
1

Device vs Edge Computing for Mobile Services:
Delay-aware Decision Making to Minimize Power

Consumption
Meysam Masoudi, Cicek Cavdar

School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology,
Email: {masoudi,cavdar}@kth.se

Abstract—A promising technique to provide mobile applica-
tions with high computation resources is to offload the processing
task to the cloud. Utilizing the abundant processing capabilities
of the clouds, mobile edge computing enables mobile devices
with limited batteries to run resource hungry applications and
to save power. However, it is not always true that edge computing
consumes less power compared to device computing. It may
take more power for the mobile device to transmit a file to
the cloud than running the task itself. This paper investigates
the power minimization problem for the mobile devices by
data offloading in multi-cell multi-user OFDMA mobile edge
computing networks. We consider the maximum acceptable delay
as QoS metric to be satisfied in our network. We formulate the
problem as a mixed integer nonlinear problem which is converted
into a convex form using D.C. approximation. To solve the
converted optimization problem, we have proposed centralized
and distributed algorithms for joint power allocation and channel
assignment together with decision-making. Simulation results
illustrate that by utilizing the proposed algorithms, considerable
power savings can be achieved, e.g., about 60% for large bit
stream size compared to local computing baseline.

Index Terms—Offloading, Resource Allocation, Mobile Cloud
Computing, Mobile Edge Computing.

I. INTRODUCTION

SWIFT growth in the development of resource-hungry mo-
bile applications has motivated users to use smart phones

as a platform for running applications. However, mobile de-
vices cannot always be considered as a platform for resource-
hungry applications due to their limited power and processing
capacity. Moreover, one of the key concerns of users is their
devices battery lifetime [2] while running the applications,
knowing the fact that increasing the clock frequency of a CPU
increases the power consumption [3]. Therefore, there is a
tension between the resource-hungry applications and mobile
devices with limited battery and processing capacities. To
tackle the aforementioned problem, one solution is to bridge
the gap between available and required resources by offloading
the burden from mobile devices to the cloud [4].

Mobile cloud computing (MCC) provides infrastructure,
platform, and software as services to mobile users [5]. Along-
side MCC, mobile edge computing (MEC) has been proposed
to bring the computation resources even closer to the mobile

Part of this work has been published in IEEE WCNC2017 [1].
This study is supported by EU Celtic Plus Project SooGREEN Service

Oriented Optimization of GREEN mobile networks.

users [6]. In MCC, the cloud is equipped with farms of
computers, and it is considered as a fully centralized approach
to provide such a service. On the other hand, MEC is supposed
to be deployed in a distributed manner [7]. Since these services
are provided for the mobile users, the interaction between edge
cloud and mobile users is inevitable. Consequently, once users
decide to offload data to the cloud, it is necessary to utilize the
available resources efficiently. Otherwise, users cannot benefit
from the potential advantages of offloading.

It is true that edge computing can potentially save power
for the mobile users [2]; however, this is not always true
when a device consumes more power to transmit data to the
cloud than to process that data locally [8]. Because of the
interference and radio channel conditions, the transmission
of data may consume more power for the mobile device.
However it is not trivial to decide after making a simple
comparison of two power figures for each device served by
one base station since the decision may create interference and
change the channel conditions for neighboring devices in the
surrounding cells. There is another important factor which has
an impact on the decision: delay. A decision making procedure
must consider the delay sensitivity of the applications to
determine whether to choose local processing or offloading.
Mobile devices consume more power as the delay requirement
gets more stringent to process a certain task [9]. Example
applications that can highly benefit from collaboration between
mobile devices and cloud platform [10] includes online gaming
[11], face recognition and detection [12], healthcare [13],
tele-surgery [14]. Among these applications, some are more
sensitive to delay than others, for instance, the interaction
games, e.g., action and racing games, are more sensitive to
the delay in comparison with puzzle and strategy games [11].
Delay requirements of different mobile broadband services can
be seen in Table I.

In this paper, we investigate the power saving potential of
data offloading in mobile devices under a multi-cell multi-user
scenario and propose efficient algorithms to make decisions
simultaneously for mobile devices to minimize the total power
consumption by meeting the delay requirements from the
services. Channel assignment and power allocation problems
are considered jointly with the offloading-decision.

2

TABLE I: Acceptable delay for different services

Service Type Acceptable Delay [15]–[17]
Online Games < 1000 ms

Omnipresent 1000 ms

Third person avatar 500 ms

First person avatar 100 ms

Audio services < 450 ms

Voice over IP 200 ms

Video Services < 150 ms

Video over IP 70 ms

Data < 400 ms

Medical Data Transfer 100− 400 ms

Tele-surgery 300 ms

Electrocardiogram ≈ 1000 ms

Non real-time services Few seconds

A. Related Works

There are a couple of issues to be addressed in the context
of MCC and MEC, namely, architecture, power consumption
of the network, and delay.

The surveys in [7] and [18], studied the state of the art on the
integration of MEC to the mobile networks, the computation
offloading schemes, resource management problems, and their
current challenges. The feasibility of mobile computation
offloading is investigated in [19] using experimental mea-
surements. The authors in [20] proposed an architecture for
mobile computation offloading where device resources, e.g.,
energy and CPU usage can be saved. An application offloading
framework to the cloud is proposed and implemented in [21]
where execution time and energy consumption of devices are
reduced. The authors in [22] modeled the energy consumption
of the mobile devices. For a single device, they formulated
an energy minimization problem considering computation of-
floading to the cloud. The study in [23] presents an offloading
decision model to extend the battery of single mobile device.
The authors in [24], modeled the offloading decision as a
competitive game considering multiple mobile devices where
users try to minimize their energy consumption. These studies
did not consider the power allocation which has significant
impact on the performance of their algorithms. The authors
in [25] solved the offloading decision problem and reduced
the time complexity of the application offloading aiming to
remove the processing burden from mobile devices; However,
they did not consider the impact of resource allocation.

Resource management schemes are key techniques to min-
imize the power consumption while guaranteeing the quality
of service (QoS) which is critical for the MEC networks [26].
Accordingly, in [27], a heuristic based resource allocation
approach is adopted to minimize the energy consumption of
all users while making decision on offloading. In [28], a game
theoretic approach is adopted to design an offloading mecha-
nism for mobile devices. Although, a multi-user scenario is
considered , QoS and counter-impact between different users
for service degradation is not taken into account. In [29], a
decentralized offloading game is proposed to make decisions
among mobile devices in a simple single channel scenario. The
partitioning problem for a mobile data streaming application
is defined and solved by a genetic algorithm in [30]. They

reported that computation partitioning between mobile and
cloud can enhance the application processing speed. In [31],
the authors studied the problem of computation offloading in
C-RAN based MCC network. In their study, the authors jointly
optimized the beamforming design and power allocation with
a decision making strategy to minimize the network energy
consumption. In the literature, there are some studies using
machine learning for resource allocation and decision making
in MEC. The study in [32] discussed the learning techniques
that can be applied in MEC. Authors in [33] formulated a
deep learning model to obtain an offloading policy for mobile
users to reduce the overhead. In [34], a Q-learning algorithm
is proposed to solve the offloading problem for a multi user
network. Authors in [35], proposed a deep reinforcement
learning algorithm for task offloading of different tasks to
reduce latency and save energy.

Along with power consumption, delay is a critial factor in
MEC networks. The authors in [36] proposed an algorithm to
optimize the power consumption and to minimize the delay.
They considered a simple single-user MEC system. In this
study, the interference analysis and its effect on the offloading
decision is missing. The authors in [37] modeled the problem
of task offloading as a Markov decision process and solved a
delay minimization problem to find an optimal task scheduling
policy. For the energy consumption and latency minimiza-
tion problem, a partial computation offloading algorithm is
proposed in [38] to optimize the computational speed of
mobile devices and their transmit power. In [39], to minimize
the offloading energy consumption, the authors studied joint
optimization of computing and radio resources considering
the latency constraints in a MEC network. The authors in
[40] considered the problem of resource scheduling for multi-
service multi-user MCC networks to minimize the average
queuing delay of the system. A dynamic task offloading
algorithm using Lyapunov optimization is proposed in [41],
aiming at minimizing the energy consumption of one user
with constraint on the maximum acceptable application delay.
However, the interference and its impact on offloading decision
is not taken into account. The authors in [9] proposed a
model for the mobile device energy consumption. They have
derived an offloading policy considering both delay and energy
consumption under a single stochastic wireless channel with
only ”good” or ”bad” channel state. However, this study is
limited with single-user single-channel scenario, considering
neither interference nor QoS. The authors in [42] have focused
on the trade-off between latency and energy consumption in
MEC network overlaid by small cells. They optimized the
communication resources for computation offloading while
considering delay sensitive tasks. In [1], we proposed an al-
gorithm for joint optimization of power allocation, offloading
decision making, and channel assignment (J-PAD) to perform
resource allocation considering both interference and delay
constraints in multi-cell multi-user networks. In preliminary
version of our study, devices offload the processing task to
the cloud aiming to minimize overall power consumption
of devices. However, this approach was centralized and it
is important to design decentralized algorithms for practical
usage to enable mobile devices to make their decisions.

