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Abstract—The three-node relay channel with a Gaussian
source is studied for transmission subject to a low-delay con-
straint. A design algorithm for joint source–channel mappings
is proposed and numerically evaluated. The designed system
is compared with reference systems, based on modular source
and channel coding, and the distortion-rate function for the
Gaussian source using known achievable rates for the relay
channel. There is a significant gain, in terms of decreased
power, in using the (locally) optimized systems compared with
the reference systems. The structure of the resulting source
mapping and the relay mapping is visualized and discussed
in order to gain understanding of fundamental properties of
optimized systems. Interestingly, the design algorithm generally
produces relay mappings with a structure that resembles Wyner–
Ziv compression.

Index Terms—Estimation, joint source–channel coding, relay
channel, quantization, sensor networks.

I. INTRODUCTION

The relay channel has been studied extensively since its
introduction [1]. With the increasing popularity and relevance
of ad-hoc wireless sensor networks, cooperative transmission
is more relevant than ever. In this paper, we focus on relaying
in the context of source transmission over a sensor network. A
sensor node encodes measurements and communicates these
to a sink node, with another node acting as a relay in the
transmission. We focus on low-delay memoryless source–
channel and relay mappings, subject to power constraints at
the source and relay nodes. Hence, the proposed technique
is a suitable candidate in applications with strict delay and
energy constraints, such as in wireless sensor networking for
closed-loop control over wireless channels [2], [3].

Existing work on source and channel coding over the relay
channel includes [4], [5]. However, whereas [4] looks at
asymptotic high-SNR properties the present work is design
oriented. Also, although [5] includes some practical results
it relies on powerful channel codes. Because of this, the
decoding is not instantaneous but a significant delay is needed
for the message to be decoded. Another recent study is the one
presented in [6]. This work also focuses on characterizing the
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Fig. 1. Structure of the system.

achievable high-SNR performance, however, in the presence
of partial channel-state feedback.

The source–channel separation theorem [7] states that
source and channel coding can be treated separately. However,
in the case of low-delay constraints this is no longer true.
We therefore propose a joint source–channel coding solution
where at the source node, the source and channel codes are
merged into one single operation — a mapping from the
source space to the channel space. In a similar way, the
operation at the relay is a mapping from its input channel
space to its output channel space. We investigate how to
optimize1 both the source–channel mapping at the source
as well as the channel–channel mapping at the relay. To
our knowledge, there are no similar existing results in this
direction. Our approach is however related to the ones being
used for bandwidth compression–expansion in [8]–[10] and
distributed source–channel coding in [11].

II. PROBLEM FORMULATION

We will study the three-node system depicted in Figure 1.
Our goal is to transmit information about the Gaussian random
variable X with variance σ2

X = 1 from the source node to
the destination node so that it can be reconstructed with the
smallest possible distortion. Besides the direct link we also
have a path from the source to the destination via the relay
node. The rules for the communication are the following. For
each source sample X we have T channel uses at hand. The
source and the relay do not transmit at the same time but
must share these channel uses. We therefore use K channel
uses for the transmission from the source and the remaining
L = T − K channel uses for the transmission from the
relay. The scenario is in other words that of a half-duplex
orthogonal relay channel. All transmissions are disturbed by

1We use the term optimized, in contrast to optimal, to refer to a system
which is locally optimal but not necessarily globally optimal.
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additive white Gaussian noise; the received symbols on each
channel can therefore be expressed as

yi = si + ni i = 1, 2, 3, (1)

where si is the transmitted symbol and ni is independent
white Gaussian noise with E[nin

T
i ] = σ2

i I , i = 1, 2, 3.
The transmitted symbols are given by the functions α and
β according to

s1 = s2 = α(x) ∈ R
K , (2)

s3 = β(y2) ∈ R
L. (3)

The equality s1 = s2 is due to the broadcast nature of a
wireless channel. The source and the relay node operate under
average transmit power constraints given by

1
K

E[‖α(X)‖2] ≤ Pα, (4)

1
L

E[‖β(Y 2)‖2] ≤ Pβ . (5)

