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ABSTRACT
Most preference-based multi-objective evolutionary algorithms
use reference points to articulate the decision maker’s preferences.
Since these algorithms typically converge to a sub-region of the
Pareto-optimal front, the use of conventional performance mea-
sures (such as hypervolume and inverted generational distance)
may lead to misleading results. Therefore, experimental studies in
preference-based optimization often resort to using graphical meth-
ods to compare various algorithms. Though a few ad-hoc measures
have been proposed in the literature, they either fail to generalize
or involve parameters that are non-intuitive for a decision maker.
In this paper, we propose a performance metric that is simple to
implement, inexpensive to compute, and most importantly, does
not involve any parameters. The so called expanding hypercube met-
ric has been designed to extend the concepts of convergence and
diversity to preference optimization. We demonstrate its effective-
ness through constructed preference solution sets in two and three
objectives. The proposed metric is then used to compare two popu-
lar reference-point based evolutionary algorithms on benchmark
optimization problems up to 20 objectives.
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1 INTRODUCTION
Real-world applications of multi-objective optimization often im-
plicitly include decision making, i.e. the process of obtaining a
single solution to be implemented from the set of all possible Pareto-
optimal solutions. This process requires a decision maker (DM) (or
a group of unanimous decision makers) to provide preference infor-
mation that can be used to select/generate desirable Pareto-optimal
solution(s). The field of multi-criteria decision making (MCDM)
identifies three classes of preference-based optimization methods
depending on when the DM participates in the solution process.
These are: (i) a priori methods, in which the DM’s preferences are
known in advance and the search involves finding a Pareto-optimal
solution that best satisfies those preferences, (ii) a posteriori meth-
ods, in which representative Pareto-optimal solutions are generated
first, which are then analyzed by a DM to select a solution that best
fits his/her preferences, and (iii) interactive methods, which use the
DM’s preferences iteratively to guide the search towards a desirable
region of the Pareto-optimal front.

Each class of MCDM methods has its advantages and drawbacks.
A priori methods can be fast, but the DMmay not be able to provide
preferences for an unfamiliar problem. A posteriori methods can
give the DM a better sense of the available trade-off, but generating
enough solutions to adequately represent the Pareto-optimal front
can be computationally expensive, especially when many objec-
tives are involved. Moreover, when the number of solutions to be
analyzed is large, it may be difficult for the DM to evaluate each
of them against his/her preferences. Interactive methods require
inputs from the DM at multiple stages, and therefore offer a certain
degree of flexibility in decision making. On the downside, interac-
tive methods place a high cognitive load on the DM and are prone
to inconsistent or contradicting preference information.

1.1 Preference Modeling Methods
In addition to the question of when to incorporate preferences, it
is also important to consider how the preferences are articulated.
Various preference models are used in the literature. These can
generally be categorized as one of the following [1, 17]:

(1) Goals: The most basic preference information comes in the
form of a goal vector, which consists of desired target values
for each objective. The intention here is to obtain a solution
that minimizes deviations from the goal vector. Goals can
also be defined through bounds on the objective function
values. The vector containing the bounds for all objectives
is called the reservation point.

(2) Reference points: A reference point is a vector composed
of the aspiration levels of the DM for each objective. The
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intention here is to obtain a solution on the Pareto-optimal
front that minimizes deviations from the reference point.

(3) Weights: Weights can be used to assign a relative importance
level for each objective. The final solution is usually obtained
by optimizing an aggregation function in which objectives
are weighted by their corresponding weights. Some prefer-
ence models use the term ‘reference direction’ in relation
to the reference point, but the components of this direction
vector can be interpreted as weights.

(4) Objective-ranking: Objective-ranking is used when the DM
considers some objectives to be more important than others,
but is unable to assign importance levels (weights). Some
preference models are used in this category: (i) lexicographic
order, where the DM ranks all objectives in the order of
importance, (ii) preference relations, where the DM assigns
pairwise relationships between the objectives, such as ‘less
important’, ‘more important’, ‘equally important’ or ‘indiffer-
ent’. (iii) Fuzzy logic has also been used to model preferences
expressed in linguistic terms.
Preference models in this category can sometimes be further
processed to derive weights for the objectives.