3

B. Contributions

There are still plenty of challenges to be tackled in the
multi-cell multi-user and multi-channel MEC networks. The
joint problem of resource allocation and decision making for
data offloading in such networks considering both QoS and
interference is still missing in the literature. In this paper,
we aim to minimize the power consumption of users while
considering the users’ QoS in terms of maximum tolerable
delay. We formulate the resource allocation and offloading
optimization problem. To have a tractable solution, we convert
the problem into a convex form and propose two algorithms
to solve the convex problem in a polynomial time.

The main contributions of this paper can be summarized as
follows:
• In the context of multi-cell multi-user OFDMA MEC net-

works, we formulate the resource allocation and offload-
ing problem that is aware of network status and users’
demand aiming to minimize the total power consumption
of all users subject to constraints on QoS.

• We formulate the problem as a mixed integer nonlinear
optimization problem (MINLP). To solve the problem,
we convert it to the convex form using variable changing,
DC approximation, adding a penalty factor, and relaxing
the binary constraints. Therefore, the converted problem
can be solved in a polynomial time. Proven that it
converges in a polynomial time, the proposed efficient
solutions in terms of complexity, compared to the lower
bound have 30 % percent worst-case optimality gap. To
evaluate the optimality, we compared the solution with
the lower bound that is obtained by solving the problem
for interference-free scenario.

• We also propose two algorithms to solve the problem
of joint resource allocation and decision-making. The
first algorithm is a centralized scheme, designed to be
performed at the base station while the second one is a
distributed scheme, which requires a partial information
exchange, suitable to be performed at the user terminal.
The complexity of these algorithms are also investigated.

• Through simulations, we show that there exists an of-
floading region for each user where offloading can help
to save more power. By differentiating between cell edge
users and normal users in the network, we show that the
optimal region depends not only on a delay threshold
and bit stream size of users but also on the position and
channel conditions of the users.

The rest of the paper is organized as follows. In Section II,
system model is presented. The problem formulation and
the solution methodology are discussed in Section III. We
propose our algorithms and corresponding complexity analysis
in Section IV followed by the simulation results presented
in Section V. Finally, we bring the concluding remarks in
Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Description

According to Fig.1, we consider a cellular network with
Nc base stations where mobile users (MUs) are uniformly

Fig. 1: System Model

distributed within a cell range. Each base station is equipped
with a server which is responsible for the offloaded users’ data
processing and we assume there is a centralized unit which ex-
changes the required information between base stations using
backhaul. Each cell can serve up to Fi active users. We assume
that the available bandwidth B is divided to N sub-channels.
The sub-channel model is adopted from [43] and is composed
of large-scale fading, small-scale fading, and shadow fading.
Also, we consider OFDMA as an access method; hence, users
in the same cell cannot share the same sub-channel with each
other. However, each user might experience an interference
from neighboring cells. In this model, user j in cell i has
a bit stream of size Li,j . Users can process data on their
own or send it to the cloud. Users cannot use both schemes,
e.g., sending a portion of data to the cloud and processing the
remaining data locally. Data corresponding to the user j in cell
i should be processed within a time frame called maximum
acceptable delay (delay threshold), Ti,j .We assume that the
processed data is short and the response time can be neglected
[9]. Summary of notations can be found in Table II

TABLE II: Summary of Frequency Used Notations

Notation Description

MU Mobile users
Nc Number of cells
F Number of MUs per cell
N Number of subcarriers
pi,jLocal Power consumption of CPU of user j in cell i
Li,j Data length of user j in cell i
Ti,j Delay requirement of user j in cell i
Ci,j Required Number of CPU cycles
pi,jtx Transmission power of user j in cell i
PTotal Total power consumption
Rmin Minimum required rate
si,j Offloading decision of user j in cell i

B. Power Model

1) Local Processing Power Model: Different mobile de-
vices have different processing resources and also applications
require different amount of processing. Therefore, each mobile
device has a processing task that can be defined in terms of

4

• the length of input file Li,j (bit), to run a certain pro-
cessing task related with a certain application, including
system settings, program codes, and input parameters;

• the delay threshold Ti,j , including processing delay;
• the required number of CPU cycles to accomplish the

processing, Ci,j ;
• the output (e.g., the computation result).

The values and statistics on Li,j and Ci,j can be acquired by
applying program profilers [44] 1.

When users are supposed to process their data locally,
the CPU power consumption is dominant. It is composed
of dynamic power, circuit power, and leakage power [38].
The dynamic power as a dominating power in the CPU is a
superlinear function of execution frequency and required CPU
cycles. The energy consumption of task completion at mobile
device, when operating at low voltage, is calculated as [44],

ELocali,j = ζCi,j(f
cpu
i,j)

m
, (1)

where ζ is effective switching capacitance depending on the
chip architecture and is in the order of 10−11. Ci,j is the
required CPU cycles for a given file size and is determined by
the application [9]. For a given input size, Ci,j is derived as,
Ci,j = Li,jx, where x is a random variable with an empirical
distribution [45]. The estimation of this distribution depends
on the complexity of the application and since this estimation
is beyond the scope of our study, the interested readers can
study [46]–[48]. Let the CDF of x be Fx and the probability
that CPU completes the task within the delay threshold be ρ.
Then, given Li,j , we have

FX(Ci,j/Li,j) = ρ (2)
Ci,j = Li,j(F

−1
X (ρ)) (3)

Note that the complexity of a task is reflected in the dis-
tribution function of FX . Recalling from (1), the energy
consumption of completing task becomes:

ELocali,j = ζ

Ci,j∑
k=1

(1− FX(k))(fi,j(k))
m (4)

where Ci,j is defined in (3). It is worth mentioning that the
term within the summation in (4) is the energy consumption
of CPU cycle k with clock frequency fi,j , provided that the
task has not been completed yet. The authors in [9] derived
the optimal value for CPU frequency by minimizing the
energy consumption of device such that the task is completed
within the delay threshold Ti,j . Then, the minimum energy
consumption of device with optimal CPU frequency is [9],

E∗i,j =
ζ

Tm−1i,j

Ci,j∑
k=1

θ(k, ρ)m (5)

where θ(k, ρ) is a function ρ and application complexity.
In [9] (Appendix C), it is proven that the summation in
(5) is proportional to the Lmi,j . Hence, the minimum power
consumption of CPU is proportional to the (L/T)m, where
T is the maximum acceptable delay and L is the users’

1The program profiler monitors the program parameters, such as, execution
time, required memory, thread CPU time, etc [44].

bit stream size and m is the power of the scaling factor.
Consequently, we use the following model for local processing
power consumption:

pLocali,j =MA
i,j

Lmi,j
Tmi,j

, (6)

where pLocali,j is the local processing power consumption of
user j in cell i and MA

i,j is a constant value for user j, in
cell i, and application A that depends on the users’ CPU and
application parameters , e.g., ρ and k, and is given in [9].
For the sake of simplicity we remove the superscript A in the
rest of paper. In our assumption, the users utilize the entire
available time for the task completion.

2) Offloading Power Model: The transmission power for
sending data to the cloud is:

ptxi,j =

N∑
n=1

ai,j,npi,j,n, (7)

where ptxi,j denotes the transmission power consumption of
user j in cell i, pi,j,n is transmission power of the same users
on subchannel n, and ai,j,n is a binary variable representing
whether the corresponding sub-channel is assigned to the user
or not. Therefore, the user’s total transmission power is

PTxi,j =
1

η
ptxi,j + pc, (8)

where η is power amplifier coefficient and pc is a constant
circuit power. The offloading power model consists of both
transmission and reception power consumption, i.e., pRxi,j +p

Tx
i,j ,

where pRxi,j is power consumed by the mobile user for data
reception. In our study, since the response data is short, the
second term is negligible [49].

