
CLASSIFYING TWITTER BOTS
A comparasion of methods for classifying whether

tweets are written by humans or bots

Simon Västerbo

Bachelor Thesis, 15 hp/credits

Kandidatprogrammet i datavetenskap

2020





Abstract

The use of bots to in�uence public debate, spread disinformation and spam, cre-

ates a need for e�cient methods for detecting the usage of bots. This study will

compare di�erent machine learning methods in the task of classifying if the au-

thor of a tweet is a bot or a human, using tweet level features. The study will

look at how well the methods are able to generalize to unseen data. The meth-

ods included in the comparison are Random forest, AdaBoost and the Contextual
LSTM model, to compare the modelsArea under the receiver operating characteris-
tic curve and Average precision will be used. In the study �ve datasets with tweets

from bots are used, and one with tweets from humans. Two tests have been used

to evaluate the performance. In the �rst test all but one bot set is used during

training, where the models are evaluated on the excluded set. The second test

the models was trained on the separate datasets, and evaluated on the separate

datasets. In the results from the �rst test, the di�erence in performance of the

models where very low. The same was true for Random forest and AdaBoost in

the second test. The Contextual LSTM model achieved low performance in some

combinations of datasets, in the second test. The low di�erence in performance

between the models in the �rst test, and between Random forest and AdaBoost in

the second test, makes it hard to determine what model is best at the task. When

taking the time required to train and test using the models into consideration,

Random forest seem to be the most suitable for the task.
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1 Introduction

The use of automated accounts, also called bots, on social media sites can have many reasons,

some legitimate such as updates from a media provider. Other motivations for using auto-

mated accounts are more questionable, such as spreading advertisements or malware, or bots

used to spread disinformation or political propaganda.

For example, during recent elections there have been indications of an increased use of bots

to in�uence the outcome of the election. The model used by Ferquist et. al. classi�ed around

6% of the accounts posting using political hashtags related to Swedish election during March

to the end of May 2018 as bots.[4]Twitter bots have also been utilized as a tool to intimidate

journalists in Yemen.[1] The use of bots to control the public discussion by silencing opposi-

tion or by spamming propaganda highlights the need for e�cient ways to detect bot accounts

and tweets. The sophistication of the bots used are also increasing as shown by Cresci et al.,

where some social bots use fake pro�le information, photos and location. The posting be-

havior of these bots is also increasingly similar to normal users.[3] Due to the reasons listed

above, it is important to be able to identify bots, the typical way to do that is using machine

learning.

1.1 Purpose and Research Questions

I will compare di�erent methods in the task of classifying if tweets are posted by a human or a

bot, based on the content and metadata of a tweet. I will try to answer how well the methods

are able to generalize when classifying new types of bots.

RQ How does the models perform with ROC AUC and Average Precision as performance

metrics when classifying tweets as coming from a bot or human?

In addition, I will discuss the implications that the results have on the suitability of the meth-

ods for di�erent applications. I will also discuss the reason for the di�erence.

1.2 Models to include in the comparison

There exist many machine learning methods that could be included in the study, however due

to the limited time available I have chosen three methods to include. In this section I will give

a short motivation for including each of them, the methods will be explained in more detail

in section 3.

Random forest

Random forest has achieved good performance when used to classify bots in several stud-

ies.[10][16]

Contextual LSTM

The Contextual LSTM model proposed by Kuduguta et al. preformed best among the models

included in their comparison when classifying based on tweet information.[9]
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AdaBoost

AdaBoost has achieved good performance when used to classify bots in several studies, and

performed best in the non LSTM based models tested by Kuduguta et al.[9]
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2 Related Work

Beskow et al. built a classi�er to classify usernames based on the observation that a large

number of bots used for intimidation of journalists in Yemen used strings of random alphanu-

meric characters as name. They estimated that using their method had a false positive rate

of about 1%, and of the 100 classi�ed accounts that they manually inspected �ve where sus-

pended, eight gave no results (probably due to being canceled) and the rest showed bot like

behavior.[1]

The Botometer bot classi�er described by Yang et al. is based on Random forest.[17] Random
forest was also the algorithm that performed best in the comparisons done by Rossi et al. and

Novotny.[13][15]

