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Abstract 

Measuring face similarity is a task in computer vision that is different 

from face recognition. It aims to find an embedding in which similar 

faces have a smaller distance than dissimilar ones. This project 

investigates two different Siamese networks to explore whether these 

specific networks outperform face recognition methods on face 

similarity. The best accuracy is from a Siamese convolution neural 

network, which is 65.11%. Moreover, the best results in a similarity 

ranking task are obtained from Siamese geometry-aware metric 

learning. Besides, this project creates a novel dataset with facial image 

pairs for face similarity.  
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Sammanfattning 

Mätning av ansiktslikhet baserad på djupinlärning 

Mätning av ansiktslikhet är en uppgift i datorseende som skiljer sig 

från ansiktsigenkänning. Det syftar till att hitta en inbäddning där 

liknande ansikten har ett mindre avstånd än olika ansikten. Detta 

projekt undersöker två olika siamesiska nätverk för att utforska om 

dessa specifika nätverk överträffar ansiktsigenkänningsmetoder på 

ansiktslikhet. Den bästa noggrannheten är från ett Siamesiskt 

faltningsnätverk, vilket är 65,11%. Dessutom erhålls de bästa 

resultaten i en likhetsrankningsuppgift från Siamesisk geometri-

medveten metrisk inlärning. Projektet skapar också ett nytt dataset 

med ansiktsbildpar för ansiktslikhet.  
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Chapter 1  

Introduction 

This thesis is divided in 6 main chapters: introduction, theory, related 

work, methods, results, and discussion followed by conclusion and 

future work. In this chapter, there is an overall introduction of this 

degree project, including background motivation, problem domain 

statement, main contribution, limitation, and the outline of this report.  

1.1 Background 

Faces are unique for everybody, and it is a direct and visible sign for us 

to identify each other in our daily life. Sometimes we might find that a 

person looks like another one we know, even if they do not have a 

kinship. It is not difficult for us to recognize them as two identities, but 

there are still some common characteristics between them, which 

make us think they look similar. Although we might have no idea how 

to describe these common characteristics, the powerful processing 

system in our brain can deal with them quickly and mark those two 

persons as similar.  

Similar faces play an essential role in some fields, like the movie 

industry and model industry. In the movie industry, dangerous and 

complicated stunts are one of the most attractive elements in an action 

movie. However, it is sometimes difficult for a famous actor to perform 

these stunts perfectly by himself. In this case, a producer might choose 
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a skillful stuntman to complete this performance. If this stuntman has 

a similar face with the actor, the audience will think intuitively that 

this uninterrupted action is performed by the same actor. In the model 

industry, there is usually a theme in a fashion show or magazine 

photography. The organizer or designer might prefer to choose models 

with some special characteristics, like a wide forehead and high 

cheekbones, to match the theme. So when the organizer contacts 

agencies to find proper models, he might choose a series of candidates 

at first and screen them later. If the system can list models 

automatically that have similar faces with a chosen one, it could save 

much time from selecting them one by one.  

1.2 Problem statement  

Face recognition consists of two main tasks: face identification (find 

the identity from a facial image) and face verification (verify whether 

two faces belong to the same person). They are both familiar and 

classic tasks in the field of computer vision and have been tackled with 

great success after deep learning became popular and implementable 

[3, 18]. The algorithms or networks used for face recognition are 

trained with identity as categories, and most of them try to find an 

embedding space where the distance between different persons is large 

while that between the same person is small.  

Different from face recognition, this degree project focuses on face 

similarity. As shown in Figure 1.1, it is a new task to verify whether two 

faces look similar or not. Researchers have started to pay more 

attention to face similarity [1, 2] in recent years. They tried to develop 

algorithms to map faces into an embedding space in which the distance 

between similar pairs is small while that between dissimilar pairs is 

large. However, the label of an image pair in face similarity is 

dependent on subjective marking, which is variable among different 

people. Since the face similarity task is highly related to people’s 

individual choices, it is meaningful to implement face similarity tasks 

based on machine learning to explore how people think when they 

judge whether two faces are similar or not. 
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The primary purpose of this degree project is to develop a method to 

measure face similarity between different identities. This method is a 

specific function which outperforms other face recognition algorithms 

on face similarity. A good choice to implement this function is to use 

machine learning since it is practical to learn the discrimination 

between visual similarity and dissimilarity with machine learning and 

there is no need to design a specific descriptor manually. The research 

problem devised from this purpose is concentrated on the following 

question: To what extent can the face similarity function discriminate 

the similarity and dissimilarity of image pairs based on machine 

learning? 

 

Figure 1.1 The difference between face recognition and face similarity. Face 

recognition algorithms try to enlarge the distance between faces from different 

identities while face similarity algorithms attempt to narrow the distance between 

similar faces. In the left figure, face recognition algorithm predicts these two pairs of 

images as different identities regardless of whether they look similar. In the right 

figure, face similarity algorithm predicts each pair according to whether they are 

visually similar. 

1.3 Contribution 

One of the contributions is a novel dataset containing ground-truths 
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of similar and dissimilar facial image pairs. Since there is no available 

dataset collected according to face similarity between different 

identities at present, a novel dataset is collected which contains plenty 

of face pairs with labels which are annotated by human individuals. 

Also, each pair of facial images is labeled by three people to reduce the 

impact of subjective judgment on similarity.  

Another contribution are two face similarity functions: one of them is 

developed based on existing face recognition descriptor, and the other 

one is implemented with a convolutional neural network. Both of them 

can map the original facial image into a specific similarity embedding 

space in which the distance between similar pairs is small and that 

between dissimilar pairs is large. So the similarity of images pairs can 

be scaled by the distance in the embedding space. There is also a 

comparison between these two functions to evaluate which one is more 

appropriate for face similarity task.  

1.4 Limitation 

The first one is that all the evaluation of results is implemented on a 

novel dataset since there is no available dataset containing the label of 

similarity or dissimilarity. The following application of face similar 

function is not included in this thesis, which is a model scouting 

system to find models with similar faces. This application will use a 

dataset containing various model front faces, but there are no labels 

about the similarity in it. So the final results of the application will be 

evaluated by developers and guests from the principal. 

The second one is that the alignment of faces is not included in this 

degree project. The raw images used to build the novel dataset for the 

face similarity task is the Names 100 dataset [19], in which all the facial 

images are collected on the website and aligned into 120×150 pixels in 

advance. Most of these images are focused on the interesting part, the 

front face, in computer vision and remove those irrelevant, like hair 

and clothes, so there is no need to align them further.  
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1.5 Ethical and societal aspects 

Even though many fields can benefit from the development of face 

similarity as introduced in Section 1.1, the task of similarity measure-

ment raises some ethical and societal concerns at the same time. One 

problem is whether those images in the datasets are collected with the 

permissions from their owners. Another problem is whether those 

people in the datasets know that their pictures are used for scientific 

studies. It is essential to ensure that their privacy is not violated. 

Furthermore, the similarity features extracted from images are part of 

people’s private information. The applications implementing face 

similarity measurement should protect private data at the same time. 

1.6 Outline 

The following part of this thesis consists of 6 other chapters.  

⚫ Chapter 2 introduces related theory used in this project, including 

deep learning and metric learning. 

⚫ Chapter 3 presents some state of the art researches, which are 

helpful for this project. 

⚫ Chapter 4 is a detailed description and illustration of the whole 

method used in this project, which contains data collection and 

network training. Experiment setting and evaluation methods are 

also included in this chapter. 

⚫ Chapter 5 is the experimental results and analysis. It also contains 

a comparison of two machine learning functions developed in this 

project. 

⚫ Chapter 6 gives the conclusion that is an answer to the stated 

problem in the first chapter. 

⚫ Chapter 7 presents the possible future work that might improve 

the face similarity function further.
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Chapter 2 

Theoretical background 

This chapter presents some scientific theories involved in the project 

to enhance the comprehension of this thesis. There are three sections 

included: The first section provides an introduction regarding 

machine learning and neural networks. The second and third sections 

are based on the first one and give a more detailed description of two 

different learning models: deep learning and metric learning. These 

theories can help to understand the following sections more efficiently, 

especially related work in Section 3 and models in Section 4. 

2.1 Machine learning and artificial neural network 

Machine learning is a software technology to learn potential patterns 

buried in data rather than instructions from an engineer. For example, 

to accomplish a task which aims to find cats in images, machine 

learning can find a typical pattern in millions of images of cats, and 

this procedure is called training. Even though the information about 

the appearance of a cat is not provided in advance, the model after 

training can determine whether there is a cat in a new image by itself.  

Artificial neural networks (ANNs) are a special type of machine 

learning algorithm, which is a model imitating neural networks in 

biology. It is widely used for prediction and classification nowadays 
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[30]. This section only provides some useful theories and algorithms 

used in this project. For further study, [30] is good material available 

on the internet.  