3) Aggregated Power Model: Total power consumption of
the active users in the network can be written as:

PTotal =

Nc∑
i=1

Fi∑
j=1

pi,j (9)

where

pi,j = si,jp
Tx
i,j + (1− si,j)pLocali,j

(10)

The integer variable si,j takes the value of 0 if user j in cell i
uses its own processor and takes the value of 1 if the user sends
data to the cloud. Therefore, the total power consumption can
be written as:

PTotal =

Nc∑
i=1

Fi∑
j=1

N∑
n=1

si,j
1

η
(ai,j,npi,j,n + pc)

+

Nc∑
i=1

Fi∑
j=1

(1− si,j)
Mi,jL

m
i,j

Tmi,j
. (11)

Moreover, the signal to noise plus interference ratio at the base
station in cell i is given by:

γi,j,n =
ptxi,j,nhi,j,n

σ2 + Ii,n
, (12)

5

where the channel gain from jth MU of ith cell is denoted by
hi,j,n. The channel gain from user m, in cell k to the cell i is
denoted by hik,m,n. The first term in the denominator of (12)
is the noise power in bandwidth B and the second term is the
interference from other cells on channel n in cell i which can
be calculated as:

Ii,n =

Nc∑
k=1
k 6=i

Fi∑
m=1

ak,m,nsk,mp
tx
k,m,nh

i
k,m,n. (13)

C. Delay Model

1) Local Processing Delay Model: When users are pro-
cessing locally we assume that the processing task can be
completed within the delay threshold and hence TLocal ≤ Ti,j .
The more stringent the delay threshold is, the more power is
consumed at mobile device. We assume that the processing
time at mobile device is equal to the users’ delay threshold.

2) Offloading Delay Model: In case of offloading, the ex-
perienced delay of user j in cell i is composed of transmission
delay in uplink, processing delay at the edge cloud, and
transmission delay in downlink. Therefore, total transmission
delay is expressed as:

TOffi,j = T tx,upi,j + TEdgei,j + T tx,dli,j (14)

The first term on the right-hand side of (14) is the uplink
transmission delay and can be calculated based on the uplink
transmission rate. The second term is due to the processing
delay at the edge cloud and can be calculated as [44],

TEdgei,j =
Li,j
FEdge

, (15)

where FEdge is the computation processing allocated to the
user. The processing delay is contingent on the processing
resources and the work load at the edge cloud. Reducing the
processing delay is an active research area [50] however it is
out of scope of this paper. If the edge cloud is equipped with
powerful processing resources, FEdge becomes very large and
hence for small Li,j , T

Edge
i,j becomes negligible compared to

the transmission time. For instance, assume that the required
CPU cycles be in the range of [1 − 1000]Mcycles, and the
CPU frequency is 10GHz [44], then the processing time at
the edge cloud will be in [0.05−5]msec. The last term in (14),
is the return transmission time and is determined by the length
of response message as well as the downlink transmission rate.
As per [44], [49] this downloading time is negligible due to
the much smaller size of the resulting message assuming some
health care and face detection applications.

D. Problem Formulation

In this section, we develop the mathematical formulation
for decision making and resource allocation problem. The
base station determines the offloading users and allocates sub-
channels to its users and specifies the suitable power level on
each sub-channel. The objective of the resource allocation is
to minimize the aggregated power consumption of all users by
allocating resources to the offloading users in a way that their

delay requirement is satisfied. In our model we assume that
users utilize the maximum available time. The optimization
problem can be formulated as follows:

min
{a,p,s}

PTotal (16)

subject to

C1: 0 ≤ pTx
i,j ≤ pmax, ∀i, j,

C2: T txi,j ≤ Ti,j , ∀i, j,

C3:
Fi∑
j=1

N∑
n=1

si,jai,j,n log2(1 + γi,j,n) ≤ RProci,max, ∀i,

C4:
Fi∑
j=1

ai,j,n ≤ 1, ∀i, n,

C5: ai,j,n ∈ {0, 1}, ∀i, j, n,
C6: si,j ∈ {0, 1}, ∀i, j.

In (16), the objective is to minimize the total power con-
sumption of all active MUs in the network. The constraint
C1 indicates that the transmit power of each user is limited
to pmax. In constraint C2, T txi,j is the transmission time.
This constraint guarantees that user j in the cell i completes
its transmission before the delay threshold, e.g., Ti,j . If a
user decides to process data locally, then the CPU will be
responsible for satisfying this constraint. In our analysis we
assume that CPU uses the entire available time. It is worth
mentioning that Ti,j is given by the application and is an input
to our problem. Later we will discuss how to relate this term
to the rate. The delays coming from processing at the edge
and downlink transmission are not considered. The former is
because of powerful processors and the latter is due to short
response message size of the processed data [9]. In our model,
the processing capacity of the cloud server is limited with the
total arrival rate of bit streams coming from different users
at the same time. C3 captures this processing capacity. C3
guarantees that if a user decides to transmit, there will be
enough processing capacity, e.g., RProci,max , for serving it. It
does not have any effect on the transmission capacity but on
users’ decision. In other words, users offload their processing
task only if there is enough capacity for the processing. The
constraint C4 guarantees the OFDMA assumption in each cell
where each sub-channel is assigned to at most one user. The
constraints C5 and C6 indicate that the sub-channel and data
offloading indices are binary variables. It is worth mentioning
that the constraint C2 can be written in an equivalent form.
Using C2 we will have

Li,j
T txi,j
≥ Li,j
Ti,j

. (17)

Defining Rmin , Li,j

Ti,jB
and noting that the left side of (17)

is the total normalized data rate of the j-th user in the i-th
cell, we obtain the following equivalent constraint for C2:

si,j

N∑
n=1

ai,j,n log2(1 + γi,j,n) ≥ si,jRmin,∀i, j. (18)

6

In the rest of this paper, we consider the constraint C2 in the
form presented in (18).

The optimization problem defined in (16) is a mixed
integer nonlinear problem (MINLP) and cannot be solved
optimally in a polynomial time. The non-convexity is due
to different reasons in the problem, for instance, the binary
inherent of decision making variable (constraint C6) and the
combinatorial nature of sub-channel allocation (constraint C5).
Another reason of non-convexity is due to constraints C2
and C3 and existence of the power allocation variable in the
denominator of SINR formula defined in (12). The offloading
decisions are binary variables and they not only depend on
the delay constraints, but also on the others decisions, channel
quality, and limited radio resources. Therefore, the problem
(16) can be mapped to a special maximum cardinality bin
packing problem which is NP-hard [51]. Note that the optimal
solution can be obtained by enumerating and comparing all
possible computation offloading decisions (exhaustive search
method) or available tools that can solve MINLP problem
[52]. However, due to the complexity of the problem, it is not
possible to solve the problem in polynomial time. Therefore,
we focus on solving this complex problem in polynomial
time. In the following section, we address how to deal
with the aforementioned challenges and solve the problem by
converting it into a convex form.

III. SOLUTION METHODOLOGY

In this section, we aim to transform the primary problem
defined in Section II-D into a canonical convex form. In this
regard, we classify the challenges into two categories, binary
variables and non-convex functions.

To resolve the challenges caused by the binary variables, one
approach is to relax the troublesome constraints, sub-channel
allocation for instance, to shape the problem into a convex
form and then making a hard decision in the end as we did
in [53]. An alternative approach is to add auxiliary constraints
to enforce the solution to be in our desired form as we will
describe later. Another approach is to break the problem into
sub-problems so that one could successively first solve the
problem for the binary variable and consequently, given this
variable, solve the rest of the problem.

To deal with the non-convex functions, we utilize a theory of
optimization for a superclass of convex functions, called Dif-
ference of Convex (D.C.) functions [54]. Later we demonstrate
that our problem can be written in form of D.C. functions. In
the end, applying Taylor approximation enables us to solve
the last stage of converting the primary problem defined in
(16), into a convex form. Having all these powerful approaches
available, we tackle the problem, as follows.

In the first step, we break down the problem into two sub-
problems and then solve them successively. The first sub-
problem is to determine the channel assignment for each user
in each cell. The second sub-problem is to find out the decision
variable and power allocation. We use the solution of the first
sub-problem as an input to the second sub-problem. Also,
the results of the second sub-problem are used to update the
solution for the first sub-problem and this process continues

until the convergence. Furthermore, we apply two approaches
to solve the second sub-problem. The overview of two utilized
approaches to solve the problem can be seen in equations (19)
and (20).

In the first approach, after separating the sub-channel assign-
ment, the problem can be solved jointly for other variables,
e.g., power allocation and decision variable as follows:

Initialization︷ ︸︸ ︷
a[0]→ (p[0], s[0])→ . . .→

Iteration t−1︷ ︸︸ ︷
a[t− 1]→ (p[t− 1], s[t− 1])

→
Iteration t︷ ︸︸ ︷

a[t]→ (p[t], s[t])→
Final Solution︷ ︸︸ ︷

a? → (p?, s?) .
(19)

In the second approach, we separate sub-channel assign-
ment, power allocation, and decision variable from each other
as follows:

Initialization︷ ︸︸ ︷
a[0]→ p̃[0]→ s[0]→ . . .→

Iteration t−1︷ ︸︸ ︷
a[t− 1]→ p̃[t− 1]→ s[t− 1]

→
Iteration t︷ ︸︸ ︷

a[t]→ p̃[t]→ s[t]→
Final Solution︷ ︸︸ ︷

a? → p̃? → s? .
(20)

The main difference between these two approaches is that
in the former, we jointly solve the problem of power alloca-
tion and decision making; However, in the latter, we divide
the second sub-problem into two steps and solve each sub-
problem individually. In both algorithms, we iterate until the
convergence criterion is met, i.e., the change in the objective
function value be less than ε, or reach to the maximum number
of iterations. In the following subsections, we first deal with
solving the first sub-problem followed by solving the second
sub-problem by converting it into a convex from.