(5) Desirability functions: These functions are non-linear map-
pings of objective functions to the desirability domain [0, 1],
where 0 corresponds to the reservation point component and
1 corresponds to the reference point component for each
objective. The DM can then articulate his/her preference
through the desirability values.

(6) Solution-ranking: Some preference models aim to rank the
solutions rather than the objectives. Two common meth-
ods in this category are: (i) pairwise comparison of solutions,
where the DM is presented with a few representative solu-
tions and asked to provide pairwise preferences. (ii) Utility
functions, where the global preference structure of the DM
is represented by a utility function (sometimes also called
value function). Weighted aggregation function discussed
above is essentially a linear utility function.

(7) Trade-offs: Preferences can also be modeled in terms of ac-
ceptable trade-offs between two or more objectives. For ex-
ample, a statement from the DM such as “one unit improve-
ment in fi is at most worth aji units of degradation in fj ”
can be used to redefine dominance.

(8) Outranking: Outranking method is widely used in MCDM. It
requires specification of preference and indifference thresh-
olds from the DM for each objective, which are used to com-
pare pairs of candidate solutions. Once all pairs are consid-
ered, a preference flow is created which identifies the final
solution.

(9) Implicit models: These models aim to find solutions on the
Pareto-optimal front that should be naturally preferred, such
as the knee point, a robust solution or the ideal solution (if
feasible).

2 REFERENCE-POINT BASED MOEAS
Among the models described above, reference points are the most
popular method of preference articulation [3]. Originally developed
within MCDM by Wierzbicki [19], the idea of a reference point was

first adopted in a multi-objective evolutionary algorithm (MOEA)
in [9]. Since then it has been used extensively in many a priori
preference-basedMOEAs. The reasons for the popularity of this trio
combination are: (i) a reference point is intuitively understood and
allows a Pareto-optimal solution to be found, (ii) a priori methods
are very practical because they are computationally cheaper than a
posteriori methods, and put lower cognitive load on the DM than
interactive methods, (iii) MOEAs, with their advantage of using a
population, can generate multiple preference solutions close to the
reference point instead of a single solution like most traditional
MCDM methods. This gives the DM the benefit of a posteriori
choice in the vicinity of the reference point, also called the region
of interest (ROI).

Some of the well-known reference-point based MOEAs are (i)
preference articulation in MOGA [9], (ii) reference-point based
NSGA-II [7], (iii) light beam search based approach [4], (iv) g-
dominance approach [13], (v) preference-based evolutionary al-
gorithm [16], and (vi) r-dominance approach [15].

2.1 Performance Assessment
Despite the large number of reference-point based MOEAs avail-
able in the literature, there is a dearth of measures that can be used
to evaluate the performance of these algorithms. Most compara-
tive studies use scatter plots or parallel-coordinate plots to visually
depict the obtained preference solutions. In addition to the sub-
jectivity that this involves, the multiplicity of solutions can make
visual assessment difficult. Moreover, since preference solutions are
obtained from multiple runs of the algorithms, several plots have to
be analyzed. Also, the qualitative nature of visual assessment means
that statistical analysis cannot be performed on the algorithms.

As demonstrated in [11], measures such as hypervolume (HV)
[21] and inverted generational distance (IGD) [2], that have been de-
veloped for evaluating approximations of the whole Pareto-optimal
front, cannot be directly used to reliably assess preference solution
sets. In fact, any metric that does not take the preference informa-
tion into account is bound to give misleading results. A survey of
the literature found only a handful of studies that propose perfor-
mance metrics specially designed for this purpose. These metrics
are briefly described in the next section. It is worth noting that
all of the following studies use reference points for preference
articulation.

2.2 Related Work
The earliest work in this regard is probably that of [18], where
the authors adapt the hypervolume metric for preference-based
optimization. The preference solution sets from all algorithms to
be compared are first combined and the solution that is closest
to the ideal point is identified. Next, a ROI is defined around this
solution using a parameter δ and all solutions outside of this region
are discarded. The hypervolume is calculated for the remaining
solutions in each set using their common nadir point as reference.
Since this method does not consider the preference information at
all, it can lead to false conclusions as shown in [11].