2.1.1 Neuron and activation function 

A neuron is the base unit of a neural network. The most simple neuron 

is called perceptron, which contains several binary inputs and a binary 

output, as shown in Figure 2.1. Each neuron has its weights and 

threshold. 

 

Figure 2.1 A simple neuron. It consists of several binary inputs: 𝑥1, 𝑥2, ⋯ , 𝑥𝑛  and a 

binary output 𝑦. The output is computed by the weights and threshold in the neuron 

combined with the inputs. 

The output is decided by the relationship of the weighted sum ∑ 𝑤𝑗𝑥𝑗𝑗  

and the threshold. If the sum is greater than the threshold, then the 

output is 1, and if the sum is less than the threshold, then the output is 

0. To simplify the expression, the sum is changed into a dot product of 

two vectors: 𝒘 ∙ 𝒙 = ∑ 𝑤𝑗𝑥𝑗𝑗 . Also, the threshold is changed into a bias: 

𝑏 = −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. Then the output is decided by 𝒘 ∙ 𝒙 + 𝑏. The criterion 

is formulated as follow: 

𝑜𝑢𝑡𝑝𝑢𝑡 = {
0, 𝑖𝑓 𝒘 ∙ 𝒙 + 𝑏 ≤ 0
1, 𝑖𝑓 𝒘 ∙ 𝒙 + 𝑏 > 0

(2.1) 

A small change of the weights or bias could result in a big flip of the 

output, from 0 to 1 or vice versa. Then the rest of the network may 
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change complicatedly beyond expectation. In this case, it is hard to 

observe how these parameters impact the output of the network. So 

activation functions are introduced to overcome this problem. The 

activation function in a neuron is applied to 𝒘 ∙ 𝒙 + 𝑏, and the output 

of a neuron is the result of the activation function. The criterion is: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝒜𝒸𝓉𝒾𝓋𝒶𝓉ℯ( 𝒘 ∙ 𝒙 + 𝑏) (2.2) 

Some common activation functions are listed in Table 1. We can find 

that a small change in weights and bias in a neuron results in a small 

change in the output. Moreover, the rate of change is decided by the 

first derivative of activation function. 

Table 1 Common activation functions 

Name Equation First derivative 

Logistic (or 

sigmoid) 
𝑓(𝑥) =

1

1 + 𝑒−𝑥
 𝑓′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)) 

Tanh 𝑓(𝑥) =
2

1 + 𝑒−2𝑥
− 1 𝑓′(𝑥) = 1 − 𝑓(𝑥)2 

Rectified 

linear unit 

(ReLU) 

𝑓(𝑥) = {
0,   𝑥 < 0
𝑥,   𝑥 ≥ 0

 𝑓′(𝑥) = {
0,   𝑥 < 0
1,   𝑥 ≥ 0

 

2.1.2 Architecture and fully connected 

In most cases, a neural network consists of one input layer, one or 

more hidden layers, and one output layer. As shown in Figure 2.2, the 

input layer is the leftmost layer of the network, and the output layer is 

the rightmost one. The middle layers, which receive the output of the 

preceding layer as their input and deliver their output to the next layer, 

are called hidden layers. Each layer is composed of a series of neurons 

with various weights and biases. Suppose the 𝑖-th neuron in one layer 

holds the following equation: 
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𝑜𝑢𝑡𝑝𝑢𝑡𝑖 = 𝒜𝒸𝓉𝒾𝓋𝒶𝓉ℯ (∑ 𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖
𝑗

) = 𝒜𝒸𝓉𝒾𝓋𝒶𝓉ℯ( 𝒘𝑖 ∙ 𝒙 + 𝑏𝑖)

(2.3)

 

Then, we get a weight matrix 𝑾, with elements given by 𝑤𝑖𝑗 and a 

bias vector 𝒃 for each layer, and the relationship between input vector 

𝒙 and output vector can be formulated as follow: 

𝒐𝒖𝒕𝒑𝒖𝒕 = 𝒜𝒸𝓉𝒾𝓋𝒶𝓉ℯ( 𝑾𝒙 + 𝒃) (2.4) 

 

Figure 2.2 A simple fully connected ANN. It consists of one input layer with three 

neurons, one hidden layer with four neurons, and one output layer with two neurons.  

When the data to be processed in a problem is complex and the 

classification results are multiple, the architecture of a neural network 

might become deeper and more complicated [30]. Furthermore, if all 

of the neurons are connected between two adjacent layers, then this 

network is fully connected. Figure 2.2 is also an example of a fully 

connected network. 
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2.1.3 Segmentation and overfitting 

The whole dataset can be segmented into three different data sets to 

build a final neural network: training set, test set, and validation set. 

The training set contains samples that are used to fit the parameters 

of the network, i.e. the weights and biases. It usually consists of pairs 

of an input vector and an output target. The test set provides samples 

for evaluation of the final network. Samples in the test set should never 

be used in the training phase. Sometimes the loss, which will be 

explained in the next section, of the training set is small while that of 

the test set is large when overfitting occurs [31]. The validation set can 

provide samples in the training phase to evaluate the loss and monitor 

if the model has a good generalization. 

2.1.4 Loss function and optimization 

To obtain accurate prediction results from a network as much as 

possible, the parameters of the network are updated correspondingly. 

Each iteration of the training phase contains two procedures: forward 

propagation and backpropagation. The predicted results are computed 

by input values and parameters layer by layer in forwarding 

propagation and parameters are updated according to the difference 

between predicted and actual values in backpropagation. 

A loss function (or cost function) is the function used during the 

training phase to measure the general difference between predicted 

results and ground-truths. The purpose of training is to minimize the 

loss value of the network. So it is crucial to find an appropriate loss 

function for different problems [30]. There are many loss functions 

applied to neural networks, and some standard functions are 

introduced in the following paragraphs. Other loss functions applied 

in this project are discussed in Section 2.3 and 3.2. 

L2 loss function 

L2 loss, which is also called mean square error (MSE), is a typical loss 

function in regression problems [31]. If we use 𝑦𝑖 and 𝑦̂𝑖 to represent 

the 𝑖 -th ground-truth and prediction output from the network 

respectively, the L2 loss function can be formulated as Equation 2.5, 



 

11 

 

where 𝑁 denotes the length of output vector. 

ℒ𝐿2 =
1

𝑁
∑(𝑦̂𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

(2.5) 

Cross-entropy loss function 

Cross-entropy loss is a normal loss function in classification problems 

[31]. It is used to measure the distance between two probability 

distributions of ground-truth and prediction. To transform the 

prediction output into its probability distribution between 0 and 1, the 

common method is to add a softmax layer at the end of a neural 

network. The softmax function is written as Equation 2.6, where P(𝑦̂𝑖) 

denotes the probability of 𝑖-th output 𝑦̂𝑖 and 𝑁 denotes the length 

of output vector. 

P(𝑦̂𝑖) =
𝑒𝑦̂𝑖

∑ 𝑒𝑦̂𝑗𝑁
𝑗=1

(2.6) 

Then we can get the cross-entropy loss formulated as Equation 2.7. 

The loss increases when the prediction results are different from the 

ground-truths [31]. 

ℒ𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑦𝑖 log(P(𝑦̂𝑖))

𝑁

𝑖=1

(2.7) 

The procedure of minimizing the loss during the training phase is 

called optimization. This is implemented by some specific algorithms. 

The purpose of optimization is to change the parameters in the 

direction which is opposite to the gradient direction of loss function 

[31]. This method is called gradient descent, which can be formulated 

as follow: 

𝜃𝑖+1 = 𝜃𝑖 − 𝜈∇𝜃𝑖
ℒ(𝜃) (2.8) 
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In the equation, 𝜃𝑖 and 𝜃𝑖+1 denote parameters of the 𝑖-th and (𝑖 +

1)-th iteration, respectively, and ∇𝜃𝑖
ℒ(𝜃) denotes the gradient of loss 

function ℒ(𝜃)  when 𝜃 = 𝜃𝑖 . Learning rate 𝜈  controls the speed of 

adjustment of parameters. If the learning rate is too small, it will take 

a long time to converge, while if it is too big, the loss function will 

fluctuate near the local minimum [31]. Common optimization 

strategies are presented in the following paragraphs. 

Stochastic gradient descent 

Stochastic gradient descent (SGD) is an optimizer in which the para-

meters are updated once for each training sample, using randomly 

shuffled samples [31]. Even though it is more efficient to select one 

training sample randomly than to use the whole training set in an 

iteration, the final parameters are not always globally optimal. Mini-

batch gradient descent (MBGD) is a tradeoff between efficiency and 

robustness. It selects a batch of samples randomly from the training 

set and updates parameters based on the samples in the batch for each 

iteration. The procedure of MBGD optimizer is summarized in 

Algorithm 1 based on [31]. 