Morstatter et al. proposed the BoostOR model based on AdaBoost that focused on optimizing

recall. When compared to their di�erent heuristics for classifying bots, SVM and AdaBoost,

their model achieved a higher F1 score.[12]

Wang et al. compared di�erent models for classifying tweets as spam using features based on

the content and metadata of a tweet. Of the compared models random forest performed best

when looking at F1 score. They also evaluated the importance of the included features when

using random forest.[16]

Kudugunta and Ferrara investigated classifying if the poster was a bot based on separate

tweets. They used a Long short term memory (LSTM) based approach that use the text of a

tweet and the account metadata that is given with the tweet by twitters API to classify if the

poster was a bot. They also tested a number of methods for account level classi�cation, out

of the box and where Synthetic Minority Over-sampling Technique (SMOTE) has been used to

balance the data in combination with data enhancement using Edited Nearest Neighbors (ENN)

or Tomek links. Used out of the box Random forest performed best, in both cases where the

data had been enhanced AdaBoost performed best. In the task of tweet level classi�cation

their LSTM based model outperformed the other models followed by AdaBoost and Random

forest. They also showed that including metadata for the tweet gave an improvement of

accuracy compared to only looking at the text.[9]

Luo et al. proposed DeepBot that used a Bi-directional LSTM based model with tweets em-

bedded into vectors with the GloVE representation as input. They trained their model with

144000 tweets posted by bots and 144000 by humans, using binary cross entropy as loss func-

tion and the adam optimizer. On their testing set of 62000 tweets by bots and 62000 by humans

they achieved a accuracy of 0.80 and AUC of 0.87. [11]
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3 Theoretical Background

In this section I will start with a description of two metrics that can be used when comparing

models in the task of classi�cation. Then I will give a description of three di�erent machine

learning algorithms that may be used to learn classi�cation models.

3.1 Metrics

In evaluating classi�cation tasks, two commonly used metrics are Average precision (AP) and

the Area under the receiver operating characteristic curve (ROC AUC). This section will give a

description of these two metrics.

Average Precision

Average precision (AP) is a way to give a single value summary of a precision recall curve. A

precision recall curve is a plot of the precision and recall as the decision threshold is changed.

Precision is de�ned as P = Tp/(Tp + Fp ) where Tp is the number of true positives and Fp the

number of false positives, that is the fraction of predicted positive values that are correctly

classi�ed. The recall (or true positive rate) is de�ned as R = Tp/(Tp + Fn) where Tp is the

number of true positives and Fn the number of false negatives, that is the fraction of the

positive values that was correctly classi�ed.

If a vector of elements x = (x1, ..., xn) is ordered so that p(xi ) ≥ p(x j ) if i < j where p(x) is

the predicted probability
1

of x belonging to the positive class, the average precision AP can

be calculated as AP =
∑

n(Rn − Rn−1)Pn where Ri is the recall and Pi the precision when the

threshold is set so that the �rst i elements are classi�ed as positive.

ROC AUC

A Receiver operating characteristic curve (ROC) is a plot of the true positive rate and the false
positive rate as the threshold is changed. The false positive rate (FPR) is de�ned as FPR =
(Fp/(Fp + Tn), where Fp is the number false positives and Tn the number of true negatives,

that is the fraction of negative values that was incorrectly classi�ed as positive. The true
positive rate is the same as recall and the de�nition is shown above. The ROC AUC score is

the area under the ROC curve.

3.2 Machine learning algorithms

Three algorithms that may be used in the task of classi�cation is: Contextual LSTM, Random
forest and AdaBoost. All three are supervised machine learning methods, meaning that they

try to learn a mapping between inputs to outputs based on a set of pairs of input and output

examples, or more formally, given a inputD = {(x1,y1)...(xn,yn)} where each yi = f (xi ) the

goal in supervised learning is to output ŷi = ˆf (xi ) where
ˆf is an approximation of f . This

section will give a description of the above mentioned algorithms.

1
or some other scoring function
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Figure 1: Outline of the Contextual LSTM network

Contextual LSTM

This section will describe the Contextual LSTM model. The model is based on the Contextual
LSTM model proposed by Kudugunta et al.[9]

Network architecture The network has two input layers, one for content and one for

metadata.