The metric proposed in [12] uses the non-dominated solutions
from the combined solution sets to make a composite front, which
the authors call User-Preference Composite Front (UPCF). The closest
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solution to each reference point is then found and a ROI is defined
around it using a parameter r . IGD and hypervolume are then
calculated based on the solutions inside the preferred regions. The
IGD value is calculated using sample points from the composite
front. The main issue with this approach is that all solutions outside
the preference region are considered to be equally worse. For an
illustrative example, see [11].

The metric proposed in [14] works by generating a grid of points,
called User based Front (UbF), with the reference point at the center.
Two measurements are defined: (i) iGD is the average over the
shortest distances from each solution in the preference set to any
of the grid points on the UbF, and (ii) iIGD is the average over
the shortest distances from each grid point on the UbF to any of
the solutions in the preference set. The authors claim that while
iGD represents convergence, iIGD represents both convergence
and diversity. The grid is analogous to ROI. The size of the grid is a
parameter which defines this ROI.

The R-metric, first proposed in [6] and generalized in [11], uses
concepts of MCDM in the design of the metric. It works by identi-
fying a ROI around a pivot solution selected from the preference
set based on an achievement scalarization function (ASF). The ASF
is then used to transfer all solutions in the ROI to a virtual position,
and finally the R-metric for a solution set is calculated using the
baseline metric of either HV or IGD for all the solutions within
the ROI. Solutions outside of the ROI are discarded. The resulting
R-metric is denoted, R-HV or R-IGD based on which baseline is
used. R-metric requires the decision maker to supply (i) a parame-
ter ∆ which determines the size of the ROI, (ii) a weight vector w
which determines the relative importance of the objectives and (iii)
a worst point zw which is used to create the reference direction for
the ASF.

The PMDA-metric (Preference Metric based on Distances and
Angles) presented in [20] is calculated in four steps. First, a preferred
region is defined usingM + 1 light beams that originate from the
ideal point. The central beam passes through the reference point,
while the others are inclined towards each of theM objectives based
on a user-defined parameter ϵ . The intersection of these beams with
the normalized hyperplane gives a point set Q . Next, a preference-
based hyperplane is defined based on solutions in the preferred
region and a parameter Ω. Q is mapped to this hyperplane as Q ′.
Then the minimum distance and angle for each solution in the
preference set are calculated from the points in Q ′ and from the
central beam, respectively. Finally, the PMDA-metric is calculated
by aggregating the distances and angles over all solutions. Note
that the parameter ϵ essentially controls the ROI.

The metric proposed in [10] first constructs a hyperplane on
the reference point with the orientation given by a user-defined
weight vector. The preference solution set is mapped onto the hy-
perplane and a ROI is defined on the hyperplane with the reference
point as the center. The metric is defined as the Euclidean distances
between the mapped points and the reference point, where solu-
tions outside of the ROI get penalized by a penalty coefficient. The
calculation requires a parameter r to define the ROI, a parameter
w as the weight vector that describes the relative importance of
each objective and a parameter k as the penalty coefficient. Unlike
most other performance metrics, this metric does not require the
objective space to be normalized to [0, 1].

2.3 The Problem with ROI
Note that all the above described performance metrics involve one
or more parameters. A recurring parameter is the size of ROI, which
is to be defined by the DM. Consider the case when two algorithms,
A and B, have a similar distribution of solutions inside the ROI, but
immediately outside the ROI, B has a better distribution of non-
dominated solutions. In practice, B would be the better algorithm.
But the metrics described above will not be able to detect this
unless the size of the ROI is increased. The problem with discarding
solutions outside the ROI is that the metric becomes sensitive to
ROI. Thus, even with normalization of the objectives, setting the
parameter for ROI is not intuitive. A related issue is that when
the ROI contains no solutions, then nothing can be said about the
performance of the algorithms.

Another problem with ROI can be observed in high-dimensional
objective spaces, where the solutions are sparsely distributed. In
order to calculate the above metrics, a larger ROI must be used so
that at least a few solutions are included in it. However, it is difficult
to estimate a suitable value.