Algorithm 1 Mini-batch gradient descent (MBGD) optimizer based on [31] 

Input: Training set {𝑥, 𝑦}, batch size 𝑏, learning rate 𝜈 

Output: Parameters 𝜃 

  Initialization: parameters 𝜃 

  for 𝑖𝑡𝑒𝑟 = 1, 2, 3, ⋯ do 

Randomly select a mini-batch from the training set {𝑥(1), ⋯ , 𝑥(𝑏)},  

      with corresponding targets 𝑦(𝑖) 

Compute corresponding output of network 𝑦̂(𝑖) = 𝑓(𝑥(𝑖)) 

    Compute gradient estimate: 𝑔̂ =
1

𝑏
∇𝜃 ∑ ℒ(𝑦̂(𝑖), 𝑦(𝑖); 𝜃)𝑖  

    Update parameters 𝜃 with 𝜃 ← 𝜃 − 𝜈𝑔̂ 

    if 𝜃 converged then 

      break 

    end if 

  end for 
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Adaptive momentum estimation 

Adaptive momentum estimation (ADAM) is one of the recent 

stochastic optimizers, which was proposed by Kingma, D. P. et al. in 

2014 [32]. It updates the parameters according to both the average of 

gradient and the second moment of the gradient. The procedure of 

ADAM optimizer is summarized in Algorithm 2 based on [32]. 

Algorithm 2 Adaptive momentum estimation (ADAM) optimizer based on [32]. 

Here 𝑔𝑡
2 denotes the element-wise square 𝑔𝑡 ⊙ 𝑔𝑡, and all operations on vectors 

are element-wise. 𝛽1
𝑡 and 𝛽2

𝑡 denote the 𝑡-th power of 𝛽1 and 𝛽2. 

Input: Learning rate 𝜈 , exponential decay rates for the moment estimates 

𝛽1, 𝛽2 ∈ [0, 1), scalar 𝜖 

Output: Parameters 𝜃 

  Initialization: parameters 𝜃0, first moment vector 𝑚0 = 0,  

    second moment vector 𝑣0 = 0, timestep 𝑡 = 0 

  for 𝑖𝑡𝑒𝑟 = 1, 2, 3, ⋯ do 

    Update 𝑡 with 𝑡 ← 𝑡 + 1 

    Compute gradient estimate: 𝑔𝑡 = ∇𝜃ℒ(𝜃𝑡−1) 

    Update biased first moment estimate 𝑚𝑡 with 𝑚𝑡 ← 𝛽1 ∙ 𝑚𝑡−1 + (1 − 𝛽1) ∙ 𝑔𝑡 

Update biased second raw moment estimate 𝑣𝑡  

      with 𝑣𝑡 ← 𝛽2 ∙ 𝑣𝑡−1 + (1 − 𝛽2) ∙ 𝑔𝑡
2 

Compute bias-corrected first moment estimate: 𝑚̂𝑡 = 𝑚𝑡/(1 − 𝛽1
𝑡) 

Compute bias-corrected second raw moment estimate: 𝑣̂𝑡 = 𝑣𝑡/(1 − 𝛽2
𝑡) 

Update parameters 𝜃 with 𝜃𝑡 ← 𝜃𝑡−1 − 𝜈 ∙
𝑚̂𝑡

√𝑣̂𝑡+𝜖
 

    if 𝜃 converged then 

      break 

    end if 

  end for 
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2.2 Convolutional neural network 

When the input data of neural network is an image, convolutional 

neural networks (CNNs) are more efficient to process it [30]. CNNs 

have achieved great success in the field of computer vision [3, 18], like 

image recognition and classification. One of the main advantages of 

CNNs over ANNs is that the spatial information is saved and handled 

by the convolution operation. Besides, the use of shared parameters in 

CNNs helps to save time and space [31]. As will be explained below, a 

deep architecture of CNNs typically consists of alternating 

convolutional layers and pooling layers, followed by fully connected 

layers. Also, a deeper network could extract more obscure information 

from images in general [18]. The following sections present a brief 

introduction of layers in CNNs. For further study, [31] is a useful 

resource available online. 

2.2.1 Convolutional layer 

The convolution operation is the core of a CNN and is conducted in 

convolutional layers. It means that convolution kernels (or filters) of 

different sizes and strides are slid over the image and applied as dot 

products with pixel values of the image, as shown in Figure 2.3. The 

width and height of the kernel are usually equal, such as 3×3 and 5×5, 

and the depth is equal to the number of channels of the input image. 

In the input layer, a grayscale image has one channel and a color image 

usually has three channels: red, green, and blue. As for hidden layers, 

the depth of input is equal to the number of kernels from last 

convolutional layer, since one kernel corresponds to one output 

channel.  

Stride and padding are two standard parameters which impact the 

convolutional layer [31]. The stride of a kernel determines how much 

it moves over the image when sliding. A stride of 1 means the kernel 

moves pixel by pixel. The padding determines how to deal with the 

edge pixels in the image. When the kernel applies convolution to the 

edge pixels, part of the kernel is outside the image range. A common 
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strategy to add zeros around the image and this is called zero-padding. 

Also, the information of edge pixels is saved through padding. 

 

Figure 2.3 An illustration of convolution operator taken from [33]. A 3×3 kernel 

slides over the source image and generates new pixel values to output feature maps. 

The new value is a weighted sum of source pixels within the current neighborhood. 

It saves the spatial information of source image. 

The size of output feature map can be computed using the following 

equation, where ℎ and 𝑤 denote the height and width (usually equal) 

respectively, and 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 denotes the number of padding pixels. 

{
ℎ𝑜𝑢𝑡𝑝𝑢𝑡 = ⌊

ℎ𝑖𝑛𝑝𝑢𝑡 − ℎ𝑘𝑒𝑟𝑛𝑒𝑙 + 2 × 𝑝𝑎𝑑𝑑𝑖𝑛𝑔

𝑠𝑡𝑟𝑖𝑑𝑒
⌋ + 1

𝑤𝑜𝑢𝑡𝑝𝑢𝑡 = ⌊
𝑤𝑖𝑛𝑝𝑢𝑡 − 𝑤𝑘𝑒𝑟𝑛𝑒𝑙 + 2 × 𝑝𝑎𝑑𝑑𝑖𝑛𝑔

𝑠𝑡𝑟𝑖𝑑𝑒
⌋ + 1

(2.9) 

Furthermore, a convolutional layer is usually followed by a ReLU layer, 
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which applies the ReLU function to the output. Because there is a 

general problem for both sigmoid and tanh functions, which is that 

they saturate [31]. This problem limits the sensitivity and removes 

some information, such as gradient, of an image. 

2.2.2 Pooling layer 

After the output of convolution layer is applied to an activation 

function, it is time to sub-sample the feature maps, which is called 

pooling. These original feature maps are sensitive to the position of the 

feature, and pooling is an effective method to reduce this sensitivity by 

sub-sampling [31]. There are two types of pooling method: average 

pooling and maximum pooling (or max-pooling), and the latter one is 

commonly used in CNN. Average pooling means to choose the average 

presence of a feature while maximum pooling means to choose the 

max activated presence [31]. Figure 2.4 illustrates an example of max-

pooling.  

 

Figure 2.4 An illustration of max-pooling 

A slight translation of the input image might not change the result of 

max-pooling, which is called “local translation invariance” [31]. Also, 

pooling can reduce the computational complexity during training 
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phase at the same time. The main parameters of a pooling layer are 

filter size and stride. In general, the height and width of the filter are 

same, and the stride is also equal to the side length of filter. The size of 

output feature map of polling layer can be computed by following 

equation, where ℎ and 𝑤 denote the height and width (usually equal) 

respectively. 

{
ℎ𝑜𝑢𝑡𝑝𝑢𝑡 = ⌈

ℎ𝑖𝑛𝑝𝑢𝑡 − ℎ𝑓𝑖𝑙𝑡𝑒𝑟

𝑠𝑡𝑟𝑖𝑑𝑒
⌉ + 1

𝑤𝑜𝑢𝑡𝑝𝑢𝑡 = ⌈
𝑤𝑖𝑛𝑝𝑢𝑡 − 𝑤𝑓𝑖𝑙𝑡𝑒𝑟

𝑠𝑡𝑟𝑖𝑑𝑒
⌉ + 1

(2.10) 

2.3 Metric learning 

The task of metric learning (or distance metric learning) is to learn a 

distance function which measures the similarity between objects [4]. 

The distance function can map the original data to an embedding 

space, where the distance is a metric of similarity. Most methods of 

metric learning train the model using either of following information 

[4]: 

⚫ Positive and negative pairs (must-link / cannot-link constraint):  

{
𝒮 = {{(𝑥𝑖 , 𝑥𝑗)}|𝑥𝑖  and 𝑥𝑗  should be similar}

𝒟 = {{(𝑥𝑖 , 𝑥𝑗)}|𝑥𝑖  and 𝑥𝑗  should be dissimilar}
(2.11) 

⚫ Training triplets (relative constraint):  

ℛ = {(𝑥𝑎, 𝑥+, 𝑥−)|𝑥𝑎  should be more similar to 𝑥+ than to 𝑥−} (2.12) 

The following section presents a brief description of a Siamese 

architecture for metric learning and a loss function suitable for it. For 

further study, [4] is good material available on the internet. 
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2.3.1 Siamese network 

A Siamese network is a pair of neural networks which share the same 

weights when applied to two different inputs to get comparable 

outputs [5]. It can be regarded as a distance function of metric learning: 

The two inputs are mapped into the output embedding by a Siamese 

network, and there is a loss function in the new embedding to evaluate 

the similarity of inputs. The common architecture is shown in Figure 

2.5. 