The content input takes integers and the embedding later maps them to word vectors. The

output from the embedding is then given as input to a lstm layer. The output of the lstm layer

and the metadata input is then used as input into a fully connected network with tree layers.

LSTM layer Long Short Term Memory (LSTM) networks is a type of recurrent neural net-

work �rst proposed by Hochreiter et al. 1997.[7] The LSTM network consists of 32 memory

cells.

Dense layers The last layers is a fully connected layer with 128 nodes followed by a fully

connected layer with 64 nodes both using the Recti�ed Linear Unit or ReLu as activation func-

tion, ending with a single neuron output activated by the sigmoid function.

relu(x) = max(x, 0)

siдmoid(x) =
1

1 + exp(−x)

Binary crossentropy The Binary crossentropy loss function is used to estimate how bad the

performance of a model is. The function gives a higher value for models with bad predictions.
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H (y, ŷ) =
1

n

n∑
i=1

(yi log(ŷi ) + (1 − yi ) log(1 − ŷi ))

where y = (y1, ...,yn), yi ∈ {0, 1} is the true values and ŷi is the predicted probability of

yi = 1.

Random forest

Random forest is a algorithm based on building a forest of decision trees introduced by Breiman

2001[2]. The algorithm uses a technique called bagging that works by selecting a random sub-

set of examples from the training set, with replacement, for every tree in the forest. Random

forest also use a random subset of features when deciding the best split for the nodes in the

trees. In the paper by Breiman the class is given by voting where the class with largest num-

ber of votes is selected, an alternative approach is to use the average predicted probability

among the trees.

AdaBoost

AdaBoost is based on iterating over multiple weak learners on the data, where each example

is weighted. For each iteration the weights of the missclassi�ed examples are increased. The

weak learners used in the experiments are decision trees with a depth of 1. The SAMME.R
algorithm was proposed by Zhu et al. 2006, SAMME.R is a algorithm based on the original

AdaBoost algorithm by Freund and Schapire.[18][5]

SAMME.R

It is expected that it is possible to calculate probability estimates for the classes {1, ...,K} from

the weak learners T .

1. Let wi = 1/n, i = 1, 2, ...,n, where n is the number of examples in the training data.

2. Form = 1 to M , where M is the number of weak learners:

(a) Fit a classi�er Tm(x) using the training data and weights wi .

(b) Let pmk (x) = Pw (c = k |x), k = 1, ...,K be the weighted probability estimates for

the classes.

(c) Let

hmk (x) = (K − 1)

(
logpmk (x) −

1

K

∑
k ′

loдpmk ′(x)

)
, k = 1, ...K

(d) Let

wi = wi exp

(
−
K − 1

K
yTi log p

m(xi)
)
, i = 1, ...n

(e) Re normalize wi

3. Output

C(x) = argmax

k

m=1∑
M

hmk (x)
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4 Method

In this section I will start with describing the data used in the experiments, and how I have

prepared it. After that a description of the experiments will follow.

4.1 Datasets used

The data used is from the cresci-2017 data set available at [8], the data is described by Cresci

et al. 2017.[3] The data set is a collection of several data sets containing tweets and user data

for the posters of the tweets. A summary of the datasets is shown in table 1.

Table 1 Data sets used.

Name Tweets Type Age Origin

social-spambots-1 1,610,034 bot 2012 Bots used to promote candidate in

election for Mayor of Rome.

social-spambots-2 428,542 bot 2014 Accounts used to advertise the Tal-
nts app.

social-spambots-3 1,418,557 bot 2011 Accounts used to advertise the

products on amazon.com.

traditional-spambots-1 145,094 bot 2009 Account used to post links to mali-

cious content.

fake-followers 196,027 bot 2012 Fake followers bought by the the re-

searchers.

genuine-accounts 2,839,362 human 2011 Accounts that answered a question

in a natural language sent to them

on twitter.

4.2 Data preparation

Before using the data to train and test the models a number of modi�cations is done to make

the data more suitable for the task.