3 EXPANDING HYPERCUBE METRIC
Our proposed solution to the problem of defining the ROI is to not
define it at all! The ROI is instead replaced by an expanding hyper-
cube, which originates at the reference point and expands (with the
reference point at its center) until it envelops all solutions. Thus,
none of the non-dominated solutions are discarded and each of
them plays a part in the calculation of the metric. As the hypercube
expands, we record two characteristic values: (i) size of the hyper-
cube, and (ii) fraction of (unique) solutions from the preference
set that are inside the hypercube. The size of the hypercube can
be thought of as a measure of convergence. The smaller this size,
the closer the preference solutions are to the reference point. Simi-
larly, the fraction of (unique) solutions inside the hypercube at any
given point can be thought of as a measure of diversity. The larger
this fraction, the higher the diversity of preference solutions. Thus,
a trade-off curve can be generated by plotting the two recorded
characteristic values.

Definition: The Expanding Hypercube metric (EH-metric) is
defined as the area under the trade-off curve generated by
expanding a hypercube from the reference point and plot-
ting the fraction of enveloped points versus the size of the
hypercube.

Figure 1 illustrates the generation of trade-off curve and the
calculation of EH-metric. The preference set has 15 solutions. The
hypercube (square in this case) starts to expand from a size of zero
units with the reference at its center. When the hypercube is one
unit in size, no points are enveloped. So we record the coordinates
of the trade-off curve as (1, 0). At a size of two units, the hypercube
envelops one point, and the corresponding point on the trade-off
curve is (2, 1/15). Continuing in this fashion, we generate the fol-
lowing trade-off points (3,4/15), (4,9/15), (5,11/15) and finally (6,1).
The area under this trade-off curve is easily calculated to be 25/15
or 1.67 which is the EH-metric for the preference set shown in
Figure 1.
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Figure 1: Generation of trade-off curve from an expanding hypercube. The shaded area represents the EH-metric.

The shaded area can be thought of as the hypervolume of the
bi-objective problem involving minimizing the size of the hyper-
cube (i.e. improving convergence) and maximizing the fraction of
enveloped solutions (i.e. improving diversity). Thus, the EH-metric
represents the simultaneous optimization of convergence and di-
versity.

In order to use the EH-metric to compare two or more preference
sets from different algorithms, the first step is to remove duplicate
solutions from each set, combine all preference sets and then re-
move all dominated solutions. We refer to these three tasks together
as prescreening. After the prescreening step, the trade-off curves for
each preference set are generated using the expanding hypercube as
described above. Note that these curves must all be generated on the
same plot, so that when calculating the EH-metric for each prefer-
ence set, the same final size of the hypercube is used. This is similar
in principle to using the same reference point1 when calculating
hypervolumes for different Pareto-front approximations.

3.1 Illustrative Preference Sets
In this section, we visually demonstrate the effectiveness of the
EH-metric using constructed preference sets. Figure 2 shows 10
preference sets in a two-objective space, each set containing 40
points. The reference point [0.35, 0.65] is shown as ×+. As seen in
Figure 3, the EH-metric is maximal for the preference set that is
closest to the reference point, i.e. the third set. A similar observation
can be made from Figures 4 and 5, which illustrate preference sets
in three objectives. Among the 21 preference sets, set 15 is closest
to the reference point [0.7, 0.9, 0.2] and therefore has the highest
value for the EH-metric. In both examples, it is worth noting that
as the preference sets get further away from the reference point,
the EH-metric decreases.

3.2 Algorithmic Calculation of the EH-Metric
The calculation of the EH-metric does not involve any user-defined
parameters. The only inputs required are: (i) the list of preference
sets, solutionSets , obtained from different reference-point based

1Not to be confused with the reference point that is used for preference articulation.

Figure 2: Constructed preference sets with two objectives.

Figure 3: EH-Metric for the preference sets in Figure 2.
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Figure 4: Constructed preference sets with three objectives.

Figure 5: EH-Metric for the preference sets in Figure 4.

optimization algorithms that need to be compared. Each set contains
all solutions from the final generation of one algorithm; (ii) the
reference point, re f erencePoint , used by the algorithms.