A. Sub-Problem One: Optimal Sub-channel Assignment
Given the power allocation vector p̃[t–1], the optimal sub-

channel assignment a[t] for further power allocation and
offloading in the next iteration t is as follows:

Proposition 1. Given the power vector, minimum power
consumption is attained when each sub-channel in each cell
is assigned to the MU with the highest effective interference
on that sub-channel.

Proof. Because the problem is power minimization and also
minimum data rate requirement of users should be satisfied,
the minimum power is consumed when the inequality of
minimum required rate becomes the equality. Now let us
assume that all users are given the best possible channel to
reach their data rate with minimum power consumption. Also,
let a user have a channel with effective interference value lower
than a highest value and the user has data rate rmin on that
channel. Thus, the consumed power on that channel can be
derived by solving the following equation for power:

log2(1 + γi,j,n) = rmin (21)

where γi,j,n is defined in (12) and solving for the transmit
power yields to:

ptxi,j,n =
2rmin − 1
hi,j,n

σ2+In

, (22)

7

Also from our assumption, we know that the effective interfer-
ence in a denominator of (22), e.g., hi,j,n

σ2+In , is not the highest
possible value. Hence, if we assign the highest effective
interference value to this user, the total power consumption
will be lower and this is in contrast with the assumption
of minimum power consumption. Therefore, minimum power
is consumed when maximum effective interference is the
criterion for the channel allocation. In other words, with higher
effective interference, less power is consumed to satisfy the
minimum required rate.

Let EIi,j,n be the SINR on the channel n assuming unit
transmission power. High EIi,j,n on a channel means that the
MU can achieve high SINR with a good channel condition
and low interference from other cells. Channel assignment is
made based on this metric. Therefore, the decision for channel
allocation will be made based on the following criterion:

ãi,j,ñ = 1
∣∣∣
ñ=argmaxn(EIi,j,n)

∀i, j. (23)

Thus, a channel allocation matrix a[t] at time t, can be formed
with the elements obtained from the equation (23).

At this stage we have solved the first sub-problem and
the results will be available for next steps. In the next two
subsections, we solve the second sub-problem introduced in
(19) and (20).

B. Sub-Problem Two: Power Allocation, and Decision Making

In the previous subsection we have solved the problem of
sub-channel assignment and therefore one of the challenges of
the primary problem (16) is resolved. The results of previous
subsection will be used in this section to solve the sub-problem
of power allocation and decision making. As in (19) and (20),
two approaches are applied to tackle the challenges. These
approaches are discussed in the following subsections.

1) Joint Power Allocation and Decision Making (J-PAD):
Given a sub-channel assignment, the problem of joint power
allocation and data offloading can be rewritten as:

min
{p,s}

PTotal (24)

subject to

C1: 0 ≤ si,jpTxi,j ≤ pmax, ∀i, j,

C2: si,j
N∑
n=1

log2(1 + γi,j,n) ≥ si,jRmin, ∀i, j,

C3:
Fi∑
j=1

N∑
n=1

si,j log2(1 + γi,j,n) ≤ RProci,max, ∀i,

C6: si,j ∈ {0, 1}, ∀i, j.

To solve (24), we first reformulate it to a more mathemat-
ically tractable form. Since si,j is a binary variable, we can
write si,j log2(1+γi,j,n) = log2(1+si,jγi,j,n). Moreover, the
problem consists of the product terms of si,jpi,j,n. We use the
following change of variable

p̃i,j,n = si,jpi,j,n, (25)

to recast the optimization problem. Also, the optimization
problem includes integer variable si,j . Hence to convert si,j
into continuous variables, we can express the constraint C6 as
the intersection of the following regions:

R1 : 0 ≤ si,j ≤ 1,∀j, i,
R2 :

∑
j

∑
i

(
si,j − s2i,j

)
≤ 0. (26)

WithR1 we limit si,j to be in the interval of [0,1] and withR2

we enforce si,j to approach either 0 or 1, since
(
si,j − s2i,j

)
takes always non-negative values but the constraint pushes(
si,j − s2i,j

)
to be non-positive.

Hence, we can write the optimization problem of (24) as
follows

min
p̃,s

PTotal

s.t. C1–C3,R1,R2. (27)

The problem (27) is a continuous optimization problem with
respect to all variables. However, we aim to find integer
solutions for si,j’s. To attain this goal, we add a penalty
function to the objective function of (27) to penalize it if
the values of si,j’s are not integer. Thus, the problem can
be modified to

min
p̃,s

L(p̃, s, λ)

s.t. C1–C3,R1. (28)

In (28), L(p̃, s, λ) is the partial Lagrangian of (27), and is
defined as

L(p̃, s, λ) , PTotal + λ
∑
j

∑
i

(
si,j − s2i,j

)
, (29)

where λ is the penalty factor which should be λ� 1. It can be
shown that, for sufficiently large values of λ, the optimization
problem of (28) is equivalent to (27) and attains the same
optimal value.

Proposition 2. For sufficiently large values of λ, the
optimization problem of (28) is equivalent to (27)

Proof. Please see Appendix A.

Now, (27) can be converted to the following problem

min
{p̃,s}

Nc∑
i=1

Fi∑
j=1

N∑
n=1

p̃i,j,n +

Nc∑
i=1

Fi∑
j=1

(1− si,j)
Mi,jL

m
i,j

Tmi,j

+ λ
(∑

i

∑
j

(si,j − s2i,j)
)

(30)

subject to

C1: 0 ≤
N∑
n=1

p̃i,j,n ≤ si,jpmax, ∀i, j,

C2:
N∑
n=1

log2(1 +
p̃i,j,nhi,j,n

σ2 + Ĩi,n
) ≥ si,jRmin, ∀i, j,

C3:
Fi∑
j=1

N∑
n=1

log2(1 +
p̃i,j,nhi,j,n

σ2 + Ĩi,n
) ≤ RProci,max, ∀i,

C6: si,j ∈ [0, 1], ∀i, j,

8

where Ĩ(n)i ,
Nc∑
k=1
k 6=i

Fi∑
m=1

p̃k,m,nh
i
k,m,n. We can write the objec-

tive function in (30) as f1(p̃, s)− f2(p̃, s), where f1(p̃, s) ,
Nc∑
i=1

Fi∑
j=1

N∑
n=1

p̃i,j,n +

Nc∑
i=1

Fi∑
j=1

((1 − si,j)
Mi,jL

m
i,j

Tmi,j
+ λsi,j), and

f2(p̃, s) , λ
∑Nc

i=1

Fi∑
j=1

s2i,j are two convex functions. In a

similar way, for ∀i, j, we define zi,j,n(p̃) and qi,j,n(p̃) as

zi,j,n(p̃),log2

(̃
pi,j,nhi,j,n+

Nc∑
k=1
k 6=i

Fi∑
m=1

p̃k,m,nh
i
k,m,n+σ

2

)
, (31)

qi,j,n(p̃) , log2

(Nc∑
k=1
k 6=i

Fi∑
m=1

p̃k,m,nh
i
k,m,n + σ2

)
, (32)

then, we can write constraints C2 and C3 as follows

C2: Zi,j(p̃)−Qi,j(p̃) ≥ si,jRmin,∀i, j,
C3: Qi(p̃)− Zi(p̃) ≥ −RProci,max,∀i, (33)

where Zi,j(p̃) ,
N∑
n=1

zi,j,n(p̃), Qi,j(p̃) ,
N∑
n=1

qi,j,n(p̃),

Zi(p̃) ,
Fi∑
j=1

N∑
n=1

zi,j,n(p̃), and Qi(p̃) ,
Fi∑
j=1

N∑
n=1

qi,j,n(p̃) are

concave functions. Therefore, the problem is in the form of the
difference of two convex (concave) functions (D.C. program-
ming) [54]. In D.C. programming, we start from a feasible
initial point and iteratively solve the optimization problem. Let
k denote the iteration number. At the k-th iteration, to make
the problem convex, using the first order Taylor approximation
for f2(p̃, s), Qi,j(p̃) and Zi(p̃) as follows

f̃2(p̃, s)u f2(p̃, s
k−1)+∇sf

T
2 (p̃, sk−1).(s− sk−1),

Q̃i,j(p̃)uQi,j(p̃
k−1)+∇p̃Q

T
i,j(p̃

k−1).(p̃− p̃k−1),

Z̃i(p̃) u Zi(p̃
k−1) +∇p̃Z

T
i (p̃

k−1).(p̃− p̃k−1), (34)

where p̃k−1 and sk−1 are the solutions of the problem at (k−
1)-th iteration and ∇x denotes the gradient operation with
respect to x. Thus, at the k-th iteration, instead of dealing with
the problem of (24), we solve the following convex problem

min
{p̃,s}

f1(p̃, s)− f̃2(p̃, s) (35)

subject to: C1, C2, C7,

C2: Zi,j(p̃)− Q̃i,j(p̃) ≥ si,jRmin, ∀i, j,
C3: Qi(p̃)− Z̃i(p̃) ≥ −RProci,max, ∀i.