Text preparation

To make the text in the content of the tweets more suitable for the Contextual LSTM model

a number of modi�cations is done. The modi�cations are done before using the data to train

and test the models, the reason for that is to avoid repeating the time consuming task for

every test. The steps done are as follows:

1. Substitute words in the text based on the rules used in the ruby script used by Penning-

ton et al. for preprocessing the twitter data used for training the word vectors, some

examples are listed in table 2. The reason for the substitutions are to make the text

conform to the texts used to train the pretrained GloVe vectors [6]. For example: If one

where to look up the word vector for :D in the pretrained GloVe embedding, no word

vector would be found as all instances of :D was replaced with <smile> during the

training of the word vectors.

2. Replace all uppercase letters with lowercase and split the text on white space characters

into a list of strings.
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3. For each string in the resulting list: Look up the index of the corresponding word vector

and replace the string with that index, or if not found with the index of the unknown

token.

Table 2 Table with examples of substitutions done during the text preparation. eyes={8:=;},

noses={’‘-}

Original word Replacement
URL address <url>

Word starting with @ <user>

Combination of one element in eyes and one of )dD possibly separated

some element in noses
<smile>

One element in eyes followed p possibly separated some element in

noses
<lolface>

One element in eyes followed by ( or preceded by ) possibly separated

by element in noses
<sadface>

One element in eyes followed by one of \/|l possibly separated by

element in noses
<neutralface>

<3 <heart>

#word <hashtag> word

WORD word <allcaps>

4.3 Data sampling

To train and evaluate the models, the features used in the tests can be divided into tweet

speci�c and user speci�c features, where the user speci�c features will be constant for all the

tweets posted by the same user.

The method for selecting training and testing data I used for each dataset:

For each dataset d listed in table 1:

1. Let Dd
be the tweets in dataset d .

2. Let U be the set of user ids that have posted tweets in Dd
.

3. Let Us be a randomly selected set of user ids from U , so that∑
i ∈Us ci∑
j ∈U c j

≈ 0.2

where ci is the number of tweets in Dd
posted by the user with user id i .

4. Let Dd
test be the tweets in Dd

posted by user ids in Us and Dd
train the tweets in

Dd
posted by user ids not in Us .

5. If |Dd
test | > 100000 select 100000 random tweets fromDd

test as the test set for that

data set, else select all tweets in Dtest as the test set.

6. |Dd
train | > 400000 select 400000 random tweets fromDd

train and letDd
train be the

set of selected tweets.

7. If the data set is composed of tweets posted by bots:

(a) |Dd
train | > 100000 select 100000 random tweets from Dd

train and let Dd
train2

be the selected tweets, else let Dd
train2 = D

d
train
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The reason for the upper limit of tweets in the training and testing sets is to decrease the time

required to run the training and testing. The result of the limits is that the maximum number

of tweets during training is 800000 (400000 from bots and 400000 from users) for both tests,

and during testing 200000 (100000 from bots and 100000 from users). The reason for step 7

is that test 1 described in section 4.4 use tweets from four of the test sets during training, so

to achieve the same total limit, the number of tweets from each set has to be decreased. The

tweets selected for training and testing remain constant for the training and testing of the

di�erent models. To process and sample the data I have used the pandas python 3 library.

4.4 Tests

To try to answer the research question I have performed two tests. All combination of models

described in section 3.2 and datasets described in section 4.1 containing tweets from bots have

been tested using both tests. In both tests I will use the metrics described in section 3.1 to

evaluate the models, namely ROC AUC and AP.

In the �rst test, the models are trained using all bot datasets except for one, and then evaluated

using data from the unseen dataset. It is a more realistic scenario for the following reasons:

As there exists several public datasets of tweets labeled as being posted by ether a bot or a

human, it is reasonable to include data from several sources. The time required to collect

and label data, combined with the appearance of new bots used to post on twitter, makes it

unlikely that the data used during training is fully representative of the data that on which

the model is used to classify.

The second test is done by training the models using separate bot datasets and evaluate on

separate bot datasets. The goal with that test is to give some insight how the similarities and

di�erences between the datasets a�ect the performance of the models. The hope is that it also

can give some insight about the results from the �rst test.

Test 1

In the �rst test I train the di�erent models using a combination of all but one datasets. The

trained model is then scored based on its performance when used on the test set of the ex-

cluded dataset combined with the test set of the user set.