The EH-metric is calculated in two steps as shown in Algorithm 1.
The first step is prescreening the solutions sets. The prescreening

Algorithm 1 EH-Metric
Require: solutionSets , re f erencePoint
1: solutionSets ← Prescreening(solutionSets)
2: setAreas ← GetAreas(solutionSets, re f erencePoint )
3: return setAreas

routine can be found in Algorithm 2. It first removes duplicate solu-
tions from all solution sets individually, through the RemoveDupli-
cates( ) function. This ensures that only unique solutions are used
to calculate the fraction of enveloped solutions shown in Figure 1.
Next, the prescreening routine combines the solution sets and re-
moves all dominated solutions from each set. This step ensures

that only the non-dominated solutions are used to calculate the EH-
metric. Note that some solutions sets may become empty during
this step. Their corresponding EH-metric values will be zero.

Algorithm 2 Prescreening
Require: solutionSets
1: for all set ∈ solutionSets do
2: RemoveDuplicates(set )
3: for all sp ∈ setp ∈ solutionSets do
4: for all sq ∈ setq ∈ solutionSets do
5: if sp ≺ sq then
6: setq ← setq \ {sq }
7: if sq ≺ sp then
8: setp ← setp \ {sp }
9: return solutionSets

The second and final step in the calculation of EH-metric is to
determine the area under the trade-off curve generated for each
preference set as explained through Figure 1. This is done by the
GetAreas( ) routine shown in Algorithm 3. For each solution in a
given set , it uses the GetHypercubeSize( ) sub-routine to calculate
the minimum size of the hypercube (centered at the reference point)
that is required to envelope that solution. These sizes are stored in
the set hypercubeSizes , which is sorted in ascending order to get
orderedHypercubeSizes . The area under the trade-off curve is cal-
culated incrementally by stepping through orderedHypercubeSizes .
In Line 13, i/|set | represents the fraction of enveloped solutions at
the current step, while (s − previousHypercubeSize) denotes the
incremental increase in the size of the hypercube from the previous
step. The multiplication of these two terms is akin to the calculation
of the areas of successive shaded rectangles in Figure 1.

The GetHypercubeSize( ) sub-routine is shown in Algorithm 4,
whereM denotes the number of objectives. The sub-routine simply
returns the largest coordinate of the absolute difference between
the re f erencePoint and the given solution. The largest coordinate
corresponds to the minimum size of the hypercube centered at
re f erencePoint that is required to envelope solution.

For all sets in solutionSets , the area under the trade-off curve
are stored in setAreas and the final hypercube sizes are stored in
setSizes , as shown in Lines 16 and 17 of Algorithm 3. Note that
the final hypercube sizes may be different for each solution set.
LetmaxSize denote the maximum hypercube size in setSizes . As
stated before, in order to correctly compare the area under the
trade-off curves for different solution sets, it is important to extend
the trade-off curves of all solution sets tomaxSize . This means that
an additional area of ∆, as calculated in Line 20 of Algorithm 3,
is added to each area in setAreas . The EH-metric values for all
solutions sets are now available in setAreas .

3.3 Time Complexity Analysis
The duplicate solution removal in Prescreening( ) can be imple-
mented to have a time complexity of O(N 2L), where N is the typi-
cal size of each solution set, and L is the number of solution sets.
The time complexity of the dominance comparisons is O(MN 2L2),
whereM is the number of objectives. Thus, the time complexity of
prescreening step is O(MN 2L2).
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Algorithm 3 GetAreas
Require: solutionSets , re f erencePoint
1: setAreas ← ∅
2: setSizes ← ∅
3: for all set ∈ solutionSets do
4: i ← 0
5: area ← 0
6: previousHypercubeSize ← 0
7: hypercubeSizes ← ∅
8: for all solution ∈ set do
9: s ← GetHypercubeSize(solution, re f erencePoint )
10: hypercubeSizes ← hypercubeSizes ∪ s
11: orderedHypercubeSizes ← Sort(hypercubeSizes)
12: for all s ∈ orderedHypercubeSizes do
13: area ← area + (i/|set | ∗ (s −previousHypercubeSize))
14: previousHypercubeSize ← s
15: i ← i + 1
16: setAreas ← setAreas ∪ area
17: setSizes ← setSizes ∪Max(hypercubeSizes)
18: maxSize ← Max(setSizes)
19: for i ← 1 to |setAreas | do
20: ∆←maxSize − setSizesi
21: setAreasi ← setAreasi + ∆