 

Figure 2.5 A typical Siamese architecture based from [5]. Two networks share the 

same weights and map two different inputs into a comparable target embedding. The 

output of network is the similarity metric in target embedding. Furthermore, the 

metric of distance in target embedding is replaced by a loss function layer during the 

training phase to evaluate the network.  
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The neural network in Siamese architecture is not limited to ANN [11]. 

A CNN is usually combined with Siamese network when dealing with 

the image similarity task [5, 10, 12]. Then the vector in target 

embedding represents a metric of image similarity.  

2.3.2 Contrastive loss 

Contrastive loss function is a common loss function in Siamese 

networks, which can effectively deal with the relationship between 

pair-data, proposed by Hadsell, R. et al. in 2006 [34]. It evaluates the 

loss of similar and dissimilar pairs separately. In general, the loss 

decreases when the distance between features in a similar pair in the 

target embedding is small or features in a dissimilar pair is large, and 

vice versa. The mathematical expression is written as Equation 2.13. 

ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 =
1

2𝑁
∑[𝑦𝑖𝑑𝑖

2 + (1 − 𝑦𝑖)max(𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑑𝑖 , 0)2]

𝑁

𝑖=1

(2.13) 

In the expression, 𝑑𝑖 denotes the Euclidean distance between the 𝑖-

th output pair feature vectors and 𝑚𝑎𝑟𝑔𝑖𝑛  denotes the threshold 

between similarity and dissimilarity. Besides, 𝑦𝑖 = 1  when the 

sample pair is similar and 𝑦𝑖 = 0 when they are dissimilar.  
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Chapter 3  

Related work 

In this chapter, a detailed introduction of related work is presented 

along with their relevance to this degree project. There are two main 

fields relevant to the thesis: First, this project is aims to deal with facial 

images, so it is closely related to face recognition. Furthermore, some 

methods for image similarity might be helpful to address the face 

similarity task.  

3.1 Face recognition 

In the field of computer vision, face recognition is one of the most 

popular tasks [6]. As a well-developed technology, face recognition has 

been widely applied in our lives, like the security check gate in an 

airport and the facial lock in mobile phone. The general task of face 

recognition is to identify or verify the identity of one or more persons 

in a static image or a dynamic sequence according to a pre-stored 

dataset [6]. There are four main steps of this task: face detection, face 

alignment, face representation, and face matching, which are shown 

in Figure 3.1. 
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Figure 3.1 The basic procedure of face recognition 

3.1.1 Different methods for face recognition 

At an early stage, researchers were focused on feature extraction from 

facial images. One of the earliest methods is to extract features from 

geometric parameters, which was proposed by Bledsoe in 1966 [20]. 

The parameters contain the distance between eyes, the height of nose, 

the width of head. This work is semi-automatic since these parameters 

are all collected under the help of manual localization, such as the 

location of the top of the nose.  

To avoid positioning the keys points from facial images, researchers 

began to extract advanced features from image pixels and other 

domains transformed from the image until deep learning appeared. 

This type of features holds underlying physical characteristics rather 

than certain semantic information of the facial image. Common 

underlying characteristics include intensity, transformation 

coefficients (such as discrete cosine transform [21], wavelet transform 

[22], and Gabor transform [23]) and local texture feature (such as 

scale-invariant feature transform [24], histograms of oriented 

gradients [25] and local binary patterns [26]). Figure 3.2 is an example 

of how local binary patterns (LBP) works over a grayscale image.  

 

Figure 3.2 A typical LBP operator with a size of 3×3. The intensity of the center 

pixel is regarded as a threshold of this window. The around pixels whose intensity is 

less than the threshold are tagged as 0 while those greater are tagged as 1.  
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In addition to extracting feature from other domains, methods based 

on subspace analysis are also developed at the same time. Researchers 

attempt to reduce the dimension of features from origin image space 

and transform them into a new subspace, in which the features can 

represent the origin face more efficiently. Examples of this type of 

method include eigenfaces [14], Fisherfaces [15], and Laplacian faces 

[16]. All of these algorithms focus on saving the most important facial 

information in the low-dimension feature when the dimension is 

compressed.  

The idea to apply neural network on face recognition was proposed in 

1997 by Lin et al. [27]. They designed a probabilistic decision-based 

neural network to deal with the recognition task. Since the 

computational ability was limited by hardware at that time, the 

structure of this network was simple, and the size of dataset was small. 

Similarly, the following method [5] based on the neural network 

proposed at that period failed to make breakthrough progress in the 

field of computer vision. 

In recent years, with the development of hardware and software, the 

computational ability of computers is strengthened dramatically. The 

structure of neural networks has become deeper and more complex 

and convolutional neural networks (CNNs) has gradually become 

applicable to computer vision. The main advantage of using CNNs is 

that researchers do not need to design features manually anymore 

since the network can learn a specific feature for each task based on 

the image dataset by itself.  

Some networks achieve acceptable results in face recognition. 

DeepFace proposed by a Facebook group [18] reaches an accuracy of 

97.35% on the Labeled Faces in the Wild (LFW) [29] dataset. The input 

images of this network need to be aligned in advance. FaceNet 

proposed by Schroff et al. [28] reaches a higher accuracy of 99.63% on 

LFW. And FaceNet is trained on unaligned images with triplet loss. 

VGG-Face proposed by Parkhi et al. [3] achieves an accuracy of 99.13% 

on LFW, which is trained on a smaller dataset but get similar accuracy 

with other networks.  
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3.1.2 VGG-Face 

VGG-Face network is a “very deep” convolutional neural network 

which achieves similar accuracy with smaller dataset [3]. Parkhi et al. 

proposed three similar architectures of VGG-Face, in which the 16-

layer one is used to extract VGG-Face CNN descriptors. Figure 3.3 

shows the specific configuration of the 16-layer VGG-Face network. 

 

Figure 3.3 Network configuration of 16-layer VGG-Face taken from [3]. 

There are 16 convolutional layers in total, and all of them are followed 

by a ReLU layer, respectively. The last three layers are fully connected 

(FC) layers that are annotated as “conv” in the configuration since the 

filter matches the size of input data [3]. Furthermore, the input to this 

network is a 224×224 facial image with the average image subtracted 

[3]. Also, the output of the last FC layer is a vector of 2,622 elements, 

which can be regarded as an embedding space in metric learning.  

3.1.3 The difference between face recognition and 
similarity 

Although face similarity is relevant to face recognition, a network 

explicitly trained for recognition might be improper for a similarity 

task. This intuition was proven by Sadovnik et al. in 2018 [1]. They 

conducted an experiment to measure the difference between 

recognition and similarity by collecting a novel dataset.  

First, they use the VGG-Face descriptor to process the facial images in 

the dataset and map them into the embedding space mentioned in 

Section 3.1.2. Then they compute the Euclidean distance of feature 
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vectors for each pair of images and bin them into 10 different bins 

according to their distance. To compare pairs from different bins, they 

select 100 test cases from each bin for comparison. For example, if the 

face recognition algorithm were a good measurement of face similarity, 

the image pair of small-distance bin would look more similar than that 

of large-distance bin. Therefore, they have a total of 100 × (10¦2) =

4500  test cases. The comparison results are shown as a matrix in 

Figure 3.4. 

 

Figure 3.4 The result of comparison experiment taken from [1]. The number shows 

the frequency that the row bins are chosen as more similar over the column bins. 

Besides, the results with less than 80% agreement are ignored. 

There is a strong correlation between similarity and recognition from 

the comparison between small-distance bin and large-distance bin, 

which is shown as the upper right corner of the matrix. However, when 

it comes to the comparison between bins with small distance, the task 

for face recognition cannot reflect the similarity accurately, which is 

shown as the upper left corner of the matrix. In conclusion, the 

recognition embedding can separate the most dissimilar ones from 

somewhat similar ones, but it does not work well at finding the most 

similar images [1]. 
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3.2 Image similarity 

Measuring similarity between two images is another important task in 

the field of computer vision [7, 8]. It has played an important role in 

object classification and image retrieval. In general, image similarity 

contains two types: semantic similarity and visual similarity. The 

former means the classification relationship between images, like 

which super-class the two images belong to. The latter one means 

subjective feelings of similarity on an image pair. [9] proposed that 

there two types of similarity are both critical by evaluating the impact 

of each. 

