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Abstract

The digitization of information has provided an overflow of data in many areas of society, including the clinical
sector. However, confidentiality issues concerning the privacy of both clinicians and patients have hampered
research into how to best deal with this kind of “clinical“ data. An example of clinical data which can be
found in abundance are Electronic Medical Records, or EMR for short. EMRs contain information about
a patient’s medical history, such as summarizes of earlier visits, prescribed medications and more. These
EMRs can be quite extensive and reading them in full can be time-consuming, especially when considering
the often hectic nature of hospital work. Giving clinicians the ability to gain insight into what information
is of importance when dealing with extensive EMRs might be very useful. Keyword extraction are methods
developed in the field of language technology that aim to automatically extract the most important terms
or phrases from a text. Applying these methods on EMR data successfully could help provide the clinicians
with a helping hand when short on time. Clinical data are very domain-specific however, requiring different
kinds of expert knowledge depending on what field of medicine is being investigated. Due to the scarcity
of research on not only clinical keyword extractions but clinical data as a whole, foundational groundwork
in how to best deal with the domain-specific demands of a clinical keyword extractor need to be laid. By
exploring how the two unsupervised approaches YAKE! and KeyBERT deal with the domain-specific task of
implant-focused keyword extraction, the limitations of clinical keyword extraction are tested. Furthermore,
the performance of a general BERT model in comparison to a model finetuned on domain-specific data
is investigated. Finally, an attempt is made to create a domain-specific set of gold-standard keywords by
combining unsupervised approaches to keyword extraction is made. The results show that unsupervised
approaches perform poorly when dealing with domain-specific tasks that do not have a clear correlation to
the main domain of the data. Finetuned BERT models seem to perform almost as well as a general model
when tasked with implant-focused keyword extraction, although further research is needed. Finally, the use
of unsupervised approaches in conjunction with manual evaluations provided by domain experts show some
promise.
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1. Introduction

The development of information technology has had an effect on most areas in our society, including health-
care. According to Sun et al. (2018) electronic medical records (EMR), which medical staff use to record
text, charts, graphics and data generated by hospital information systems, are now as customary as anything
within the healthcare systems. With this comes a wealth of opportunities as various sources of clinical infor-
mation are becoming readily available for large-scale analysis.

Although large-scale analysis of medical data in the form of EMRs have been attempted in different ar-
eas such as psychiatry (Perlis et al., 2012) and genetics (Roden et al., 2008), there is no real consensus on
how data of this kind ought to be handled or what kind of technical procedures are the most suitable. By
default the analysis of large texts makes use of techniques developed within the field of language technology
to automate the process. As EMR data can be extensive and difficult to read, finding methods to simplify
and automate the extraction of important information would be useful not only for large-scale analysis but
also the medical staff themselves. Giving the medical staff quick access to the most salient information con-
tained within the patient’s medical history would allow for the patient to receive adequate treatment within
a smaller time frame and thus speed up the recovery.

To lend a helping hand in order to target these issues, this thesis will explore different applications of keyword
extraction; a language technology method that automatically identifies terms that represent the most relevant
information inside a document (Beliga et al., 2014). Keyword extraction on clinical data, or simply “clinical
keyword extraction“, is to a large extent an unexplored area. The purpose of this thesis is to help build an
initial outline and understanding for some of the difficulties that arise from clinical keyword extraction. Due
to the absence of gold-standard keywords for the dataset used in this thesis, unsupervised approaches to
keyword extraction will be explored. Their abilities to handle tasks that involve multiple medical disciplines
will be tested via a domain-specific task involving the retrieval of implant-focused keywords. The prowess of
BERT (Bidirectional Encoder Representations from Transformers), a language model that has shown great
promise in basically all areas of natural language processing (Devlin et al., 2018), will be explored in detail via
the domain-specific task. Additionally, an attempt to establish a task-specific gold-standard set of keywords
for the dataset will be made by utilizing the knowledge of domain experts and the unsupervised approaches.

Research questions

• What are the limitations of unsupervised approaches when handling domain-specific tasks such as
implant-focused keyword extraction from Swedish EMRs

• Can a general language transformer model, such as Swedish BERT, be applied for such domain-specific
tasks?

• How can a combination of unsupervised approaches to keyword extraction be used to create a task-
specific gold-standard of keywords?
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2. Theory

2.1 Keyword extraction

Turney (2000) describes keywords as important phrases within documents that can be used to describe the
document at hand. These keywords can be used in a multitude of different natural language processing
(NLP) applications. They may for example act as a tool in information retrieval applications by functioning
as a filter to sort out documents which may or may not be relevant to the task at hand. Since the quantity of
readily available documents has grown to an excessive amount it has become more and more important to be
able to summarize and describe documents efficiently. This is where automatic keyword extractions comes
in handy. Instead of having humans read through each and every document and deciding on keywords that
best describe the text at hand we can use keyword extraction methods developed within machine learning
disciplines to do the same job more rapidly (Firoozeh et al., 2020).