For notational convenience we define the channel power gain
of each channel as ai = 1/σ2

i . Assuming (4) is fulfilled
with equality, the total signal-to-noise ratio (SNR) of the
transmission from the source node to the destination node is
hence given by Pαa1. We further assume that the total SNR of
all channels is known by all involved parts. The destination
node receives two symbols — y1 from the direct link and
y3 from the relay. Based on these the transmitted value is
estimated as

x̂ = γ(y1, y3). (6)

Given this system we want to find the optimal source
mapping, relay mapping, and receiver — denoted α, β, and
γ. To have a low-delay system we want the source and the
relay nodes to work on a sample-by-sample basis restricting
K and L to be integers. If K > 1, α will in general be a
nonlinear mapping from the one-dimensional source space to
the K-dimensional channel space. In a similar way β will be a
nonlinear mapping from the K-dimensional input of the relay
to its L-dimensional output. As distortion measure we use the
mean squared error (MSE), E[(X− X̂)2], “optimal” therefore
refers to optimal in the minimum MSE (MMSE) sense.

III. OPTIMIZED MAPPINGS

The expected distortion for a given system can be written
as

D = E[(X − X̂)2] =
∫∫∫∫

p(x)p(y1|α(x))p(y2|α(x))×
p(y3|β(y2))(x − γ(y1, y3))

2dxdy1dy2dy3, (7)

where p(·) and p(·|·) denote probability density functions
(pdfs) and conditional pdfs, respectively. The factorization of
p(x, y1, y2, y3) in (7) follows from the fact that all channels
are orthogonal with independent noises. What we would like
is to find α, β, and γ such that D is minimized given the
power constraints in (4) and (5). There are two problems
with this direct approach. First, it is very hard to optimize
all parts of the system simultaneously; second, the optimal
mappings could be arbitrary nonlinear mappings with no

closed form expressions. To make the problem feasible we
take the following suboptimal approach. Instead of optimizing
all parts of the system simultaneously we use the common
strategy of optimizing one part at a time keeping the others
fixed. The second problem is solved by discretizing each
dimension of the channel space into M equally spaced points
with spacing Δ according to

S = {−Δ
M − 1

2
,−Δ

M − 3
2

, . . . , Δ
M − 3

2
, Δ

M − 1
2

}
(8)

and restricting the outputs of the source and the relay node to
satisfy s1 ∈ SK and s3 ∈ SL, respectively. At the receiving
side the same approximation is made using a hard decision
decoding rule — for instance, y1 is decoded according to

ŷ1 = arg min
y′

1∈SK
‖y1 − y′

1‖2, (9)

where “ ˆ ” will be used to indicate that the value has been
discretized. This approximation is expected to be good as long
as M is sufficiently large and Δ is small in relation to the
standard deviation of the channel noise, σi. In the following
analysis P (·|·) will be used for conditional probabilities —
for example, P (ŷ3|s1) denotes the probability that the relay
receives ŷ3 given that s1 is transmitted from the source.

A. Optimal Source Mapping

The problem of finding the optimal source mapping α
(assuming β and γ are fixed) is a constrained optimization
problem, which can be turned into the following unconstrained
problem using the Lagrange multiplier method [12], [13]

min
α

(
E[(X − X̂)2] + λE[‖α(X)‖2]

)
, (10)

where

E[(X − X̂)2] =
∫

p(x)E[(x − X̂)2|α(x)]dx, (11)

E[‖α(X)‖2] =
∫

p(x)‖α(x)‖2dx. (12)

Since p(x) in (11)–(12) is nonnegative, it is clear that the
operation of the source mapping, α, can be optimized for each
x individually according to

α(x) =arg min
s1∈SK

(
E[(x − X̂)2|s1] + λ‖s1‖2

)
(13)

where

E[(x − X̂)2|s1] =
∑

ŷ1,ŷ2,ŷ3
P (ŷ1|s1)P (ŷ2|s1) ×

P (ŷ3|β(ŷ2))(x − γ(ŷ1, ŷ3))2. (14)

The intuition behind the Lagrange term λ‖s1‖2 is the fol-
lowing: ‖s1‖2 is a measure of the power that is needed to
transmit the signal s1, the term λ‖s1‖2 can therefore be used
to control the transmit power of the source node by penalizing
signals that would use too much power. When λ ≥ 0 is set
to the “correct” value, the source node will not map x to the
signal that gives the lowest distortion but rather to the signal
that gives the lowest distortion conditioned that the power
constraint in (4) is fulfilled.