The test can be described as the following steps:

1. Let B be the set of datasets consisting of tweets posted by bots.

2. For each dataset d,d ∈ B:

(a) For each compared model M :

i. Let Bt = {b |b ∈ B and b , d}

ii. Let X = ∪i ∈BtD
i
train2 ∪ D

u
train where u is the data set consisting of tweets

from real users.

iii. Let p(y = 1|x,D,M) be the estimated probability of the tweet corresponding

to the feature vector x is posted by a bot, given the model M trained on the

training data D.

iv. Let ŷ = {p(y = 1|x,X,M) |x ∈ Db
test ∪ D

u
test }.

v. Calculate the metrics described in section 3.1 based on the predicted proba-

bility’s ŷ and the true labels y.
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Test 2

In the second test the models are trained using the data from one of the bot datasets at a time,

combined with the training data from genuine users. The models are then evaluated using

each of the test sets from the bots combined with the test set from real users.

The test can be described as the following steps:

1. Let B be the set of datasets consisting of tweets posted by bots

2. For each data set d,d ∈ B:

(a) For each compared model M :

i. Let X = Dd
train ∪ D

u
train where u is the data set consisting of tweets from

real users.

ii. Let p(y = 1|x,D,M) be the estimated probability of the tweet corresponding

to the feature vector x is posted by a bot, given the model M trained on the

training data D.

iii. For each dt where dt ∈ B:

A. Let ŷ = {p(y = 1|x,X,M) |x ∈ Dd t
test ∪ D

u
test }.

B. Calculate the metrics described in section 3.1 based on the predicted prob-

ability’s ŷ and the true labels y.

Training and implementation

The Contextual LSTM has been implemented and trained using the keras API included in the

tensor�ow 2.2 library. The models is trained by minimizing the Binary crossentropy using the

Adam optimizer. 30 is used as an upper limit for the number of epochs, if no improvement in

the loss when validating is seen for three epochs in a row the training is stopped and the best

performing weights are saved. The model is trained with batches of 64 tweets at the time.

The input to the embedding layer is the content of the tweets transformed into arrays of

integers using the process described in section 4.2, the embedding in my tests use GloVe word

vectors pre-trained on tweets made available by Pennington et al., GloVe is described in their

paper.[14] In the tests pretrained word vectors is of lengths 25, 100 and 200 is used.

The experiments for AdaBoost use the AdaBoostClassi�er class in the scikit-learn python li-

brary, and using the SAMME.R algorithm.

For Random forest the RandomForestClassi�er in the scikit-learn library is used. The Random-
ForestClassi�er predicts the class using the average predicted probability among the trees in

the forest.
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5 Results and Analysis

In this section I will present and give an analysis of the results of the two tests. First the

results of the tests is discussed separatly, followed by a summary.

5.1 Test 1

The results from test 1 is presented in table 3, each column in the table represents the results

when excluding the corresponding dataset from the training and testing on that dataset. The

rows in the table represent the di�erent models in the comparison.

That the di�erence in score is very low in general is worth pointing out. So while I describe

some of the di�erences below, I think it is hard to draw any strong conclusion from the results.

As shown in the table there is no model that performed best in all tests. When compar-

ing ROC AUC the Random forest based models performed best for the traditional-spambots-
1, social-spambots-1 and social-spambots-2 datasets. For the social-spambots-3 dataset the

Contextual-LSTM model using word vectors of size 200 achived the highest score, and for

the fake-followers dataset the AdaBoost model performed best.

Table 3 Results when training on all data sets except for one and evaluating on the excluded

data set. , FF=fake-followers, SB1=social-spambots-1, SB2=social-spambots-2, SB3=social-

spambots-3, TB=traditional-spambots-1. cl-25=contextual-lstm-25, cl-100=contextual-lstm-

100, cl-200=contextual-lstm-200, ada=adaboost, rf=random-forest

FF SB1 SB2 SB3 TB

auc-roc ap auc-roc ap auc-roc ap auc-roc ap auc-roc ap

ada 0.935 0.854 0.970 0.981 0.800 0.851 0.986 0.990 0.982 0.966

rf 0.932 0.864 0.975 0.981 0.870 0.887 0.978 0.966 0.993 0.982
cl-25 0.813 0.677 0.963 0.975 0.842 0.874 0.969 0.973 0.965 0.941

cl-100 0.854 0.748 0.969 0.979 0.846 0.870 0.959 0.946 0.958 0.936

cl-200 0.906 0.818 0.966 0.977 0.864 0.896 0.989 0.983 0.962 0.928

When comparing the AP Random forest performed best for the traditional-spambots-1 and

fake-followers datasets, and shared the top preformance with AdaBoost for social-spambots-1.