22: return setAreas

Algorithm 4 GetHypercubeSize
Require: solution, re f erencePoint
1: larдest ← 0
2: for i ← 1 toM do
3: d ← |solutioni − re f erencePointi |
4: larдest ← Max(larдest ,d)
5: return larдest

The time complexity for GetAreas( ) in Algorithm 3 is mainly in-
fluenced by (i) GetHypercubeSize( ) in Line 9, (ii) sorting in Line 11,
(iii) calculation of incremental areas in Line 13, and (iv) calcula-
tion of additional areas ∆ in Line 20. GetHypercubeSize( ) requires
O(MNL) operations to generate hypercubeSizes . Mergesort is used
in Line 11. It has a time complexity of O(N log (N )) in both the
average and worst case. The time complexity for sorting L solu-
tion sets becomes O(N log (N )L). The calculation of incremental
areas requires O(NL) operations, while the calculation of ∆ for
each solution set requires O(L) operations. The time complexity of
GetAreas( ) is therefore O(MNL).

The above analysis shows that the prescreening step dominates
the computation of the EH-metric. The overall time complexity is
therefore O(MN 2L2).

4 EXPERIMENTAL SETUP
In the rest of the paper, we use EH-metric and R-HV (i.e. R-metric for
hypervolume) described in Section 2.2, to assess the performance of
two popular reference-point based MOEAs, namely R-NSGA-II [7]
and g-NSGA-II [13]. Both algorithmsmodify the well-knownNSGA-
II algorithm [5] for preference based multi-objective optimization.

R-NSGA-II modifies the crowding operator of NSGA-II in a way
such that solutions closer to the reference point are preferred. The
algorithm uses a minimum distance ϵ to produce a spread among
the solutions close to the reference point. The higher the value of
ϵ , the greater will be the spread of solutions around the reference
point. In this study ϵ was set to 0.002 for all experimental runs.

g-NSGA-II modifies NSGA-II with a new dominance behavior
called g-dominance which flags solutions as 1 if they dominate
or are dominated by the reference point, and as 0 otherwise. The
algorithm then lets all flag 1 solutions dominate all flag 0 solutions
before regular non-dominated sorting is applied.

The three parameters for calculating the R-HV metric are set
as follows based on the recommendations in [11]: (i) ∆ = 0.5 for
defining the ROI, (ii) w = [1/

√
M, . . . , 1/

√
M] for giving equal

importance to all objectives, and (iii) zw = re f erencePoint+2.0×w
for creating the reference direction for ASF and for calculating the
hypervolume.

A zero value for R-HV metric indicates that all solutions in the
preference set lie outside the ROI defined by the R-metric. A zero
value for EH-metric indicates that all solutions in the preference set
are dominated by the solutions of other preference set and therefore
get removed in the prescreening step.

4.1 Test Problems
Four instances from the scalable DTLZ test suite [8] are used to com-
pare the the performance of the two algorithms. The instances are
DTLZ1-4 withM = 3, 5, 10, 15 and 20 objectives. Both unattainable
and attainable reference points are used. Though both algorithms
are able to handle multiple reference points, we only use one refer-
ence point in all experimental runs.

In order to specify the reference point, we first create a point w
on the Pareto-optimal fronts of each problem instance. For DTLZ1,
w is defined by wi = 0.5 ∗ i/(M2 + M)/2,∀i ∈ {1, . . . ,M}. For
DTLZ2-4, w is defined by wi = i/

√∑M
j=1 j

2,∀i ∈ {1, . . . ,M}. The
unattainable reference point for each problem instance is specified
by subtracting 0.1 from each component of w, while the attainable
reference point is specified by adding 0.1 to each component of w.

4.2 Optimization Parameters
For crossover and mutation, both R-NSGA-II and g-NSGA-II use
Simulated Binary Crossover (SBX) and polynomial mutation. Both
algorithms use the same parameters for these operators. For SBX,
the probability of crossover pc is set to 0.9 and the distribution
index ηc is set to 10. For polynomial mutation, the probability of
mutation pm is set to 1/n, where n is the number of variables, and
the distribution index ηm is set to 20. The population size is P = 100
in all cases. The evaluation budget for DTLZ1, DTLZ2 and DTLZ4
is set to 100 ∗ P ∗M , and for DTLZ3, due to its complexity, is set to
200 ∗ P ∗M .