It can be shown that the D.C. programming results in a
sequence of feasible solutions that iteratively achieves better
solutions than previous iteration until it converges.

Proposition 3. The D.C. programming results in a se-
quence of feasible solutions that iteratively decrease the total
power consumption of the network.

Proof. Please see Appendix B.

2) Channel assignment, Power Allocation, and Decision
Making (C-PAD): Similar to subsection III-B1, we assume
that channel assignment vector is given based on proposition
1. Given sub-channel assignment, the optimization problem
can be rewritten as:

min
{p}

PTotal (36)

subject to

C1: 0 ≤ si,jpTxi,j ≤ pmax, ∀i, j,

C2: si,j
N∑
n=1

log2(1 + γi,j,n) ≥ si,jRmin, ∀i, j,

C3:
Fi∑
j=1

N∑
n=1

si,j log2(1 + γi,j,n) ≤ RProci,max, ∀i,

By applying the method used in previous section we can
formulate the problem as a D.C. programming optimization
problem. In other words, similar to (??) and (??) we have:

C3: Zi,j(p̃t)−Qi,j(p̃t) ≥ Rmin, ∀i, j (37)

C4: Qi(p̃t)− Zi(p̃t) ≥ −RProci,max, ∀i, (38)

Applying the first order Taylor approximation, the optimiza-
tion problem can be written as

min
{p}

PTotal (39)

subject to

C1: 0 ≤ si,jpTxi,j ≤ pmax, ∀i, j,

C2:
Zi,j(p̃

t)− {Qi,j(p̃t−1) +∇p̃Q
T
i,j(p̃

t).(p̃t − p̃t−1)}

≥ Rmin ∀i, j

C3:
Qi(p̃

t)− {Zi(p̃t−1) +∇p̃Z
T
i (p̃

t).(p̃t − p̃t−1)}

≥ −RProci,max ∀i

Given sub-channel assignment and power consumption
vectors, offloading decisions can be made by users. Recall
the power consumption of user j in cell i in (6) and (8).
Each user can compare offloading and local processing power
consumption to make the decision si,j as follows:

si,j =

{
1 PLocali,j > PTxi,j
0 PLocali,j ≤ PTxi,j

(40)

IV. ALGORITHM DESIGN

In this section, based on our solutions, we propose two
tractable algorithms to solve the optimization problem in
polynomial time. The first algorithm fits well to a situation
where information of all cells are available at the central-
ized unit and base stations are in charge of performing the
offloading algorithms. The second algorithm suits well when
offloading algorithm is performed at MUs’ sides and only
partial information exchange is required between base stations.

9

A. J-PAD Algorithm

Algorithm 1 performs Joint Power Allocation and Decision
making and is called J-PAD. J-PAD is designed to solve the
convex optimization problem presented in (35). Here, the key
idea is to make decision and allocate power simultaneously,
while channels are assigned beforehand. Algorithm 1 repre-
sents the procedure of solving the optimization problem using
J-PAD algorithm which starts from random initial points for
power allocation, channel assignment, and decision variable
vectors.

Algorithm 1 Joint Power Allocation and Decision Making
(J-PAD) Algorithm
1: Initialize power, a, s, Imax, λ = 1, and Counter = 0
2: while Counter ≤ Imax do
3: Channel Allocation
4: Calculate EIi,j,n based on (23) ∀i, j, n
5: Form a[t] based on EIi,j,n
6: Power Allocation and Offloading Decision
7: for i=1 to Nc do

a) Solve the problem (35) using interior point method
b) Update Power Vector based on the solution of (35)
c) Update sk,u,n according to the solution of (35)

8: end for
9: Update λ, Counter = Counter + 1

10: Centralized unit updates the I based on (13) and sends this value back
to the base stations.

11: end while

J-PAD algorithm is composed of two main sections, channel
assignment, based on the equation (23), and power allocation
and offloading decision. After performing the second part, the
power vectors and offloading decisions are updated at each
base station and will be sent to the centralized unit. Then the
centralized unit updates the interference value on each channel
and sends them back to each base station for next iteration.
The problem is solved at the base station where the offloading
algorithm is performed.

Besides, λ plays an important role in the performance of
J-PAD algorithm. It is a penalty factor to punish the objective
function for any value of offloading decision variable s that
is not binary. Therefore λ should be large enough, e.g., 105,
(λ� 1) [55], to penalize the objective. One can fix this value
to a predetermined high value but here we first set the λ to a
relatively low value (λ > 1). In this case, we let the value of s
be a real value in [0,1]. By applying this approach, in the first
steps, we do not penalize the objective too much, so that the
algorithm has more freedom at choosing s and power. Then in
next iterations we tighten the condition on s by choosing larger
λ to make sure that the final value for s is binary. The benefit
for using such a method is to deal with the trade-off between
convergence and achieving optimal value. With a small value
for λ, J-PAD algorithm has more freedom to choose a non-
binary value for offloading decision and therefore can find the
value for power easier. With larger value for λ, the algorithm
focuses on penalizing the objective function due to non-binary
offloading decision value. Because we have already found out
the power value (in previous iterations with smaller λ), the
offloading decision variable converges fast to 0 or 1 [55].

B. C-PAD Algorithm

In this section, we propose an alternative algorithm to J-PAD
which has less complexity and the decision making process
can be moved to the MUs side instead of the BS. In this
situation, MUs only need partial information from other cells.

To avoid the integer inherent of the problem, we assign
channels and make offloading decision iteratively before allo-
cating the power. Hence, we divide the algorithm into three
main parts: 1) Channel allocation which is done based on
the Eq. (23), 2) Offloading decision which is performed
by comparing the alternative solutions power consumption
according to the Eq. (40), and 3) Power allocation. In the
latter part, channel allocation and offloading decisions are
not optimization variables anymore because they are known
for each user beforehand. Therefore, this algorithm performs
Channel allocation, Power Allocation and Decision making
iteratively and is called C-PAD algorithm. The procedure of
finding the solution with C-PAD algorithm is presented in
Algorithm 2.

Algorithm 2 Channel allocation, Power Allocation and Deci-
sion Making (C-PAD) Algorithm
1: Initialize initial points, Imax, λ, and Counter = 0
2: while Counter ≤ Imax do
3: Channel Allocation
4: Calculate EIi,j,n based on (23) ∀i, j, n
5: Form a[t] based on EIi,j,n
6: Offloading Decision
7: Determine the offloading decision based on (40) for each user.
8: Update the channel allocation and offloading decision vector.
9: Power Allocation

10: for i=1 to Nc do
a) Solve the problem (30) with a given channel allocation and

offloading decision vector using interior point method
b) Update Power Vector based on the solution found from (30)

11: end for
12: Counter = Counter + 1
13: Centralized unit updates the parameter I based on (13) and sends this

value back to the base stations and base stations distribute it to the users.
14: end while

In Algorithm 2 the channel allocation scheme is the same
as Algorithm 1. For offloading section, each user compares
its power consumption for two possible cases, e.g., local
processing or offloading and makes decision accordingly.
Given the power consumption values, the problem of power
minimization can be solved. This segmentation enables us
to perform the algorithm at users’ side. In other words, the
second algorithm is a distributed scheme with very low data
exchange requirements at the expense of losing optimality.
Centralized unit sends information about interference to each
base station and the base stations relay this information to the
users. Afterwards, users can use their local information and
make their decisions. The procedure will continue until the
convergence criteria is met. The computational complexity of
the proposed algorithms will be discussed and compared in
the next section.

C. Complexity Analysis

In this section, we investigate the computational complexity
of our proposed algorithms. In both J-PAD and C-PAD, to

10

assign sub-channels to the users, we have to find the user
with highest effective interference. Let F denote the maximum
number of users existing in a cell, i.e., F = max

i=1,...,Nc

Fi.