AdaBoost performed best for social-spambots-3. When social-spambots-2 was the data set to

exclude and test on the Contextual-LSTM model using word vectors of size 200 achieved the

highest score.

The random forest model achieved the highest score in 3/5 tests for both ROC AUC and AP.

When looking at the results for the di�erent datasets the score for fake-followers and social-
spambots-2 was lower than the rest for all models.

5.2 Test 2

The results for the second test is presented in table 4, 5, 6, 7 and 8. Due to the number of

tables, they are placed in appendix A and this section will describe some general details of the

result.

The model that achieved the highest score in most comparisons in ROC AUC was Random
forest, with highest score in 14/25 tests. For AP the model that achieved the largest number

of highest score was AdaBoost with 11/25.
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For the AdaBoost and Random forest models the di�erence in score where quite small for most

of the tests. TheContextual LSTM models however, achieved low scores on some combinations

of training and testing datasets, in some cases not far from what is to expected from random

guessing. The models that only use metadata achieved a comparatively high score in the

same combinations, which may be caused by con�icting patters in the text of the tweets in

the datasets.

When looking at the results for di�erent datasets the AdaBoost and Random forest models

achieved high scores for the social-spambots-3, traditional-spambots-1 and social-spambots-1,

for all training sets used. The scores when evaluating on social-spambots-2 was in general

lower than for the other datasets when using AdaBoost and Random forest.

5.3 Summary

In the �rst test the score between the models was very close, as for the AdaBoost and Random
forest in the second test. In both tests the scores for AdaBoost and Random forest was in

general lower when evaluating on social-spambots-2.
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6 Discussion

In this section I will �rst discuss the results and their practical implications, then I will com-

pare the results with the study done by Kudugunta and Ferrara.[9]

6.1 Results

As mentioned in section 4.4, the �rst test seems to be the more realistic scenario. While

Random forest performed best in test 1, the small di�erence in the scores makes it hard to

draw any real conclusion from that. Test 1 show that all of the compared models are able to

achieve good performance when classifying tweets as coming from a bot or human.

In the second tests, the results for the Contextual LSTM model was more varied among the

datasets. As the Contextual LSTM model also use the text of the tweets, it is possible that

the di�erences in the textual content was the cause of the low performance in some of the

combinations of test and training sets. That the Contextual LSTM showed consistently good

performance in test 1 indicate that the usage of data from multiple sources can help to remedy

the problem.

Even if the problems that the Contextual LSTM has when generalizing between some combi-

nations of datasets can be mitigated by using a combination of datasets in the training data,

and test 2 seems to be less realistic than test 1, the results from test 2 is still worth taking into

consideration when choosing what model to use. When taking that into account, combined

with the results in test 1 whereContextual LSTM and the models using only metadata are quite

similar, the models using only metadata even performed slightly better, the results indicate

that when using both tweet and account level features the two models using only metadata

is preferable compared to the Contextual LSTM.

When selecting what model to use for a speci�c task, there are several factors apart from the

classifying performance to consider. Two such factors is time required for testing and time

required for predicting the class of previously unseen input. During both the training and

evaluating when running the tests, the fastest model was the Random forest, and Contextual
LSTM was slowest. If that is taken into account when selecting a model based on the results,

Random forest seem to be the preferable choice.