J. KARLSSON and M. SKOGLUND: OPTIMIZED LOW-DELAY SOURCE–CHANNEL–RELAY MAPPINGS 3

B. Optimal Relay Mapping

In a similar way, the minimization to find the optimal relay
mapping β (assuming α and γ are fixed), can be turned into
the following unconstrained minimization problem

min
β

(
E[(X − X̂)2] + ηE[‖β(Ŷ 2)‖2]

)
, (15)

where

E[(X − X̂)2] =
∑
ŷ2

P (ŷ2)E[(X − X̂)2|ŷ2, β(ŷ2)], (16)

E[‖β(Ŷ 2)‖2] =
∑
ŷ2

P (ŷ2)‖β(ŷ2)‖2. (17)

Equations (11) and (16) are two different ways of expanding
the MSE using Bayes’ rule. Looking at (16) and (17), it is once
again clear that the minimization can be done individually for
each ŷ2 ∈ SK , which gives

β(ŷ2) = arg min
s3∈SL

(
E[(X − X̂)2|ŷ2, s3] + η‖s3‖2

)
(18)

where

E[(X − X̂)2|ŷ2, s3] =
∑

ŷ1,ŷ3
P (ŷ3|s3) ×∫

x
p(x|ŷ2)P (ŷ1|α(x))(x − γ(ŷ1, ŷ3))2dx. (19)

In (18), η ≥ 0 is the Lagrange multiplier which — when
chosen correctly — makes sure that the power constraint (5)
is satisfied.

Sawtooth Mappings (K = L = 1): As we will see in
Section IV, all of the optimized relay mappings have a similar
shape in the one-dimensional case (i.e., K = L = 1). Based
on this observation we propose to use a sawtooth mapping
as shown in Figure 2. This mapping has previously been
proposed for distributed source–channel coding [14] and also
for the relay channel in the context of maximum achievable
rates [15].

The sawtooth mapping can be parametrized by the two
parameters b and c and is defined as

β(y2) =
{

cy2 if y2 ∈ [−b, b)
β(y2 − 2bm) if y2 − 2bm ∈ [−b, b), m ∈ Z,

(20)

where, for a given b, the parameter c must be chosen so that the
power constraint in (5) is satisfied, that is, E[β2(Y2)] = Pβ .
The optimal value of b will depend on the channel gains and
is easiest found by performing a grid search.

C. Optimal Receiver

Since we use the MSE as a distortion measure, it is a well
known fact from estimation theory that the optimal receiver
(assuming α and β are fixed) is the expected value of X given
the received symbols,

x̂ = γ(ŷ1, ŷ3) = E[X |ŷ1, ŷ3] =
∫

x

xp(x)×
∑
ŷ1

P (ŷ1|α(x))
∑
ŷ2

P (ŷ2|α(x))
∑
ŷ3

P (ŷ3|β(ŷ2))dx.

(21)
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Fig. 2. Parameterized sawtooth mapping.

As an alternative receiver for the sawtooth mappings, we
will also implement the maximum likelihood (ML) decoder
given by

x̂ = γML(y1, y3) = arg max
x

p(y1, y3|x). (22)

The ML decoder is suboptimal in the sense that it does not
minimize the MSE.

D. Design Algorithm

Given the above expressions for the source mapping, the
relay mapping, and the receiver it will be possible to optimize
the system iteratively. We do this by keeping two parts of the
system fixed while we optimize the third part. One common
problem with an iterative technique like the one suggested here
is that the final solution will depend on the initialization of the
algorithm, if the initialization is bad we are likely to end up
in a poor local minimum. One method that has proven to be
helpful in counteracting this is noisy channel relaxation [9],
[16] which works in the following way. A system is first
designed for a noisy channel, the solution obtained is then
used as an initialization when designing a system for a less
noisy channel. The noise is reduced and the process is repeated
until the desired noise level is reached. The intuition behind
this method is that an optimal system for a noisy channel has
a simple structure and is easy to find, as the channel noise is
decreased more structure is gradually added to form the final
system. Given a scenario where K and L are specified, the
design algorithm is formally stated below.

