
expect the steering to perform with high accuracy. Secondly,
the MPC is sensitive to modeling errors and uncertainties.
Recall that the vehicle was controlled solely with a linear
MPC neither a robust MPC nor a Kalman filter was used
to deal with uncertainties and disturbances. Despite this the
controller performed relatively well. If the accuracy of the
controller, more specifically the large lateral deviations from
the obstacles could be decreased it could possibly be used as
an auto parking systems.

A. Future work

Although one can further develop the concept by for
instance introducing a lidar device to detect and track the
obstacles there is still room for improvements of the controller.
First of all further investigation is needed to determine the
underlying cause to the differences in the trajectories between
simulation and experiment. For this setup the vehicle was
controlled through MATLAB running on a separate computer.
Even though the objective was met controlling the vehicle in
this fashion proved not be optimal since MATLAB is relatively
slow compared to other languages such as Python and C.
Therefore with a more efficient solver running onboard the
vehicle one can expect the solving time to drop and as a
consequence of that the sampling time can be reduced while
the prediction horizon can be increased for better performance.
Using MATLAB for controlling a real vehicle is because of the
computational burden not convenient.

In this case the velocity was considered to be constant while
in reality it differed slightly at each time instance. Even if
the controller handled this well it i worth considering adding
the acceleration as an additional input to the system so that
the velocity can be controlled. This would give the controller
another control parameter to use in order to meet the objective.
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