Since finding the maximum of a set with K elements requires
O(K) operations, the sub-channel assignment phase has the
complexity order of O(NFNc). For data offloading and power
allocation in J-PAD algorithm, we have totally NcF (N + 1)
decision variables and Nc(3F+N+1) convex and linear con-
straints. Therefore, the computational complexity of solving a
joint data offloading and power allocation problem is given by

O((NcF (N+1))3(Nc(3F+N+1))) ≈ O(N4
c F

3N3(3F+N))

. In C-PAD algorithm, data offloading and power allocation
are separated. To find a data offloading strategy, it is sufficient
to compare the power consumption in cases that each user
uses its processor or sends its data to the cloud and select
the one with lowest power consumption. Since, we have to
carry this out for all users in all cells, we need O(NcF)
operations. For the power allocation, we have totally NcFN
variables and Nc(2F +N + 1) linear and convex constraints.
Similar to what has been presented for the first approach,
the power allocation computational complexity has the order
of O(N4

c F
3N3(2F +N)). The computational complexity of

proposed methods is summarized in table III. The compu-

TABLE III: Computational Complexity of proposed approaches.

Sub-channel As-
signment

Data Offloading Power Allocation

J-PAD O(NFNc) O

(
N4

cF
3N3(3F +N)

)
C-PAD O(NFNc) O(NcF) O

(
N4

cF
3N3(2F +N)

)

tational complexity reported in Table III is the worst case
time complexity. Running such algorithms requires both time
and energy which are functions of the number of required
operations and processing speed of devices. However, the
required time 2 and energy 3 to run our proposed algorithms
are negligible compared to the delay thresholds and total power
consumption of devices.

V. SIMULATION RESULTS

A. System Parameters

In this section we evaluate the performance of the proposed
algorithms using numerical studies after defining the system
parameters and baseline cases. The scenario as depicted in
Fig.1 is a multi-cell mobile network where each base station is

2For a user running C-PAD locally, we need to operate roughly
(NcFN)3(2F+N) operations. Using given values in Table IV, e.g., N = 25
Nc = 7 F = 5, roughly we need about 23.4e9 operations. Based on [56],
today’s mobile phone CPUs can support about 2 Tera operations per second
which suggests that the delay due to running the algorithm is within 10 msec.
Note that this delay may limit the generality and operability of the algorithm
for very stringent delay thresholds. In our study, we assume that the delay
threshold of each application is counted after running the algorithms. This
is an acceptable assumption, since the range of considered delay is between
100ms and 500ms according to the scenarios we target.

3 According to [57], different usage scenarios consume energy between
(.3− 1)τ Joules, where τ is the running time. Based on our calculation the
algorithm is running within about τ = 10 msec which results in (3 − 10)
mJoules energy consumption.

equipped with a computing server. The simulation parameters
and their corresponding values are summarized in Table IV.
We assume that each cell can serve up to Fi users and their
QoS is defined as a maximum acceptable delay. The carrier
frequency is set to 2GHz and thermal noise is considered
as a zero mean Gaussian random variable with a variance of
σ2 and a power spectral density of N0 = −174dbm/Hz, so
σ2 = (W/N)N0. The pathloss model is adopted from [43],
shadow fading is modeled as zero mean log normal distribution
with variance of 8db, and Rayleigh fading is modeled as a
unit-mean exponential distribution. Each cell has a coverage
radius of 500m and users are distributed based on Poisson
point process within a cell coverage and results are averaged
over 200 realizations.

TABLE IV: Simulation parameter values

Definition Notation Value
Sub-carrier bandwidth B 200 KHz

Number of sub-carrier N 25

Number of cells Nc 7

Number of active MUs Fi 5

Circuit power Pc 100 mW

Power amplifier efficiency η 0.4

Scaling factor power m 3

Noise power spectral density N0 −174 dbm/Hz
Maximum transmit power of users Pmax 23 dbm

Maximum delay of user j in cell i Ti,j 100 ms

Mean bit stream size of user j in cell i Li,j 2000 bits

We have compared our results with two baseline cases
to understand the main reasons behind the power savings:
whether the saving is dominated more by the offloading
decisions or it stems from power control on each channel.
In the first one, all MUs use local processing and nobody
offloads data to the cloud. Comparing with this scheme, we
can observe how much power saving can be obtained by
utilizing the proposed algorithms. The second baseline is equal
power allocation. In this scheme, power is equally allocated
on user’s assigned channels such that the required QoS is
satisfied. For equal power allocation, starting from zero, we
increase the power level and check the constraints until all of
them are satisfied. According to the given power allocation,
channel assignment is performed based on (23). Through the
comparison of these schemes, we can find out the amount of
power saving related to the power adjustment on each channel.

B. Simulation Results

The power consumption of all users over different bit stream
sizes is depicted in Fig.2. The larger the bit stream size, the
more power is consumed meanwhile the gap between power
consumption of local computing and proposed algorithms
increases.

Fig.3 illustrates how J-PAD and C-PAD could help users to
offload and how much power is saved. As can be seen from the
figure, by increasing the bit stream size, the percentage of local
computing users decreases. The reason is that local processing
of the large bit stream size results in higher power consumption
in comparison with sending data to the cloud. Therefore,

11

1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.5

1

1.5

2

2.5
10

4

J-PAD

C-PAD

Equal-Power

Local Computing

Fig. 2: Aggregate power consumption for different bit stream sizes

1000 1500 2000 2500 3000 3500 4000 4500 5000

Bit Stream Size (bits)

30

40

50

60

70

80

90

100

L
o
ca
l
U
se
r
P
er
ce
n
ta
ge

0

10

20

30

40

50

60

P
ow

er
S
av

in
g
P
er
ce
n
ta
g
e

J-PAD

C-PAD

J-PAD

C-PAD

Fig. 3: Power saving against Local Computing and percentage of
local computing users

Maximum Acceptable Delay (s)
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

P
ow

er
C
on

su
m
p
ti
on

(m
W

)

×10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

J-PAD
C-PAD
Equal-Power
Local Computing

0.25 0.3 0.35 0.4 0.45 0.5

500

1000

1500

2000

2500

3000

3500

4000

4500

Fig. 4: Aggregate power consumption for different acceptable delays

confirmed by simulations depicted in Fig.3, users tend to use
the alternative option, e.g., offloading, to save power. For large
bit stream sizes, using J-PAD and C-PAD, about 30% of users
decide on local processing and 60% power saving is attained
in comparison with local computing base line. Comparing J-
PAD and C-PAD, J-PAD slightly outperforms C-PAD in terms
of power saving at most 20%, while it has more complexity.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Maximum Acceptable Delay (s)

30

40

50

60

70

80

90

100

L
o
ca
l
U
se
r
P
er
ce
n
ta
ge

0

10

20

30

40

50

60

70

P
ow

er
S
av

in
g
P
er
ce
n
ta
g
e

J-PAD

C-PAD

J-PAD

C-PAD

Fig. 5: Power saving against Local Computing and percentage of
local computing users for different acceptable delays

The maximum acceptable delay as a QoS requirement is
another parameter that affects the power consumption and
offloading decisions. In Fig.4, we have investigated the im-
pact of delay on our algorithms. Longer acceptable delay
for offloading users means lower data rate requirement and
consequently lower power consumption for data transmission.
Also for local computing users, this delay results in a lower
power consumption confirmed by the model. The gap between
the proposed algorithms and the benchmark is wide at the
beginning and becomes tighter as maximum acceptable delay
gets longer. To discover why, we have illustrated the percent-
age of the local computing users and the corresponding power
savings in Fig.5. For short delays, the power consumption is
relatively high which, decays as the acceptable delay becomes
longer. It can be seen that users, based on the mobile devices
power model, prefer local processing when they can tolerate
the considerable delay. Using J-PAD or C-PAD for short
delays, about 65% power saving is obtained while for long
delays, i.e., when the processing delay requirement can be
relaxed, power savings from offloading is diminished because
local processing power drops down exponentially with the
processing delay due to the power model in Eq. (6), resulting
in almost all users processing locally.

Users’ offloading decision not only relies on the power
model but also depends on the other users’ decisions due to
the interference coming from neighboring cells. Consequently,
the number of active users in the network is also crucial. Fig.6
and Fig.7 address this issue. The more users that exist in the
network, the higher interference created, which means lower
SINR, lower data rate and consequently more experienced
delay for the users. As a result, the percentage of local
users (not necessarily the absolute number) increases with the
increasing number of users.