1) Choose some initial mappings for β and γ.
2) Let A = (a1, a2, a3) be the channel power gains for

which the system should be optimized. Create A′ =
(a′

1, a
′
2, a

′
3), where a′

1 ≤ a1, a
′
2 ≤ a2, a

′
3 ≤ a3 (i.e., A′

corresponds to a channel which is more noisy than A).
3) Design a system for A′ according to:

a) Set the iteration index k = 0 and D(0) = ∞.
b) Set k = k + 1.
c) Find the optimal source mapping α by using (13).
d) Find the optimal receiver γ by using (21).
e) Find the optimal relay mapping β by using (18).
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f) Find the optimal receiver γ by using (21).
g) Evaluate the distortion D(k) for the system. If the

relative improvement of D(k) compared to D(k−1)

is less than some threshold δ > 0 go to Step 4.
Otherwise go to Step (b).

4) If A′ = A stop the iteration. Otherwise increase A′

according to some scheme (e.g., linearly) and go to
Step 3 using the current system as initialization when
designing the new system.

IV. SIMULATION RESULTS

To evaluate the algorithm we have designed systems for
different combinations of K and L. We will compare the per-
formance against some reference systems, given below, and the
distortion-rate function for a memoryless Gaussian source [7]
using the achievable rate of the compress-and-forward (CF)
scheme [17] (assuming orthogonal transmissions).

A. Reference Systems

K = L = 1 : For the one-dimensional case we use linear
transmission at the source node in conjunction with estimate-
and-forward (EF) at the relay as our reference system. For
EF, the relay function β is given by β(y2) = cE[s2|y2]. It
should be noted that in the case of a Gaussian source and
linear transmission at the source node, amplify-and-forward
is equivalent to estimate-and-forward.

K = 2, L = 1 : In this case, we compare our optimized
system with two different reference systems. The first system
operates by transmitting the source sample X directly on the
channel for both channel uses (scaled to fulfill the power
constraint), that is, repetition coding, and uses EF at the relay.
This system will be denoted Linear. One disadvantage of
this scheme is the repetition coding in the transmission from
the source node. To better fill the two-dimensional channel
space we propose the following alternative system, denoted
Digital, where we have taken off-the-shelf components and
put them together in a modular fashion. Instead of the source
mapping α(·) we use a 16-level Lloyd–Max quantizer [18],
[19] followed by a 16-QAM mapping to the channel space.
The relay node makes a hard decision on the received signal
and modulates the decoded symbol with 16-PAM. At the
destination node the received signals are once again decoded
with a hard decision and finally x is reconstructed as the
expected value of x given the decoded symbols. This system
is optimized in the sense that we use a source-optimized
quantizer, a good choice of the mapping to QAM symbols (i.e.,
a mapping that corresponds to a good index assignment, so
that neighboring quantization levels correspond to neighboring
QAM symbols [20]), and an optimal receiver (given the hard
decoded received symbols).

K = 1, L = 2 : As in the one-dimensional case, we use
linear transmission at the source node and study two different
relay mappings — a linear repetition code and a digital system,
denoted Linear and Digital, respectively. The Linear relay
mapping scales the input to satisfy the power constraint and
transmits the same symbol two times. The source symbol, x,
is then estimated as the expected value given the received
signals. The Digital system performs a 16-level quantization

(optimized for the input distribution) and transmits the quanti-
zation index using 16-QAM. At the receiver, the quantization
index is decoded using a hard decision ML-decoding rule.
Finally, the hard decoded index is used in conjunction with
the value received on the direct link to find the expected value
of the source symbol given these values.

B. Implementation Aspects

In Step 1 of the design algorithm, β was initialized as
a linear mapping and γ was randomly initialized. However,
it is important to understand that the use of noisy channel
relaxation makes the solution less sensitive to the initialization.
In the case of the relay channel, with three different channels,
the problem is instead that of choosing a starting point and a
path for the noisy channel relaxation. For the case K = L = 1,
we started at A′

1 = (a1,−5,−5) dB and linearly increased the
second and third components one at a time until they reached
their corresponding final values. For the other two cases, we
started at A′

2 = (−5,−5,−5) dB and linearly increased all
components simultaneously until they reached A. To reduce
the complexity of the design algorithm in the case K = 1, we
fixed α to be a linear scaling (fulfilling the power constraint)
followed by a mapping to the closest point in the set S. Steps
3c) and 3d) were omitted in the design algorithm for these
systems. Although there are no proofs that this is the jointly
optimal strategy, it can be justified by the fact that linear
scaling is individually optimal for each point-to-point link
from the source node in the case K = 1. A final note regarding
the Lagrange multipliers λ and η. After each iteration in the
design algorithm, they were either increased or decreased in
small steps depending on whether the used power was too
high or too low.