At an early stage, researchers choose features extracted from images 

to compare similarity, such as texture [35] and scale-invariant feature 

transform (SIFT) [24]. To obtain a higher level of semantic concepts, 

the outputs of a classifier [7] are used as features, since they contain 

the classification information of an image. These methods concentrate 

more on the semantic similarity but ignore the visual similarity.  

In recent years, image similarity is developed based on metric learning. 

As introduced in Section 2.3, the purpose of metric learning is to find 

a metric or embedding space to measure the similarity. Cosine 

distance is one of the metrics measuring the relationship between 

features, which is defined as Equation 3.1.  

cos(𝒙, 𝒚) =
𝒙𝑇𝒚

‖𝒙‖‖𝒚‖
(3.1) 

Zhang, N. et al. proposed geometry-aware metric learning (GAML) 

based on cosine distance in 2016 [2]. They use a fully connected 

network to transform the features extracted from images into a new 

embedding, in which the distance between features in a dissimilar pair 

is enlarged while the distance between features in a similar pair is 

preserved not narrowed, as shown in Figure 3.5. More details of the 

implementation of GAML is discussed in Section 4.2. 
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Figure 3.5 An illustration of GAML taken from [2]. In the origin domain, similar 

and dissimilar samples are located near each other. After the transformation of 

GAML, the distance between similar samples is preserved but dissimilar samples are 

pulled away with a threshold 𝜏. 

Since this project focuses on face similarity, methods for image 

similarity might be somewhat useful to explore measuring metric. 

However, they are two distinct tasks because human-specific neural 

processing for faces differs from other objects [6]. Besides, measuring 

the face similarity is somewhat more subjective than other recognition 

tasks and this project is aimed to explore the subjective bias. 
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Chapter 4 

Methods 

This chapter presents a detailed introduction about how this degree 

project is implemented. The project can be divided into two main parts: 

data collection and network training. Two different Siamese networks 

are used to compare the measurement results, which are implemented 

with CNN and metric learning, respectively. These two methods are 

presented in separate sections later. Also, the evaluation methods 

about the experiment results are provided in this chapter. 

4.1 Data collection 

Machine learning is dependent on plenty of data, so plenty of ground-

truths of face similarity is needed before network training. 

Unfortunately, there is no public dataset which contains information 

about similarity. A decision was thus made to collect a novel dataset 

that is specific for this task.  

Since this novel dataset should include information on human 

judgement about whether two facial images look similar, there are two 

indispensable elements which are needed to prepare in advance. One 

of them is a proper raw dataset that contains plenty of facial images 

from different identifies, and the other one is a platform which 

provides an efficient way to collect human judgements. 
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The Names 100 dataset [19] is chosen as the raw dataset for the 

following reasons. First, this dataset is organized into 100 different 

names. Each name contains 800 different facial images from social 

networks. So there are 80,000 facial images altogether contained in 

this dataset, which is larger than some common datasets. Second, all 

the facial images in this dataset are aligned and resized into 120×150 

pixels, and thus I could save some time from face detection and 

alignment and focus more on face similarity. Third, since the images 

in the dataset are collected from social networks, there are no image of 

celebrities included in it. People might make different judgements on 

similarity when it involves identities they know about. So a wild 

dataset can prevent the impact of this type of deviation. Some facial 

images of this database are shown in Figure 4.1. As for the platform for 

this task, I choose to ask workers on Amazon Mechanical Turk to help 

annotate these images. 

 

Figure 4.1 A list of first 28 images in Names 100 dataset. These images are collected 

from different identities who have the same name “Aaron”. All of the identities are 

distinguished by name in this dataset. 

The first step is to map these images into an embedding space for the 

following processing. I randomly select 5,000 facial images from the 
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dataset and then use the pre-trained VGG-Face CNN descriptor [3] to 

extract features from images. The meaningful embedding space in this 

project is the embedding before the last softmax layer, so I remove the 

last layer and use the output of the penultimate layer as the final 

feature. After the VGG-Face descriptor has processed all facial images, 

I get 5,000 feature vectors with 2,622 elements from the output.  

The next step is to screen similar potential pairs from the embedding 

space. As introduced in Section 3.1.3, if the features extracted by the 

VGG-Face descriptor from two images have a small Euclidean distance, 

these two images are more likely to look similar. In contrast, the image 

pair whose feature distance is significant from each other have little 

possibility to look similar. So I decide to choose the pairs with the 

smallest distance as the potential pairs. Since identities are only 

distinguished by names in the dataset, I calculate the pair distance 

between features whose names are different and thus it is ensured that 

the two images are not from the same person. I finally get 12,372,666 

Euclidean distances from different feature pairs and Figure 4.2 shows 

the distribution of the pair-distances through a histogram. 

 

Figure 4.2 Distribution of pair-distance of 5000 VGG features 
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Generally, more ground-truths are beneficial to train a neural network, 

but the cost of human annotation increases simultaneously. To make 

a tradeoff between the number of potential pairs and the cost 

according to the budget from my principal, I choose a pair-distance of 

56 as the threshold to screen the pairs. Any image pair whose distance 

is less than or equal to the threshold is collected for the following 

annotation and the total number is 5,238. Before publishing the 

annotation task on Mechanical Turk, all the similar potential pairs 

should be uploaded and stored on the internet with public access. I 

choose Amazon S3 as the cloud storage and get a list of URLs from the 

storage bucket.  

The following step is to design a task on Mechanical Turk to collect 

ground-truths of similar and dissimilar facial image pairs, and the task 

should satisfy the following conditions: 

⚫ The whole task should be divided into independent Hits, and one 

Hit corresponds to one image pair. 

⚫ Each Hit should collect information about “similar pair” or 

“dissimilar pair”. 

⚫ Since the annotation of similarity is subjective, each Hit should be 

annotated multiple times from different workers to reduce the 

impact of subjective bias. 

⚫ It could be better to provide examples of similar pairs and 

dissimilar pairs to help workers have an intuitive understanding of 

this task.  

⚫ The choices which are annotated within less than 1 second might 

be rejected and removed to avoid quick clicks without 

consideration. 

Therefore, I decide to frame this task as a labeling task. It consists of a 

brief description and a pair of facial images. As shown in Figure 4.3, 

there are two options to choose for each pair: “similar pair” and 

“dissimilar pair”. Also, a pair of examples (a similar pair and a 
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dissimilar pair) are displayed in full instructions for this task. Since 

there are 5,238 image pairs to be annotated, I divide them and get a 

total of 5,238 Hits. Considering the least reward per assignment per 

worker is $0.01, each Hit is distributed to 3 different workers to save 

costs. Since it is not allowed to upload more than 500 Hits in one batch, 

I randomly divide the 5,238 image pairs into 11 different batches and 

publish them separately.  

 

Figure 4.3 An example Hit of Mechanical Turk task 

After all of Hits are finished by workers, 15,714 results are collected 

into 11 different CSV files from Mechanical Turk, which consist of 

annotations of similar pair and dissimilar pair. For each image pair, if 

it is annotated as a similar pair two or three times, then this pair is 

labeled as a similar pair in the dataset. In contrast, if an image pair is 

annotated as a dissimilar pair two or three times, then it gets a label of 

dissimilar pair in the dataset. Finally, 1,750 similar image pairs and 

3488 dissimilar image pairs are collected in the novel dataset. 



 

32 

 

4.2 Experiment approaches 

Once the novel dataset for face similarity is collected, two Siamese 

networks with different methods are built: convolutional neural 

network (CNN) and geometry-aware metric learning (GAML). The 

former one processes input facial images directly and outputs features 

used for similarity comparison. The latter network uses VGG-Face 

features as input and maps them into a new embedding space in which 

the distance represents similarity between images.  

4.2.1 Experiment 1: Measuring similarity based on CNN 

As discussed in Section 2.2 and 2.3, CNN can save and extract spatial 

information from original images, and a Siamese network is good at 

finding similarity between two comparable things. So this method 

combines these two networks to find a function which can measure the 

similarity. The architecture of this learning machine is shown in Figure 

4.4.  