5 RESULTS AND DISCUSSION
Each algorithm (R-NSGA-II and g-NSGA-II) is run 31 times on
each problem instance (DTLZ1-4 withM = {3, 5, 10, 15, 20}) with
unattainable and attainable reference points and the two perfor-
mance metrics (EH-metric and R-HV) are calculated.
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Table 1 shows the median values of the two metrics on various
problem instances for the unattainable reference point mentioned
above. According to the EH-metric, R-NSGA-II is significantly bet-
ter than g-NSGA-II on all problem instances except DTLZ1 with
M = {15, 20} and DTLZ4 withM = 3, where the difference is not
statistically significant.

Table 1: Median values of EH-metric and R-HV metric over
31 runs of R-NSGA-II and g-NSGA-II with an unattainable
reference point.

EH-Metric R-HV
M R-NSGA-II g-NSGA-II R-NSGA-II g-NSGA-II

D
TL

Z1

3 1.863E-01 1.244E-01 7.076E+00 7.816E+00
5 1.934E+02 1.384E+02 2.569E+01 0
10 1.262E+02 9.225E+01 7.154E+02 0
15 7.036E+01 5.097E+01 1.431E+04 0
20 4.634E+01 3.065E+01 3.117E+05 0

D
TL

Z2

3 2.139E-01 1.404E-01 7.194E+00 7.846E+00
5 1.834E-01 1.202E-01 2.745E+01 3.042E+01
10 2.161E-01 1.422E-01 7.604E+02 8.694E+02
15 4.918E-01 2.573E-01 2.219E+04 1.512E+04
20 3.600E-01 2.991E-01 1.164E+06 5.146E+05

D
TL

Z3

3 1.135E+00 2.703E-01 7.209E+00 6.151E+00
5 1.048E+01 3.736E+00 2.755E+01 0
10 4.583E+02 2.278E+02 7.571E+02 0
15 4.572E+02 2.625E+02 2.621E+02 0
20 3.646E+02 2.002E+02 0 0

D
TL

Z4

3 2.086E-01 1.609E-01 8.000E+00 7.829E+00
5 3.422E-01 2.860E-01 2.763E+01 3.052E+01
10 4.015E-01 2.214E-01 9.464E+02 1.058E+03
15 6.064E-01 3.117E-01 3.497E+02 1.934E+04
20 7.182E-01 4.434E-01 5.402E+02 1.275E+01

The better (higher) median value for each experiment is shown in bold for
both metrics. A gray background denotes that the difference between the
metric values of the two algorithms is statistically significant according to
Wilcoxon’s rank sum test at a significance level of 0.05.

The EH-metric in Table 1 agrees with R-HV metric for 12 of
the problem instances in terms of the median values. However, for
DTLZ1 with M = 3 and DTLZ2 with M = {3, 5, 10}, EH-metric
and R-HV lead to different conclusions about the performance of
R-NSGA-II and g-NSGA-II. While EH-metric indicates significantly
better performance of R-NSGA-II, R-HV indicates significantly bet-
ter performance of g-NSGA-II. We can further investigate these
cases through visual assessment of the best preference set according
to each metric obtained in each case. Figures 6a and 6b show the
best preference sets for DTLZ2 withM = 5 objectives obtained by
R-NSGA-II and g-NSGA-II respectively. For R-NSGA-II, we choose
the best preference set according to EH-metric and for g-NSGA-II,
we choose the best preference set according to R-HV. Clearly, the
preference sets from R-NSGA-II agree better with the reference
point (shown as a black line) than those from g-NSGA-II. The EH-
metric is able to identify R-NSGA-II as significantly better than
g-NSGA-II, whereas R-HV metric suggests the opposite.

(a) R-NSGA-II (Best EH-metric) (b) g-NSGA-II (Best R-HV)

Figure 6: Best preference sets for DTLZ2 withM = 5.

(a) R-NSGA-II (Best EH-metric) (b) g-NSGA-II (Best R-HV)

Figure 7: Best preference sets for DTLZ2 withM = 10.

(a) R-NSGA-II (Best EH-metric) (b) g-NSGA-II (Best R-HV)

Figure 8: Best preference sets for DTLZ4 withM = 10.