Another important aspect is the number of points, M , in
the discretization of the channel space given by (8). In our
implementation we have varied M with the total channel SNR,
using a lower resolution for low SNRs and a higher resolution
for high SNRs. For example, at an SNR of 5 dB we have
used M = 64 and at 25 dB we have used M = 512. Δ has
been varied along with M according to Δ = 8/(M − 1);
meaning that we have a good approximation of the channel
in the interval [−4, 4]. There is a tradeoff in the choice of M
and Δ, increasing M increases the complexity of the design
algorithm. If on the other hand M is too small, the distortion
created by the discrete approximation is significant.

Finally, we will give some details of the actual implemen-
tation of (13), (18), and (21). All integrals with respect to x
and also the source mapping α, have been calculated using
a set of training samples which turns the integrals into sums.
The size of this set has been 200000 in the case of a K = 1
and 10000 in the case of K = 2. Since the channel space is
approximated by the finite set S, the relay mapping and the
receiver can be stored as lookup tables.

C. Numerical Results

In the following simulations, we assume that the source
mapping and relay mapping are optimized for certain signal-
to-noise ratios (SNRs), marked with circles in the figures,
but that the receiver has perfect channel state information
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Fig. 3. K = L = 1 Simulation results when Pβ is varied while Pα = 0
dB and a1 = 15 dB, a2 = 25 dB, and a3 = 0 dB. The circles mark the
points for which the system is optimized.

and therefore adapts to the current channel state using (21).
We will mainly study the power efficiency of the relay node,
that is, how much power the relay needs to achieve a certain
performance. For the one-dimensional case, which we study
more extensively, we have also included results showing
the power efficiency of the source node for different relay
mappings.

K = L = 1 : If the quality of the link to the relay is better
than the direct link, as in Figure 3, the relay can improve the
performance significantly. The horizontal power gain2 of using
the optimized system over the linear system is as much as 7–
8 dB in the entire region shown. It should be noted that this
increase is only due to utilizing the power in a more efficient
way and comes at virtually no extra complexity in the relay.
The gap to the achievable rate is quite significant, around 6.5–
8 dB for the optimized points. This gap will be discussed
later on. It is also evident that the optimized mappings and
the sawtooth mappings with MMSE receiver (given by (21))
perform almost the same (the optimized mappings are about
0.1 dB better than the sawtooth mappings at the design points),
making them practically impossible to distinguish. It also turns
out that the ML detector (given by (22)) performs very close
to the optimal MMSE detector, which is encouraging due
to its simplicity. It should be emphasized that the sawtooth
mappings have been optimized for each SNR point and each
detector. A sawtooth mapping which is optimal for the MMSE
detector is not necessarily optimal for the ML detector. In
Figure 4, we vary the power of the source node. In this case
the optimized system manages to follow the achievable curve
closely — the gap is only 0.1 dB at Pα = 5 dB and increases
slightly with the SNR to 0.7 dB at Pα = 25 dB. This can
be explained as follows, up to some point, say Pα = 10 dB,
the channel from the relay to the destination is much better
than the channels from the source. This implies that all relay
mappings perform basically the same as long as they are non-
destructive and do not discard any information (c.f. Pβ → inf).
For this reason, also the linear mapping performs very well.

2We will only consider this gain.
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Fig. 4. K = L = 1 Simulation results when Pα is varied while Pβ = 0 dB
and a1 = 0 dB, a2 = 5 dB, and a3 = 20 dB. The circles mark the points
for which the system is optimized.

The fact that we are close to the achievable curve strengthens
our previous intuitive suggestion that linear transmission at the
source node works well for K = 1. As the power of the source
node increases further, we see that the linear relay mapping
approaches the same performance as not using the relay at
all. The relatively high noise power on the channel from the
relay to the destination makes the information from a linear
relay unusable. It is therefore interesting to note how well
the optimized mappings follow the achievable curve. As the
power of the source node increases, the correlation between
y1 and y2 will also increase. The optimized mappings take
advantage of this increasing correlation and perform a kind of
Wyner–Ziv compression where y2 is used as side information
when decoding the information from the relay. An example of
how this is done will be given in Section IV-D.