 

Figure 4.4 The architecture of Siamese CNN 
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At the top of this network, 𝑋1 and 𝑋2 denote a pair of facial images 

shown as an input to the network. Moreover there is a corresponding 

label 𝑦 for each image pair, 𝑦 = 1 if 𝑋1 and 𝑋2 are similar pair and 

𝑦 = 0  otherwise. Next, 𝑓𝑤  denotes the mapping function which 

represents the CNN and 𝑤 denotes the shared parameter of Siamese 

network. After that, 𝑓𝑤(𝑋1)  and 𝑓𝑤(𝑋2)  are two features that are 

generated by mapping 𝑋1  and 𝑋2 . At last, Euclidean distance of 

𝑓𝑤(𝑋1)  and 𝑓𝑤(𝑋2)  is used to evaluate the contrastive loss. The 

contrastive loss in this experiment is defined as: 

𝐽 =
1

2𝑁
∑[𝑦𝑖𝑑(𝑋1, 𝑋2, 𝑓𝑤)𝑖

2 + (1 − 𝑦𝑖)max(𝜏 − 𝑑(𝑋1, 𝑋2, 𝑓𝑤)𝑖, 0)2]

𝑁

𝑖=1

(4.1)

 

where (𝑋1, 𝑋2, 𝑓𝑤)𝑖  denotes the 𝑖 -th sample and 𝑑(𝑋1, 𝑋2, 𝑓𝑤)  is the 

Euclidean distance between feature vectors 𝑓𝑤(𝑋1)  and 𝑓𝑤(𝑋2) , 

which is computed as: 

𝑑(𝑋1, 𝑋2, 𝑓𝑤) = ‖𝑓𝑤(𝑋1) − 𝑓𝑤(𝑋2)‖ (4.2) 

The loss of similar pairs (𝑦𝑖 = 1) is evaluated by 𝑑(𝑋1, 𝑋2, 𝑓𝑤)2, which 

means the distance between similar pairs should be narrowed after 

being mapped by the network. The loss of dissimilar pairs (𝑦𝑖 = 0) is 

evaluated by max(𝜏 − 𝑑(𝑋1, 𝑋2, 𝑓𝑤), 0)2 , which means the distance 

between dissimilar pairs should be enlarged over a margin 𝜏  after 

being processed by CNN. 

The architecture of the CNN consists of 6 convolutional layers and one 

fully connected layer. Each convolutional layer is followed by a ReLU 

layer for activation and a max-pooling layer for sub-sampling. A 

simple illustration of this architecture is shown in Figure 4.5. In the 

following detailed description, 𝐶𝑥 represents convolutional layer, 𝑃𝑥 

represents max-pooling layer, and 𝐹𝑥 represents fully connected layer, 

where 𝑥 is the layer index.  
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Figure 4.5 A simple illustration for CNN architecture. There are in total 6 

convolutional layers and one fully connected layer. The penultimate layer is a flatten 

layer, and pooling layers and ReLU layers are omitted. The creation tool for this 

figure is available in [36]. 

The whole architecture of CNN is 𝐶1(𝑃1) − 𝐶2(𝑃2) − 𝐶3(𝑃3) − 𝐶4(𝑃4) −

𝐶5(𝑃5) − 𝐶6(𝑃6) − 𝐹7: 

⚫ 𝐶1 , Feature maps: 32; Size: 64×64; Kernel size: 9×9; Stride: 2; 

Padding strategy: ‘same’; Activation function: ReLU. 

Fully connected with the input. 

𝑃1, Feature maps: 32; Size: 32×32; Field of view: 2×2; Stride: 2; 

Padding strategy: ‘same’. 

⚫ 𝐶2 , Feature maps: 64; Size: 32×32; Kernel size: 7×7; Stride: 1; 

Padding strategy: ‘same’; Activation function: ReLU. 

𝑃2, Feature maps: 64; Size: 16×16; Field of view: 2×2; Stride: 2; 

Padding strategy: ‘same’. 

⚫ 𝐶3 , Feature maps: 128; Size: 16×16; Kernel size: 5×5; Stride: 1; 

Padding strategy: ‘same’; Activation function: ReLU. 

𝑃3 , Feature maps: 128; Size: 8×8; Field of view: 2×2; Stride: 2; 

Padding strategy: ‘same’. 

⚫ 𝐶4 , Feature maps: 256; Size: 8×8; Kernel size: 3×3; Stride: 1; 

Padding strategy: ‘same’; Activation function: ReLU. 

𝑃4 , Feature maps: 256; Size: 4×4; Field of view: 2×2; Stride: 2; 

Padding strategy: ‘same’. 

⚫ 𝐶5 , Feature maps: 512; Size: 4×4; Kernel size: 1×1; Stride: 1; 
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Padding strategy: ‘same’; Activation function: ReLU. 

𝑃5 , Feature maps: 512; Size: 2×2; Field of view: 2×2; Stride: 2; 

Padding strategy: ‘same’. 

⚫ 𝐶6 , Feature maps: 1,024; Size: 2×2; Kernel size: 1×1; Stride: 1; 

Padding strategy: ‘same’; Activation function: ReLU. 

𝑃6, Feature maps: 1,024; Size: 1×1; Field of view: 2×2; Stride: 2; 

Padding strategy: ‘same’. 

Followed by a flatten layer and then fully connected to 𝐹7. 

⚫ 𝐹7, Number of units: 400; Connections: 410,000. 

The corresponding parameter setting and training protocol will be 

described in Section 4.3. After training, the output vector of the CNN 

can be regarded as a feature of an image. Moreover, the Euclidean 

distance between these features represents the similarity between 

facial images.  

4.2.2 Experiment 2: Measuring similarity based on 
GAML 

At the stage of data collection, I have already extracted VGG-Face 

features from facial images. As discussed in Section 3.1.3, the distance 

between VGG-Face features is not a representation of similarity, so I 

apply GAML to map these features into a new embedding space in this 

experiment. I make some adjustment on the original loss function in 

[2] to maintain consistency with pre-processing in data collection, 

which is formulated as the following equations: 

𝐽 = 𝐽1 + 𝛼𝐽2 (4.3) 

𝐽1 =
1

2
∑ 𝑆𝑖[𝑑(𝒩(𝑥𝑖), 𝒩(𝑦𝑖), 𝑓𝑤,𝑏) − 𝑑(𝒩(𝑥𝑖), 𝒩(𝑦𝑖))]

2

𝑖
(4.4) 

𝐽2 = ∑ 𝐷𝑖 max[𝜏 − 𝑑(𝒩(𝑥𝑖), 𝒩(𝑦𝑖), 𝑓𝑤,𝑏), 0]

𝑖

(4.5) 

In these equations, 𝑑(𝒩(𝑥𝑖), 𝒩(𝑦𝑖))  and 𝑑(𝒩(𝑥𝑖), 𝒩(𝑦𝑖), 𝑓𝑤,𝑏) 
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denote the Euclidean distance of two normalized vectors in the original 

embedding and target embedding respectively, which is defined as 

follows: 

𝑑(𝒩(𝑥𝑖), 𝒩(𝑦𝑖)) = ‖
𝑥𝑖

‖𝑥𝑖‖
−

𝑦𝑖

‖𝑦𝑖‖
‖ (4.6) 

𝑑(𝒩(𝑥𝑖), 𝒩(𝑦𝑖), 𝑓𝑤,𝑏) = ‖
𝑓𝑤,𝑏(𝑥𝑖)

‖𝑓𝑤,𝑏(𝑥𝑖)‖
−

𝑓𝑤,𝑏(𝑦𝑖)

‖𝑓𝑤,𝑏(𝑦𝑖)‖
‖ (4.7) 

The network is regarded as a function 𝑓𝑤,𝑏, in which weight 𝑤 and 

bias 𝑏  are parameters of the network. 𝐽1  is the loss evaluation for 

similar pairs, which maintains distances between similar pairs instead 

of narrowing. Therefore, the loss increases if the geometrical shape 

(distance in origin domain) of similarity is changed. 𝑆𝑖 in Equation 

4.4 is set as one if (𝑥𝑖, 𝑦𝑖) is a similar pair, otherwise it is set as zero. 

𝐽2 is the loss evaluation for dissimilar pairs, which tries to enlarge the 

distance between dissimilar pairs over a threshold 𝜏. 𝐷𝑖 in Equation 

4.5 is set as one if (𝑥𝑖, 𝑦𝑖) is a dissimilar pair, otherwise it is set as zero. 

The architecture of this learning machine is shown in Figure 4.6. 

 

Figure 4.6 The architecture of Siamese GAML 
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The neural network has four fully connected layers, which maps the 

VGG feature into a new embedding. And each layer is followed by a 

non-linear activation function. The detailed information for these 

layers 𝐹1 − 𝐹2 − 𝐹3 − 𝐹4 are listed as follows: 

⚫ 𝐹1, Number of units: 2,000; Activation function: tanh 

Connections: 5,246,000. 

Fully connected with the input. 

⚫ 𝐹2, Number of units: 1,000; Activation function: tanh 

Connections: 2,001,000. 

⚫ 𝐹3, Number of units: 600; Activation function: tanh 

Connections: 600,600. 

⚫ 𝐹4, Number of units: 400; Activation function: tanh 

Connections: 240,400. 

The corresponding parameter setting and training protocol are 

described in the next section. After training, the output embedding can 

be regarded as a space for similarity measuring. Moreover, the 

Euclidean distance between the output vectors represents the 

similarity between facial images. 

4.3 Experiment setting 

This experiment is carried on 8 vCPUs with 25GB of RAM and an 

NVIDIA Tesla K80 GPU with 6GB of onboard memory. Moreover, the 

operation system is Ubuntu 16.04 LTS. The implementation is based 

on Python 3.5 and TensorFlow docker [37]. Following is the detailed 

description of implementation. 