In order to investigate the impact of interference, we relaxed
the interference constraint and solved the problem optimally
in Fig.6. In case of small number of users, due to lower
interference imposed by others, the interference level is negli-
gible and hence it has no impact on the solution. However, as
the number of users increases, interference becomes critical
and consequently considering the interference-free scenario

12

1 5 10 15

10
3

10
4

No Interference

J-PAD

C-PAD

All Local

Fig. 6: Aggregate power consumption over different number of users

1 2 3 4 5 6 7 8 9 10

Number of Users in each cell

0

10

20

30

40

50

60

70

L
o
ca
l
U
se
r
P
er
ce
n
ta
g
e

30

35

40

45

50

55

60

65

70

75

P
o
w
er

S
a
v
in
g
P
er
ce
n
ta
g
e

J-PAD

C-PAD

J-PAD

C-PAD

Fig. 7: Power saving against Local Computing and percentage of
local computing users for different number of users

results in wrong decision. Implementation of the interference-
free scenario, not only reveals the impact of interference but
also provides us a lower bound on the optimal solution of the
problem. This solution is lower bound since the interference is
not considered and hence with lower power consumption, the
rate constraints are satisfied. For small number of users, this
lower bound coincides with our solution. For large number
of users, however, this solution is not feasible, it can provide
us a lower bound on the optimal solution. Please note that
the ’Local Computing’ simulation is an upper bound for the
problem since all users can process their data locally in the
worst case. For instance for high load, e.g., 10 users in a
cell, proposed algorithms could still achieve about 30% power
saving in comparison with local computing base line.

In Fig.8, we consider two groups of users with mixed
delay thresholds. In particular, we assumed that one group
has the delay threshold of 100ms and the other group has
relatively higher delay threshold, i.e., 200ms. Results show
that users with smaller delay threshold tend to save more
energy compared to the ones with relatively higher delay
thresholds, ending up with utilizing more edge cloud resources
to save their batteries. This happens because tasks with more
urgent deadlines requiring higher processing speed, take up
more battery resources.

1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

J-PAD- Low Delay

J-PAD- High Delay

Fig. 8: Power saving for low and high delay users

In Fig.9, we investigate the offloading region for normal and
cell-edge users to find out when offloading can save power. For
normal users, non-cell edge users, one can see that for large
bit stream size and low acceptable delay, e.g., yellow region
in the figures, J-PAD and C-PAD can help mobile devices
to save power. For fixed delay, by enlarging the bit stream
size we end in the offloading region. Moreover, C-PAD has
a wider region than J-PAD because the offloading decision is
made before solving the optimization problem. Our simulation
results also reveal that cell edge users with poor channel gain
and SINR cannot benefit from offloading to the cloud. Because
with bad channel condition, users need more power than local
processing to send data to the cloud at an acceptable rate to
meet the delay requirements. Here, providing users with better
SINR, e.g., using joint transmission, might be helpful.

VI. CONCLUSION

In this paper, the power minimization of mobile devices
as a crucial aspect of mobile edge computing networks is
considered. Accordingly, an optimization problem aimed at
minimizing the power consumption of all users is formulated.
To take into account the users’ quality of service, maximum
tolerable delay of users are considered. Knowing the inherent
non-convexity of our primary problem, we applied the D.C.
approximation to transform the non-convex problem to a
convex one. We proposed two algorithms, called J-PAD and
C-PAD to solve the problem in polynomial time. The J-PAD
algorithm is better than C-PAD in terms of power saving
but at the cost of complexity; therefore, it is not suitable
to be used in the mobile terminal but in the BSs with high
processing resources. C-PAD has the advantage of running
at the users’ side at the cost of losing the optimality. Our
simulations demonstrated that there exists an offloading region
for non-cell edge users where they can benefit from offloading
data to the cloud. Finally, confirmed by our results, significant
enhancement in terms of power consumption of mobile devices
could be achieved using the proposed algorithms.

To extend this study, a network with users belonging to
different service and priority classes can be investigated. Our
proposed solutions are capable of supporting users mobility to

13

(a) J-PAD offloading regions for normal user (b) C-PAD offloading regions for normal user

Fig. 9: Offloading regions for J-PAD and C-PAD

a certain point, however, the dynamicity of the environment,
decision-making frequency, impact of users speed, estima-
tion/prediction of the mobility pattern using machine learning
techniques can be investigated as a future work. Furthermore,
local computing power model can be updated to investigate
the impact of having built-in GPU or dedicated neural network
units in smart phones and edge computing nodes.

REFERENCES

[1] Masoudi et al., “Green cloud computing for multi cell networks,” in 2017
IEEE Wireless Communications and Networking Conference (WCNC)
(IEEE WCNC 2017), San Francisco, USA, Mar. 2017.

[2] Kumar and Lu, “Cloud computing for mobile users: Can offloading
computation save energy?” Computer, vol. 43, no. 4, pp. 51–56, 2010.

[3] Kwak et al., “Dream: dynamic resource and task allocation for energy
minimization in mobile cloud systems,” IEEE Journal on Selected Areas
in Communications, vol. 33, no. 12, pp. 2510–2523, 2015.

[4] Kaewpuang et al., “A framework for cooperative resource management
in mobile cloud computing,” IEEE Journal on Selected Areas in Com-
munications, vol. 31, no. 12, pp. 2685–2700, 2013.

[5] Xu and Mao, “A survey of mobile cloud computing for rich media
applications.” IEEE Wireless Commun., vol. 20, no. 3, pp. 1–0, 2013.

[6] Masoudi et al., “Green mobile networks for 5G and beyond,” IEEE
Access, vol. 7, pp. 107 270–107 299, 2019.

[7] Mach and Becvar, “Mobile Edge Computing: A Survey on Architecture
and Computation Offloading,” ArXiv e-prints, Feb. 2017.

[8] Zhang et al., “Offloading in mobile cloudlet systems with intermittent
connectivity,” IEEE Transactions on Mobile Computing, vol. 14, no. 12,
pp. 2516–2529, 2015.

[9] ——, “Energy-optimal mobile cloud computing under stochastic wire-
less channel,” IEEE Transactions on Wireless Communications, vol. 12,
no. 9, pp. 4569–4581, 2013.

[10] Tran and Pompili, “Joint task offloading and resource allocation for
multi-server mobile-edge computing networks,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2019.

[11] Basiri and Rasoolzadegan, “Delay-aware resource provisioning for cost-
efficient cloud gaming,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 28, no. 4, pp. 972–983, 2018.

[12] Soyata et al., “Cloud-vision: Real-time face recognition using a mobile-
cloudlet-cloud acceleration architecture,” in Computers and communi-
cations (ISCC), 2012 IEEE symposium on. IEEE, 2012, pp. 59–66.

[13] Hosseini et al., “Deep learning with edge computing for localization
of epileptogenicity using multimodal rs-fMRI and EEG big data,” in
Autonomic Computing (ICAC), 2017 IEEE International Conference on.
IEEE, 2017, pp. 83–92.

[14] Nunna et al., “Enabling real-time context-aware collaboration through
5G and mobile edge computing,” in 2015 12th international conference
on information technology-new generations (ITNG). IEEE, 2015, pp.
601–605.

[15] Claypool and Claypool, “Latency and player actions in online games,”
Communications of the ACM, vol. 49, no. 11, pp. 40–45, 2006.

[16] Dusi et al., “A closer look at thin-client connections: statistical applica-
tion identification for qoe detection,” IEEE Communications Magazine,
vol. 50, no. 11, 2012.

[17] Skorin-Kapov and Matijasevic, “Analysis of QoS requirements for e-
health services and mapping to evolved packet system QoS classes,”
International journal of telemedicine and applications, vol. 2010, p. 9,
2010.

[18] Mao et al., “Mobile edge computing: Survey and research outlook,”
CoRR, vol. abs/1701.01090, 2017. [Online]. Available: http://arxiv.org/
abs/1701.01090

[19] Barbera et al., “To offload or not to offload? the bandwidth and energy
costs of mobile cloud computing,” in INFOCOM, 2013 Proceedings
IEEE. IEEE, 2013, pp. 1285–1293.

[20] Tout et al., “Smart mobile computation offloading: Centralized selective
and multi-objective approach,” Expert Systems with Applications, 2017.

[21] Kosta et al., “Thinkair: Dynamic resource allocation and parallel exe-
cution in the cloud for mobile code offloading,” in INFOCOM, 2012
Proceedings IEEE. IEEE, 2012, pp. 945–953.

[22] Mahmoodi et al., “Cloud offloading for multi-radio enabled mobile
devices,” in 2015 IEEE International Conference on Communications
(ICC). IEEE, 2015, pp. 5473–5478.

[23] Ellouze et al., “A mobile application offloading algorithm for mobile
cloud computing,” in Mobile Cloud Computing, Services, and Engineer-
ing (MobileCloud), 2015 3rd IEEE International Conference on. IEEE,
2015, pp. 34–40.

[24] Meskar et al., “Energy aware offloading for competing users on a shared
communication channel,” IEEE Transactions on Mobile Computing,
vol. 16, no. 1, pp. 87–96, Jan 2017.

[25] Liu and Lee, “An effective dynamic programming offloading algorithm
in mobile cloud computing system,” in Wireless Communications and
Networking Conference (WCNC), 2014 IEEE. IEEE, 2014, pp. 1868–
1873.

[26] Piunti et al., “Energy efficient adaptive cellular network configuration
with QoS guarantee,” in IEEE ICC 2015, 2015, pp. 1658–1663.