K = 2, L = 1 : In this case (Figure 5), we have the
additional problem of designing a good source mapping, α.
The optimized system still has a significant gain over the
linear system, ranging from 5 dB at Pβ = 5 dB to 10 dB
at Pβ = 15 dB. The digital system performs slightly worse
than the linear system. From the figure, the different systems
does not seem to reach the same performance as the power of
the relay increases. This is in fact true, the achievable curve
reaches a limit of 31 dB whereas the performance of the linear
system is limited to 18.5 dB. This gap is due to the linear
system’s inability to produce a two-dimensional distribution
that matches the Gaussian channel from the source. The source
mapping used in the optimized systems (see Section IV-D)
does a better job, but does clearly not achieve the capacity on
the two-dimensional channel from the source node either. Sim-
ilar results for bandwidth expansion curves can be observed
in [10].

K = 1, L = 2 : Changing the situation, having one chan-
nel use for the source transmission and two channel uses
for the relay transmission, the results are similar to the one-
dimensional case as can be seen in Figure 6. The gap to the
linear system is around 3 dB and the gap to the achievable
curve is ranging from 4.5 dB at Pβ = 5 dB to 8 dB at Pβ = 15
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Fig. 5. K = 2, L = 1 Simulation results when Pβ is varied while Pα = 0
dB and a1 = 5 dB, a2 = 15 dB, and a3 = 0 dB. The circles mark the
points for which the system is optimized.
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Fig. 6. K = 1, L = 2 Simulation results when Pβ is varied while Pα = 0
dB and a1 = 5 dB, a2 = 15 dB, and a3 = 0 dB. The circles mark the
points for which the system is optimized.

dB.
The significant gap to the achievable curve in most cases

can to a large extent be explained by our low-delay one-
dimensional approach where we transmit one sample at a time,
in contrast to the infinite dimensions used in the proofs for
both the distortion-rate function and the achievable rate. An
exception to this is when there is no side information available
and the distribution of the source matches the channel, in
which case uncoded transmission is optimal (e.g., transmitting
a one-dimensional Gaussian variable on a Gaussian channel).

D. Structure of β

K = L = 1 : Figure 7 shows an example of a typical
relay mapping in the one-dimensional case. It is clear that
the proposal of sawtooth mappings in Section III-B is well
motivated. The main reason why this optimized mapping
performs better than a linear mapping is the steeper slope,
which effectively decreases the impact of the channel noise.
Looking at the sawtooth mapping in Figure 2, one could say

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

ŷ2

s 3
=
¯
(ŷ
2
)

Fig. 7. Relay mapping (K = L = 1) optimized for Pα = Pβ = 0 dB and
a1 = 15 dB, a2 = 15 dB, and a3 = 20 dB.

that decreasing b allows us to increase c (without violating
the power constraint) and therefore get lower distortion. It is
apparent that the relay mapping is not injective since several
input values are mapped to the same output value; this way of
reusing output values can be seen as Wyner–Ziv compression3.
The reuse of output values is only possible due to the side
information from the direct link. Returning to Figure 2 and
assuming that the output of the relay is 0, in this case the side
information will provide the necessary information to deter-
mine whether y2 was, for example, −2b, 0, or 2b. However,
if b is decreased below a certain threshold (dependent on a1,
a2, and a3), the probability of making the wrong decision
based on the side information will be significant and the
decoder will therefore make large estimation errors. It is in
particular the values near the discontinuities that are sensitive
to large estimation errors. Looking at the optimized mapping
again, one can see that the slope is slightly steeper near
the discontinuities. The extra energy spent for these values
increases the distance between points in the safe region (far
away from the discontinuities) and the critical points (near the
discontinuities). This could be the explanation of the slightly
better performance of the optimized mappings compared with
that of the sawtooth mappings. It is quite remarkable that the
design algorithm produces the sawtooth-like mappings despite
the fact that the initial relay mapping is linear. We believe that
this is a consequence of the channel relaxation, especially the
fact that a3 is the last component that is increased, and the
Lagrange multipliers and how these are updated in small steps.