4.3.1 Dataset segmentation 

Since there is no other available dataset for face similarity, I test both 

networks on my own novel similar face dataset collected from Names 

100 Dataset. According to the input of two networks, image pairs 

should be pre-processed and partitioned correspondingly. 
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In experiment 1, the input of the Siamese CNN is a facial image pair. 

Before partitioning, each image should be rescaled into a size of 

128×128 in RGB. Then the whole dataset is randomly divided into 

three sets with a ratio of 8:1:1, which are training set, validation set, 

and test set respectively. The training set contains 4190 image pairs 

with their labels (1 means similar and 0 means dissimilar) and the 

other two sets both contain 524 pairs.  

In experiment 2, the input of Siamese fully connected network is VGG 

feature pair. First, I apply VGG-Face descriptor to each image and 

extract feature vectors with 2,622 elements. Then I segment the 

feature pairs into three sets with a ratio of 8:1:1, which have the same 

size as experiment 1. Furthermore, there are two labels 𝑆𝑖 and 𝐷𝑖 for 

each feature pair used in the calculation of GAML loss. So I create 

these labels correspondingly and attach them with feature pairs.  

4.3.2 Training parameters and protocol 

Table 2 is a list of detailed experiment configuration, including 

necessary parameters and training protocols. 

Table 2 Experiment configuration 

 Siamese CNN Siamese GAML 

Activation 

function 
ReLU tanh 

Parameter 

initialization 

Weight 𝑤 is initialized 

with Xavier initializer 

[38] 

Weight 𝑤  is initialized 

with uniform distribution; 

Bias 𝑏 is initialized with 0 

Optimizer Momentum ADAM 

Learning 

rate 
0.01 0.0001 

Batch size 500 100 

Epoch 400 200 

Other 

parameters 
Margin 𝜏 is set to 2.0 

Balancing parameter 𝛼  is 

set to 0.5; 

Threshold 𝜏 is set to 0.55 
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4.4 Evaluation metrics 

The test result of each network model is evaluated according to the 

following metrics: 

A confusion matrix is a common metric in machine learning, in which 

each index is defined according to the relationship between prediction 

result and ground-truth. Table 3 shows the specific definition of each 

index. 

Table 3 Confusion matrix 

 Ground-truth 

Prediction 
Similar Dissimilar 

Similar True positive (TP) False positive (FP) 

Dissimilar False negative (FP) Ture negative (TN) 

The first evaluation method is the receiver operating characteristic 

(ROC) curve. The curve shows the relationship between true positive 

rate (TPR) and false positive rate (FPR). TPR and FPR are calculated 

by the following equations: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.8) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(4.9) 

The area under the curve of ROC (AUC-ROC) is the main evaluation 

metric of prediction accuracy for networks in this project. It has a 

range from 0 to 1. And if AUC is equal to 0.5, the model is regarded as 

a random classifier. If AUC is close to 1, then the model is better than 

random classifier. Otherwise, the model is worse if AUC is close to 0. 
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Another evaluation metric is Matthews correlation coefficient (MCC) 

[39], which is defined as Equation 4.8. 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(4.10) 

It is used to evaluate the model with a specific prediction threshold. It 

has a range from -1 to 1. If MCC is equal to 0, the model is regarded as 

a random classifier under the current threshold. If MCC is close to 1, 

then the model is better than random classifier under the current 

threshold. Otherwise, the model is worse if MCC is close to -1. 
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Chapter 5  

Result and analysis 

This chapter presents the results of each experiment and makes a 

comparison between them, including two sections. The first part 

shows the prediction accuracy on the novel dataset, and the second 

part shows the measurement results when applying the models on 

Names 100 Dataset. 

5.1 Prediction result and analysis 

I compare the results of two proposed models: Siamese CNN and 

Siamese GAML, based on the novel similarity dataset. The ROC curves 

are shown in Figure 5.1, and AUC-ROC accuracy of each model is 

presented in Table 4. The figure shows that the curve of CNN is almost 

above the curve of GAML over the whole range. As a result, the 

Siamese CNN model has higher AUC-ROC accuracy than the GAML 

model. 

Table 4 AUC-ROC accuracy of two face similarity models 

Model Siamese CNN Siamese GAML 

AUC-ROC 65.11% 60.20% 
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Figure 5.1 ROC curves of two Siamese models on similar face dataset 

With a proper classification threshold chosen according to the ROC 

curves, I get the MCC of each model, which is presented in Table 5. It 

shows that Siamese CNN model makes a better prediction on face 

similarity with my novel dataset. 

Table 5 MCC of two face similarity models 

Model Siamese CNN Siamese GAML 

Threshold 1.5768 0.6963 

MCC 0.2547 0.1844 

The reason why the CNN model outperforms the GAML model is 

complex. The most likely reason is that the novel dataset was collected 

from human observation so that the similarity they annotated is a kind 

of visual similarity. However, the input of the CNN model is a facial 
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image pair while that of GAML model is VGG feature pair. So the CNN 

model can extract more spatial information about visual similarity 

from image input, and as a result, it gets a higher accuracy on the face 

similar dataset. As for the GAML model, since it holds the distance 

between similar pairs, a small threshold is hard to screen the similar 

pair in target embedding if its distance is large in the original 

embedding. As a result, there is not an appropriate global threshold to 

screen all the similar pairs in the test set. 

5.2 Similarity ranking result 

In order to evaluate how the proposed models work on the original 

Names 100 Dataset, I compare the top-5 most similar faces (similarity 

ranking results) generated by the two face similarity models and VGG-

Face descriptor, given a query facial image. There are some example 

results listed in Table 6. 

Table 6 Examples of similarity ranking results 

 Model Query Top-5 similar 

1 

VGG 

Face 

  

Siamese 

CNN 

  

Siamese 

GAML 
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Table 6 (continued) 

 Model Query Top-5 similar 

2 

VGG 

Face 

  

Siamese 

CNN 

  

Siamese 

GAML 

  

3 

VGG 

Face 

  

Siamese 

CNN 

  

Siamese 

GAML 
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Table 6 (continued) 

 Model Query Top-5 similar 

4 

VGG 

Face 

  

Siamese 

CNN 

  

Siamese 

GAML 

  

5 

VGG 

Face 

  

Siamese 

CNN 

  

Siamese 

GAML 
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Interestingly, the Siamese CNN model seems to generate the worst 

results among the three methods, even though it gets a higher accuracy 

in the AUC-ROC evaluation. It is hard to find similarity between the 

query and result images. Even the gender of result images is not 

consistent with the query one. The results of the Siamese GAML model 

is sometimes an adjustment and re-ordering of VGG results. It saves 

the most similar ones which it “thinks” and throws away those 

dissimilar results, even though it has a poor performance in the AUC-

ROC evaluation. 

There are multiple reasons why these models have an opposite 

performance with ROC evaluation. First, the CNN model applies 

image pairs as input, so it focuses more on visual similarity and learns 

less about semantic similarity of faces, like gender and glasses. Second, 

as a face recognition descriptor, VGG-Face holds rich information 

about semantic similarity. The GAML model uses this feature as input 

and learns itself based on a dataset with annotations about visual 

similarity. So this model deals with both similarities at the same time. 

Third, as discussed in Section 3.1.3, VGG-Face has a poor performance 

in distinguishing similar faces with small distance. But the GAML 

model maintains the VGG distance between similar pairs and pushes 

away those dissimilar pairs. So it gets better performance than the 

VGG-Face descriptor.  
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Chapter 6  

Conclusion 

In this project, I collect a novel dataset containing image pairs with 

similarity information. Moreover, I construct two Siamese networks 

for the face similarity task, in which one is based on a convolution 

neural network (CNN) and the other is combined with geometry-aware 

metric learning (GAML). The experiment results show that the specific 

similarity model has a better performance than conventional face 

recognition methods when dealing with face similarity. Besides, the 

combination of metric learning with VGG-Face outperforms the 

independent CNN model in face similarity task. 
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Chapter 7  

Future work 

This project raises many questions worth investigating, and thus I 

believe this topic can be explored and improved further. 

⚫ The information about similarity is collected as human annotation. 

There might be other ways to obtain this. For example, it would be 

better to combine some personal data to increase the accuracy, like 

gender and age. 

⚫ The face similarity dataset is collected in pairs. Perhaps it would 

be better to collect similarity information in triplets. Since a triplet 

provides contrastive images with an anchor image, it will help to 

train a similarity ranking model. 

⚫ The CNN architecture used in experiment 1 is simple. It is beyond 

my ability to design a sophisticated and remarkable neural 

network by myself at present. A deeper network with complex 

architecture might have a better performance on face similarity.  

⚫ The GAML model does not get high accuracy in the ROC 

evaluation, even though it generates acceptable results in 

similarity ranking task. Is it possible to find a proper metric to 

evaluate this type of scaling problems? 