6.2 Comparison with previous work

Kudugunta and Ferrara compared several methods, including Contextual LSTM, Random for-
est and AdaBoost, on the task of classifying if the author of a tweet is a human or a bot, based

on only tweet speci�c features.[9] In their study the Contextual LSTM based models outper-

formed the other models, achieving a ROC AUC of 0.964 using word vectors of size 200, com-

pared to 0.9065 for the best non Contextual LSTM based model, and 0.7765 for the best non

Contextual LSTM based model where no data enhancing had been made. They also compared

Random forest and AdaBoost, among other models, when using account level features, where

Random forest achieved an ROC AUC of 0.9845 and AdaBoost 0.9823. In their study a com-

bination of the genuine-accounts, social-spambots-1, social-spambots-2 and social-spambots-3
datasets where used.

In their test using only tweet speci�c features, 6 metadata features was used, compared to 16

used in this study. An advantage of only using tweet speci�c features is that a twitter account

may be used by both a human and bot, and if user level features is used in the decision making,

the ability to di�erentiate between the tweets posted by bots and humans from such hybrid
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accounts may decrease. Their results showed that their Contextual LSTM, using the content of

the tweet combined with metadata can achieve an improved performance compared to both

AdaBoost and Random forest when only tweet speci�c features are included. This study indi-

cate that the improvement does not hold when also including account level features, however

there may also be di�erences in how the training of the models was preformed that a�ected

the results.

In their tests performed on account level features, AdaBoost and RandomForest achieved a

higher ROCAUC than most of the test I performed in test 1, a reason for that may be that I

evaluated the performance using the test set from a holdout dataset, where the training set

from the holdout dataset was not included in training.

6.3 Limitations

The datasets used in the study is quite outdated, where the tweets included is collected be-

tween 2009 and 2014. It seems likely that the bots in use in 2020 di�er from the bots used 6-11

years earlier, so the results of this study may be outdated.

No statistical analysis is done on the results, for example in test 1 the results was very sim-

ilar between the models, so if some statistical test had been included to test for statistical

signi�cant di�erences the results would have been more informative.

6.4 Conclusions

This study has compared Contextual LSTM, Random forest and AdaBoost, in the task of classi-

fying tweets as coming from bots or humans. To compare the models Area under the receiver
operating characteristic curve (ROC AUC) and Average precision (AP) have been used.

To compare the models two tests have been used, one where the models are trained using

four of �ve bot datasets, and evaluated on the excluded. The models have also been evaluated

using the separate bot datasets after being trained using separate bot datasets. The features

used is a combination of account and tweet speci�c features, where the Contextual LSTM also

use the text.

In the �rst test the di�erences in results where very low among the di�erent models, while

in the second test the Contextual LSTM model showed very low performance on some combi-

nations of datasets. The scores for Random forest and AdaBoost was very close in the second

test.

The low di�erence in the scores of the �rst test makes it hard to draw any real conclusion

about how the models compare in that task. The same is true for Random forest and AdaBoost
in the second test. When looking at both test, one of Random forest and AdaBoost seem to be

the best choice. If also taking the time required to train and test the models, Random forest
seem to be the preferable choice.

6.5 Future Work

The collection of labeled datasets of current tweets from bots is valuable to enable research in

the subject of investigating modern bots. For example looking into if the results in this study

are relevant for current bots.

Further research into classifying based on tweet speci�c features would be interesting, due to

the possibility of posting by accounts being semi automated.
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A Tables

Table 4 Results when training on separate data sets and evaluating on SB3, FF=fake-followers,

SB1=social-spambots-1, SB2=social-spambots-2, SB3=social-spambots-3, TB=traditional-

spambots-1. cl-25=contextual-lstm-25, cl-100=contextual-lstm-100, cl-200=contextual-lstm-

200, ada=adaboost, rf=random-forest

FF SB1 SB2 SB3 TB

auc-roc ap auc-roc ap auc-roc ap auc-roc ap auc-roc ap

ada 0.931 0.898 0.982 0.986 0.944 0.946 0.993 0.994 0.961 0.960

rf 0.969 0.966 0.976 0.972 0.806 0.771 0.996 0.997 0.985 0.984
cl-25 0.497 0.518 0.898 0.870 0.505 0.467 0.998 0.998 0.960 0.960

cl-100 0.558 0.552 0.652 0.550 0.758 0.663 0.998 0.998 0.978 0.979

cl-200 0.525 0.523 0.634 0.565 0.899 0.861 0.999 0.999 0.972 0.969

17



Table 5 Results when training on separate data sets and evaluating on TB, FF=fake-followers,