K = 2, L = 1 : The source mapping α is now a mapping
from the one-dimensional source space to the two-dimensional
channel space. An example of such a mapping is shown in the
left part of Figure 8, where the curve shows how input symbols
in the interval [−3, 3] are mapped to two-dimensional output
symbols. The mapping is such that small negative values of
x are mapped to one end of the curve and as x is increased

3The Wyner-Ziv scheme saves rate by sending an ambiguous “bin-index”
rather than a codeword index. The ambiguity is resolved at the decoder by
using the side information to identify the correct codeword in the bin. In our
case, the relay saves power by informing the receiver about a set (a “bin”)
of possible values, rather than a specific value.



J. KARLSSON and M. SKOGLUND: OPTIMIZED LOW-DELAY SOURCE–CHANNEL–RELAY MAPPINGS 7

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4  

 

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4 −3

−2

−1

0

1

2

1 −3

3

2

0

−2
     1.4

−1

s11

s 1
2
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Fig. 8. Structure of α (to the left) and β (to the right) (K = 2, L = 1)
optimized for Pα = Pβ = 0 dB and a1 = 5 dB, a2 = 15 dB, and a3 = 10
dB. In the left part, it is shown how the interval [−3, 3] of the one-dimensional
input is mapped to the two-dimensional output s1 = (s11, s12). In the right
part, the color in the figure together with the colorbar shows how the two-
dimensional input, ŷ2 = (ŷ21, ŷ22), is mapped to the one-dimensional output
s3.

the mapping follows the curve to the other end. Values around
zero — which are the most likely values for a Gaussian source
— are mapped to the center of the curve which lies close to the
origin where ‖s1‖2 is small. The transmission power for these
values is hence minimized. In contrast, values that are less
probable are instead mapped to points in the channel space that
use more energy. This structure is due to the Lagrange term
in (18); similar results have been been obtained in [9]–[11].
Due to the high noise level on the direct link, the destination
cannot distinguish between different parts of the curve by only
looking at the direct link. For example, the receiver will not
be able to determine whether 1 or −3 was transmitted since
they are mapped to symbols that are close in the channel
space. The relay node needs to help the receiver to distinguish
which point, or at least which region, of the curve that was
transmitted. Looking at the right part of Figure 8, which shows
the relay mapping, we can see that this is exactly what the
relay does. Something that is interesting to notice is that the
relay is not the inverse of the source mapping which it would
be if the relay tried to estimate x and send the estimate to the
receiver. This is easiest seen by the fact that for some of the
outer parts of the curve, the relay uses the same output symbol
for large regions (e.g., s3 ≈ 1.4 for the upper part of the
curve) which means that the relay does not send an estimate
of what was received but rather just tells the receiver that the
transmitted point was on the upper part of the curve. Using
this information the receiver estimates x based on the value
received from the direct link conditioned that the transmitted
point was on the upper part of the curve.

K = 1, L = 2 : In Figure 9, we finally show an example
of a mapping where the relay performs an expansion —
from its one-dimensional input to its two-dimensional output.
Once again, there is a reuse of the output symbols which
is only possible due to the side information from the direct
link. Looking at the spiral from above, a similarity to the
polynomial based source–channel codes proposed in [21] can
be seen.

V. CONCLUSIONS

We have proposed a low-delay scheme for joint source–
channel coding over the relay channel. The design also in-
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Fig. 9. Relay mapping (K = 1, L = 2) optimized for Pα = Pβ = 0 dB
and a1 = 5 dB, a2 = 15 dB, and a3 = 5 dB. The two-dimensional output,
shown on the x- and y-axes, as a function of the one-dimensional input, shown
on the z-axis. In other words s3 = β(ŷ2), where s3 = (s31, s32).

cludes optimizing the relay itself. The numerical results show
that the joint design works well and gives better performance
than the reference systems. We have also provided useful
insight into the structure of the (locally) optimized source–
channel and relay mappings, and how these mappings together
make it possible for the receiver to output a good estimate of
the source. The mapping at the relay reuses output symbols
and is clearly reminiscent of Wyner–Ziv compression. Based
on observing the structure of our optimized systems, we
proposed the use of sawtooth mappings for the case of one-
dimensional relaying. The sawtooth mappings can in many
cases be used instead of the optimized mappings without any
performance degradation.
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