  



 

49 

 

Bibliography 

[1] Sadovnik, A., Gharbi, W., Vu, T., & Gallagher, A. (2018). Finding 

your Lookalike: Measuring Face Similarity Rather than Face 

Identity. 2018 IEEE/CVF Conference on Computer Vision and 

Pattern Recognition Workshops (CVPRW). doi:10.1109/ 

cvprw.2018.00311 

[2] Zhang, N., Han, J., Hu, J., & Deng, W. (2016). Geometry-aware 

metric learning for similar face recognition. 2016 IEEE 

International Conference on Multimedia and Expo (ICME). 

doi:10.1109/icme.2016.7552916 

[3] Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep Face 

Recognition. Proceedings of the British Machine Vision 

Conference 2015. doi:10.5244/c.29.41  

[4] Bellet, A., Habrard, A., & Sebban, M. (2015). Metric learning. S.l.: 

Morgan & Claypool.  

[5] Chopra, S., Hadsell, R., & Lecun, Y. (n.d.). Learning a Similarity 

Metric Discriminatively, with Application to Face 

Verification. 2005 IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition (CVPR05). 

doi:10.1109/cvpr.2005.202  

[6] Sinha, P., Balas, B., Ostrovsky, Y., & Russell, R. (2006). Face 

Recognition by Humans: Nineteen Results All Computer Vision 

Researchers Should Know About. Proceedings of the 

IEEE,94(11), 1948-1962. doi:10.1109/jproc.2006.884093  

[7] Rodriguez, E., Nikolaidis, K., Mu, T., Ralph, J. F., & Goulermas, 

J. Y. (2011). Towards collaborative feature extraction for face 

recognition. Natural Computing,11(3), 395-404. doi:10.1007/ 

s11047-011-9285-6 

[8] Wang, G., Hoiem, D., & Forsyth, D. (2009). Learning image 



 

50 

 

similarity from Flickr groups using Stochastic Intersection 

Kernel MAchines. 2009 IEEE 12th International Conference on 

Computer Vision. doi:10.1109/iccv.2009.5459167 

[9] Deselaers, T., & Ferrari, V. (2011). Visual and semantic similarity 

in ImageNet. Cvpr 2011. doi:10.1109/cvpr.2011.5995474 

[10] Qiu, F., Kamata, S., & Ma, L. (2017). Deep Face Recognition 

under Eyeglass and Scale Variation Using Extended Siamese 

Network. 2017 4th IAPR Asian Conference on Pattern 

Recognition (ACPR). doi:10.1109/acpr.2017.48 

[11] Zhao, F., Xu, J., & Lin, Y. (2018). Similarity Measure for Patients 

via A Siamese CNN Network. Algorithms and Architectures for 

Parallel Processing Lecture Notes in Computer Science,319-328. 

doi:10.1007/978-3-030-05054-2_25 

[12] Zhang, T., Wang, H., & Dong, Q. (2018). Deep Disentangling 

Siamese Network for Frontal Face Synthesis Under Neutral 

Illumination. IEEE Signal Processing Letters,25(9), 1344-1348. 

doi:10.1109/lsp.2018. 2858558 

[13] Xiong, X., & Torre, F. D. (2013). Supervised Descent Method and 

Its Applications to Face Alignment. 2013 IEEE Conference on 

Computer Vision and Pattern Recognition. doi:10.1109/ 

cvpr.2013.75 

[14] Turk, M., & Pentland, A. (n.d.). Face recognition using 

eigenfaces. Proceedings. 1991 IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition. 

doi:10.1109/cvpr.1991. 139758 

[15] Belhumeur, P., Hespanha, J., & Kriegman, D. (1997). Eigenfaces 

vs. Fisherfaces: Recognition using class specific linear 

projection. IEEE Transactions on Pattern Analysis and 

Machine Intelligence,19(7), 711-720. doi:10.1109/34.598228 

[16] He, X., Yan, S., Hu, Y., Niyogi, P., & Zhang, H. (2005). Face 

recognition using Laplacianfaces. IEEE Transactions on Pattern 

Analysis and Machine Intelligence,27(3), 328-340. 

doi:10.1109/tpami.2005.55 

[17] Frome, A., Singer, Y., Sha, F., & Malik, J. (2007). Learning 

Globally-Consistent Local Distance Functions for Shape-Based 

Image Retrieval and Classification. 2007 IEEE 11th 



 

51 

 

International Conference on Computer Vision. 

doi:10.1109/iccv.2007.4408839 

[18] Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: 

Closing the Gap to Human-Level Performance in Face 

Verification. 2014 IEEE Conference on Computer Vision and 

Pattern Recognition. doi:10.1109/cvpr.2014.220 

[19] Chen, H., Gallagher, A. C., & Girod, B. (2013). What’s in a Name? 

First Names as Facial Attributes. 2013 IEEE Conference on 

Computer Vision and Pattern Recognition. doi:10.1109/ 

cvpr.2013.432 

[20] Bledsoe, W. W. (1964). The Model Method in Facial Recognition. 

Technical Report PRI 15, Panoramic Research, Inc., Palo Alto, 

California. 

[21] Baskurt, A. (1990). Numerical image compression using the 

discrete cosine transform. Signal Processing,19(4), 346. 

doi:10.1016/0165-1684(90)90166-v 

[22] Tjahyadi, R., & Liu, W. (n.d.). Image classification for quality 

compression with wavelet filters based on image feature 

analysis. 6th International Conference on Signal Processing, 

2002. doi:10.1109/icosp.2002.1181207 

[23] Cojoc, D., Grattoni, P., Nerino, R., & Pettiti, G. (1998). Image 

description using Gabor wavelets. OPTIKA 98: 5th Congress on 

Modern Optics. doi:10.1117/12.324549 

[24] Ke, Y., & Sukthankar, R. (n.d.). PCA-SIFT: A more distinctive 

representation for local image descriptors. Proceedings of the 

2004 IEEE Computer Society Conference on Computer Vision 

and Pattern Recognition, 2004. CVPR 2004.doi:10.1109/ 

cvpr.2004.1315206 

[25] Déniz, O., Bueno, G., Salido, J., & Torre, F. D. (2011). Face 

recognition using Histograms of Oriented Gradients. Pattern 

Recognition Letters,32(12), 1598-1603. doi:10.1016/ 

j.patrec.2011.01.004 

[26] Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face 

Description with Local Binary Patterns: Application to Face 

Recognition. IEEE Transactions on Pattern Analysis and 

Machine Intelligence,28(12), 2037-2041. doi:10.1109/ 



 

52 

 

tpami.2006.244 

[27] Lin, S., Kung, S., & Lin, L. (1997). Face recognition/detection by 

probabilistic decision-based neural network. IEEE Transactions 

on Neural Networks,8(1), 114-132. doi:10.1109/72.554196 

[28] Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A 

unified embedding for face recognition and clustering. 2015 

IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR). doi:10.1109/cvpr.2015.7298682 

[29] Huang, G., Mattar, M., Berg, T., & Learned-Miller, E. (2008). 

Labeled Faces in the Wild: A Database for Studying Face 

Recognition in Unconstrained Environments. Workshop on 

Faces in 'Real-Life' Images: Detection, Alignment, and 

Recognition, 2008.  

[30] Nielsen, M. A. (2015). Neural Networks and Deep Learning. 

Determination Press. Retrieved May 2, 2019, from http:// 

neuralnetworksanddeeplearning.com 

[31] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. 

MIT Press. Retrieved from http://www.deeplearningbook.org 

[32] Kingma, D. P., & Ba, J. L. (2014, December 22). Adam: A Method 

for Stochastic Optimization. Retrieved May 8, 2019, from 

https://arxiv.org/abs/1412.6980 

[33] VImage Programming Guide. (2016, September 13). Retrieved 

May 8, 2019, from https://developer.apple.com/library/ 

archive/documentation/Performance/Conceptual/vImage/Con

volutionOperations/ConvolutionOperations.html 

[34] Hadsell, R., Chopra, S., & Lecun, Y. (n.d.). Dimensionality 

Reduction by Learning an Invariant Mapping. 2006 IEEE 

Computer Society Conference on Computer Vision and Pattern 

Recognition - Volume 2 (CVPR06). doi:10.1109/cvpr.2006.100 

[35] Ma, W., & Manjunath, B. (1996). Texture features and learning 

similarity. Proceedings CVPR IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition. 

doi:10.1109/cvpr.1996.517107 

[36] Lenail, A. (n.d.). NN-SVG. Retrieved May 14, 2019, from 

http://alexlenail.me/NN-SVG/AlexNet.html 

[37] TensorFlow. (n.d.). Retrieved May 15, 2019, from 



 

53 

 

https://www.tensorflow.org 

[38] Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of 

training deep feedforward neural networks. International 

Conference on Artificial Intelligence and Statistics,249-256. 

[39] Matthews, B. (1975). Comparison of the predicted and observed 

secondary structure of T4 phage lysozyme. Biochimica Et 

Biophysica Acta (BBA) - Protein Structure,405(2), 442-451. 

doi:10.1016/0005-2795(75)90109-9 



TRITA-EECS-EX-2019:512

www.kth.se