Similarly, Figures 7a and 7b show the best preference sets for
DTLZ2withM = 10 objectives obtained by R-NSGA-II and g-NSGA-
II respectively. Again, we observe that the algorithm identified to
be better by the EH-metric conforms well with the reference point.

Table 2 shows the median values of the two metrics for the
attainable reference point mentioned before. According to the EH-
metric, R-NSGA-II is significantly better than g-NSGA-II on all
problem instances except DTLZ1 withM = 3, where the difference
is not statistically significant.

The EH-metric in Table 2 agrees with R-HV metric for 10 of
the problem instances in terms of the median values. However, for
DTLZ1 with M = 3, DTLZ2 with M = {3, 5, 10} and DTLZ4 with
M = {3, 5, 10}, EH-metric and R-HV again lead to different con-
clusions. We can perform a visual assessment as before. Figures 8a
and 8b show the best preference sets for DTLZ4 with M = 10 ob-
jectives obtained by R-NSGA-II and g-NSGA-II respectively. It is
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Table 2: Median values of EH-metric and R-HV metric over
31 runs of R-NSGA-II and g-NSGA-II with an attainable ref-
erence point.

EH-Metric R-HV
M R-NSGA-II g-NSGA-II R-NSGA-II g-NSGA-II

D
TL

Z1

3 8.658E-02 7.419E-02 9.437E+00 1.042E+01
5 3.948E-02 0 3.970E+01 0
10 3.324E-02 0 1.247E+03 0
15 3.566E-02 0 3.945E+04 0
20 3.066E-02 0 1.208E+06 0

D
TL

Z2

3 2.255E-01 1.447E-01 9.551E+00 1.134E+01
5 1.867E-01 1.070E-01 4.028E+01 5.363E+01
10 5.723E-01 1.360E-01 1.262E+03 2.272E+03
15 6.723E-01 2.293E-01 4.029E+04 8.681E+04
20 6.741E-01 2.310E-01 1.323E+06 3.758E+06

D
TL

Z3

3 3.122E-02 0 9.402E+00 0
5 4.020E-02 0 3.960E+01 0
10 2.116E-02 0 1.135E+03 0
15 3.308E-02 0 3.576E+04 0
20 2.488E-02 0 1.170E+06 0

D
TL

Z4

3 2.241E-01 1.387E-01 9.436E+00 1.140E+01
5 3.793E-01 1.884E-01 4.021E+01 5.572E+01
10 8.339E-01 1.728E-01 1.291E+03 2.769E+03
15 1.300E+00 3.076E-01 4.117E+04 8.929E+04
20 1.486E+00 4.262E-01 1.302E+06 3.269E+02

The better (higher) median value for each experiment is shown in bold for
both metrics. A gray background denotes that the difference between the
metric values of the two algorithms is statistically significant according to
Wilcoxon’s rank sum test at a significance level of 0.05.

easy to see here that R-NSGA-II is the better algorithm as correctly
identified by the EH-metric.

6 CONCLUSIONS
While many reference-point based MOEAs have been proposed
in the literature, there are very few performance assessment met-
rics for quantitatively comparing the algorithms. Our survey only
yielded six such metrics, all of which rely on a DM-defined param-
eter for the size of region of interest (ROI). This parameter is not
intuitive to set for an arbitrary problem, especially when many ob-
jectives are involved. Additionally, these six metrics involve other
parameters that must also be set by the decision maker, making
them difficult to be used in practice. Our goal in this paper was to
propose and evaluate a parameterless performance metric called
the Expanding Hypercube (EH) metric. It is defined as the area un-
der the trade-off curve generated by expanding a hypercube from
the reference point and plotting the number of enveloped points
versus the size of the hypercube. The metric is easy to implement
and inexpensive to compute. We demonstrated the effectiveness of
the EH-metric through both constructed preference sets and exper-
iments using two popular reference-point based MOEAs, namely
R-NSGA-II and g-NSGA-II, on the first four DTLZ problems up to 20
objectives. The assessments from EH-metric and R-HV agree with
each other for only about half of the problem instances. When their

assessments differed, visualization of the preference sets revealed
that the EH-metric is more consistent in identifying the better al-
gorithm. We believe that in future the EH-metric can be extended
to assess preference optimization methods that use other forms of
preference articulation.
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