SB1=social-spambots-1, SB2=social-spambots-2, SB3=social-spambots-3, TB=traditional-

spambots-1. cl-25=contextual-lstm-25, cl-100=contextual-lstm-100, cl-200=contextual-lstm-

200, ada=adaboost, rf=random-forest

FF SB1 SB2 SB3 TB

auc-roc ap auc-roc ap auc-roc ap auc-roc ap auc-roc ap

ada 0.900 0.879 1.000 0.999 0.952 0.901 0.991 0.978 0.999 0.998
rf 0.990 0.973 0.992 0.974 0.933 0.827 0.996 0.986 0.999 0.994

cl-25 0.922 0.826 0.904 0.825 0.487 0.247 0.792 0.675 0.987 0.953

cl-100 0.923 0.839 0.816 0.742 0.562 0.283 0.973 0.913 0.991 0.969

cl-200 0.750 0.575 0.941 0.870 0.557 0.239 0.975 0.929 0.976 0.940

Table 6 Results when training on separate data sets and evaluating on SB1, FF=fake-followers,

SB1=social-spambots-1, SB2=social-spambots-2, SB3=social-spambots-3, TB=traditional-

spambots-1. cl-25=contextual-lstm-25, cl-100=contextual-lstm-100, cl-200=contextual-lstm-

200, ada=adaboost, rf=random-forest

FF SB1 SB2 SB3 TB

auc-roc ap auc-roc ap auc-roc ap auc-roc ap auc-roc ap

ada 0.947 0.964 0.957 0.973 0.938 0.953 0.967 0.980 0.952 0.968

rf 0.966 0.967 0.974 0.982 0.943 0.945 0.975 0.981 0.969 0.971
cl-25 0.942 0.938 0.964 0.978 0.772 0.802 0.833 0.839 0.961 0.967

cl-100 0.937 0.939 0.961 0.977 0.657 0.692 0.922 0.933 0.964 0.966

cl-200 0.853 0.850 0.974 0.985 0.654 0.674 0.908 0.920 0.944 0.947

Table 7 Results when training on separate data sets and evaluating on FF, FF=fake-followers,

SB1=social-spambots-1, SB2=social-spambots-2, SB3=social-spambots-3, TB=traditional-

spambots-1. cl-25=contextual-lstm-25, cl-100=contextual-lstm-100, cl-200=contextual-lstm-

200, ada=adaboost, rf=random-forest

FF SB1 SB2 SB3 TB

auc-roc ap auc-roc ap auc-roc ap auc-roc ap auc-roc ap

ada 0.955 0.898 0.925 0.866 0.917 0.881 0.953 0.877 0.880 0.789

rf 0.952 0.924 0.939 0.877 0.918 0.813 0.891 0.802 0.795 0.694

cl-25 0.807 0.708 0.579 0.444 0.738 0.456 0.896 0.717 0.906 0.826
cl-100 0.884 0.816 0.592 0.345 0.750 0.554 0.908 0.762 0.881 0.804

cl-200 0.741 0.609 0.537 0.418 0.802 0.560 0.886 0.683 0.909 0.804
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Table 8 Results when training on separate data sets and evaluating on SB2, FF=fake-followers,

SB1=social-spambots-1, SB2=social-spambots-2, SB3=social-spambots-3, TB=traditional-

spambots-1. cl-25=contextual-lstm-25, cl-100=contextual-lstm-100, cl-200=contextual-lstm-

200, ada=adaboost, rf=random-forest

FF SB1 SB2 SB3 TB

auc-roc ap auc-roc ap auc-roc ap auc-roc ap auc-roc ap

ada 0.789 0.842 0.785 0.832 0.900 0.910 0.800 0.854 0.787 0.825
rf 0.826 0.818 0.857 0.879 0.803 0.804 0.841 0.855 0.813 0.803

cl-25 0.781 0.757 0.652 0.626 0.869 0.864 0.813 0.788 0.738 0.718

cl-100 0.805 0.789 0.757 0.803 0.878 0.876 0.862 0.867 0.781 0.749

cl-200 0.794 0.760 0.608 0.628 0.877 0.868 0.789 0.757 0.767 0.732
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