[27] Chen et al., “Joint offloading decision and resource allocation for multi-
user multi-task mobile cloud,” in 2016 IEEE International Conference
on Communications (ICC). IEEE, 2016, pp. 1–6.

[28] ——, “Efficient multi-user computation offloading for mobile-edge
cloud computing,” IEEE/ACM Transactions on Networking, vol. PP,
no. 99, pp. 1–1, 2015.

[29] Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2015.

[30] Yang et al., “A framework for partitioning and execution of data
stream applications in mobile cloud computing,” ACM SIGMETRICS
Performance Evaluation Review, vol. 40, no. 4, pp. 23–32, 2013.

[31] Cheng et al., “Computation offloading in cloud-ran based mobile cloud
computing system,” in 2016 IEEE International Conference on Commu-
nications (ICC). IEEE, 2016, pp. 1–6.

http://arxiv.org/abs/1701.01090
http://arxiv.org/abs/1701.01090

14

[32] Cui et al., “Stochastic online learning for mobile edge computing:
Learning from changes,” IEEE Communications Magazine, vol. 57,
no. 3, pp. 63–69, 2019.

[33] Yu et al., “Computation offloading for mobile edge computing: A deep
learning approach,” in 2017 IEEE 28th Annual International Symposium
on Personal, Indoor, and Mobile Radio Communications (PIMRC).
IEEE, 2017, pp. 1–6.

[34] Li et al., “Deep reinforcement learning based computation offloading and
resource allocation for mec,” in 2018 IEEE Wireless Communications
and Networking Conference (WCNC). IEEE, 2018, pp. 1–6.

[35] Wang et al., “Computation offloading in multi-access edge computing
using a deep sequential model based on reinforcement learning,” IEEE
Communications Magazine, vol. 57, no. 5, pp. 64–69, 2019.

[36] Mao et al., “Joint task offloading scheduling and transmit power alloca-
tion for mobile-edge computing systems,” CoRR, vol. abs/1701.05055,
2017. [Online]. Available: http://arxiv.org/abs/1701.05055

[37] Liu et al., “Delay-optimal computation task scheduling for mobile-
edge computing systems,” in 2016 IEEE International Symposium on
Information Theory (ISIT), July 2016, pp. 1451–1455.

[38] Wang et al., “Mobile-edge computing: Partial computation offloading
using dynamic voltage scaling,” IEEE Transactions on Communications,
vol. 64, no. 10, pp. 4268–4282, 2016.

[39] AL-Shuwaili et al., “Joint uplink/downlink optimization for backhaul-
limited mobile cloud computing with user scheduling,” IEEE Trans-
actions on Signal and Information Processing over Networks, vol. PP,
no. 99, pp. 1–1, 2017.

[40] Liu et al., “Wireless resource scheduling based on backoff for multi-user
multi-service mobile cloud computing,” 2016.

[41] Huang et al., “A dynamic offloading algorithm for mobile computing,”
IEEE Transactions on Wireless Communications, vol. 11, no. 6, pp.
1991–1995, 2012.

[42] Zhang et al., “Energy-latency trade-off for energy-aware offloading in
mobile edge computing networks,” IEEE Internet of Things Journal,
vol. PP, no. 99, pp. 1–1, 2017.

[43] Access, “Further advance-ments for e-utra physical layer aspects,” 3GPP
TR 36.814, Tech. Rep., 2010.

[44] Lyu et al., “Multiuser joint task offloading and resource optimization in
proximate clouds,” IEEE Transactions on Vehicular Technology, vol. 66,
no. 4, pp. 3435–3447, 2017.

[45] Lorch and Smith, “Improving dynamic voltage scaling algorithms with
pace,” in ACM SIGMETRICS Performance Evaluation Review, vol. 29,
no. 1. ACM, 2001, pp. 50–61.

[46] Yuan and Nahrstedt, “Energy-efficient soft real-time cpu scheduling
for mobile multimedia systems,” in ACM SIGOPS Operating Systems
Review, vol. 37, no. 5. ACM, 2003, pp. 149–163.

[47] Yang et al., “Energy minimization via dynamic voltage scaling for real-
time video encoding on mobile devices,” in 2012 IEEE International
Conference on Communications (ICC). IEEE, 2012, pp. 2026–2031.

[48] Yuan and Nahrstedt, “Energy-efficient cpu scheduling for multimedia
applications,” ACM Transactions on Computer Systems (TOCS), vol. 24,
no. 3, pp. 292–331, 2006.

[49] You et al., “Energy-efficient resource allocation for mobile-edge com-
putation offloading,” IEEE Transactions on Wireless Communications,
vol. 16, no. 3, pp. 1397–1411, 2017.

[50] Liu et al., “An edge network orchestrator for mobile augmented reality,”
in IEEE Conference on Computer Communications (IEEE INFOCOM
). IEEE, 2018, pp. 756–764.

[51] Chen et al., “Efficient multi-user computation offloading for mobile-
edge cloud computing,” IEEE/ACM Transactions on Networking, vol. 24,
no. 5, pp. 2795–2808, 2015.

[52] Belotti et al., “Mixed-integer nonlinear optimization,” Acta Numerica,
vol. 22, pp. 1–131, 2013.

[53] Masoudi et al., “Energy efficient resource allocation in two-tier OFDMA
networks with QoS guarantees,” Wireless Networks, pp. 1–15, 2017.

[54] Kha et al., “Fast global optimal power allocation in wireless networks
by local dc programming,” IEEE Transactions on Wireless Communica-
tions, vol. 11, no. 2, pp. 510–515, 2012.

[55] Che et al., “Joint optimization of cooperative beamforming and relay
assignment in multi-user wireless relay networks,” IEEE Transactions
on Wireless Communications, vol. 13, no. 10, pp. 5481–5495, 2014.

[56] [Online]. Available: https://uk.pcmag.com/forward-thinking/94011/
mobile-processors-the-rise-of-machine-learning-featu

[57] Carroll et al., “An analysis of power consumption in a smartphone.” in
USENIX annual technical conference, vol. 14. Boston, MA, 2010, pp.
21–21.

Meysam Masoudi (S’16) is currently a Ph.D. stu-
dent at the department of Communication Systems
at KTH Royal Institute of Technology, Sweden. He
received his B.Sc. and M.Sc. degrees all in electrical
engineering in 2013 and 2016, from the Amirkabir
University of Technology, Iran. His research inter-
ests include Mobile Cloud Computing, 5G Network
Architectures, and Optimization.

Cicek Cavdar is an Assistant Professor at the
Division of Communication Systems, KTH Royal
Institute of Technology. She has been leading the
Intelligent Network Systems research group in Radio
Systems Lab focusing on design and planning of
intelligent network architectures, direct air to ground
communications and Internet of Things. She finished
her Ph.D. studies in Computer Science, University
of California, Davis and in Istanbul Technical Uni-
versity, Turkey in 2009. After her PhD, she worked
as an Assistant Professor in Computer Engineering

Department, Istanbul Technical University. She served as chair of the Green
Communication Systems and Networks Symposium in ICC 2017 in Paris.
She has been chairing several workshops on the green mobile broadband
technologies and Green 5G Mobile Networks last few years co-located with
IEEE ICC and Globecom. At Wireless@KTH research center, she has been
leading EU EIT Digital projects such as ”5GrEEn: Towards Green 5G Mobile
Networks” and ”ICARO-EU: Seamless Direct Air to Ground Communications
in Europe”. She is serving as the leader of Swedish cluster for the EU Celtic-
Plus project SooGREEN ”Service Oriented Optimization of Green Mobile
Networks” and AI4Green ”Artificial Intelligence for Green Mobile Networks”.

http://arxiv.org/abs/1701.05055
https://uk.pcmag.com/forward-thinking/94011/mobile-processors-the-rise-of-machine-learning-featu
https://uk.pcmag.com/forward-thinking/94011/mobile-processors-the-rise-of-machine-learning-featu

	Introduction
	Related Works
	Contributions

	System Model and Problem Formulation
	System Description
	Power Model
	 Local Processing Power Model
	Offloading Power Model
	 Aggregated Power Model

	Delay Model
	Local Processing Delay Model
	Offloading Delay Model

	Problem Formulation

	Solution Methodology
	Sub-Problem One: Optimal Sub-channel Assignment
	Sub-Problem Two: Power Allocation, and Decision Making
	Joint Power Allocation and Decision Making (J-PAD)
	Channel assignment, Power Allocation, and Decision Making (C-PAD)

	Algorithm Design
	J-PAD Algorithm
	C-PAD Algorithm
	Complexity Analysis

	Simulation Results
	System Parameters
	Simulation Results

	Conclusion
	References
	Biographies
	Meysam Masoudi
	Cicek Cavdar