The automatic keyword generation process can be divided into two different phases; keyword assignment
and keyword extraction (Siddiqi & Sharan, 2015). During the keyword assignment phase, an assembly of
words and phrases are selected as candidates for keywords. In the keyword extraction phase these candidates
then get ranked in some way to allow the keyword extractor to select the best candidates as keywords for
the document (Beliga et al., 2015). Different methods have been developed that not only differ in their
approach to the two phases but also in what type of data they require and how well they handle language
differences. Broadly these methods can be categorized into four different categories: statistical approaches,
linguistic approaches, machine learning approaches and other approaches (Han & Kamber, 2006). Statistical
approaches to keyword extraction use simple methods such as counting word frequencies and n-grams to
determine candidate keywords for a document. This approach requires no training data and is both language
and domain-independant. Linguistic approaches use different linguistic properties of the words, sentences and
documents to determine the candidate keywords. Commonly examined properties include lexical, syntactic
and semantic analysis. This type of approach is however quite demanding and introduce complex NLP prob-
lems. Machine learning approaches come in two types; supervised and unsupervised. Supervised learning
keyword extraction models require a set of gold-standard keywords that the model can use while training.
Gold-standard keywords are used as a reference for machine learning models during training to ensure that
the final result of the model is similar to that of the gold-standard. Creating a gold-standard of keywords
for a dataset requires manual annotation, which is both tedious and time-consuming. Additionally, if the
dataset stems from a domain-specific area such as medical data, a domain-expert needs to be the one manu-
ally annotating the documents. Unsupervised learning models require no gold-standard data during training
and can thus circumvent some of the issues of the supervised learning models. However, the unsupervised
learning models do introduce problems such as increases in complexity and reduction of accuracy. The other
approaches may also incorporate heuristic knowledge such as positioning of words, length of the document
and text formatting information (Beliga et al., 2015). Which keyword extraction method best suited for the
task at hand depends on multiple different variables. As medical data in the form of EMRs are highly unlikely
to have been manually annotated before the keyword extraction is to be performed, a method that does not
require any type of gold-standard keywords would be preferred. Additionally, to avoid error pertaining to the
domain-specific nature of the medical data, a domain-independent approach is required. Finally, it would be
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profitable if the method would be applicable to multiple languages.

2.1.1 YAKE! (Yet Another Keyword Extractor!)

YAKE! is an automatic keyword extractor that relies on statistical features of a text to select the most
important keywords. The method does not need to be trained on any particular set of documents nor does it
depend on the language or the domain of the text. YAKE! devised a set of five features to establish a score
of how likely each term in the text is to being a keyword. The features include the casing of the term, its
positioning in the text relative to other terms, the frequency of the term, how many different contexts the
term is used in and finally in how many different types of sentences the term occurs (Mangaravite et al., 2020).

The YAKE! algorithm works as follows: given a text, the algorithm divides it into sentences using a rule-based
sentence segmenter called segtok (Leitner, 2021). The sentence is then divided into chunks if any punctuation
are found, then tokens using the web_tokenizer module of the segtok segmenter. Each token is then converted
into lowercase, before being annotated with tag delimiters. The tag delimiters used by the algorithm include
digits, unparsable content (terms that are formed by at least two punctuation marks, terms that include no
digits or letters, terms formed by a combination of letters and digits and terms formed by more than one
digit or alpha character), acronyms, uppercase (words that begin with an uppercase character) and parsable
content (the rest). Next the algorithm iterates through the chunks and sentences created in the previous
step to gather statistical data which provides each term with a certain score. The statistical data include
the five aforementioned features. Then, using a sliding window approach, the algorithm looks at sequences
of terms ranging from 1-gram to N-grams. Based on a few conditions such as the tags of each token in the
sequence and the occurrence of common, semantically irrelevant words known as stopwords the algorithm
then extracts potential candidate keywords in the form of N-grams. In the next step of the algorithm each
candidate keyword is given a score based on the term scores that were calculated previously.

2.2 BERT

BERT is a language model developed by Google which makes use of an attention mechanism called Transform-
ers to learn contextual relations between words in a text. When presented with a text input, the Transformer
encoder reads the entire sequence of words at once. This bidirectional encoding allows the model to learn a
words context based on its entire surroundings, which sets it apart from most models that apply a directional
approach where the sequence of words get read either from left to right or the other way around.

During training, the BERT model makes use of a training strategy called the Masked Learning Model
(MLM). When a language model is trained, a prediction goal has to be set. Most previous models made us of
directional prediction goals such as predict the next word in the sequence “He broke his left BLANK “. This
directional approach however limits the context learning of the language model. The MLM strategy instead
replace 15 % of the words in a sequence with a “[MASK]“ token. The BERT model will then attempt to
predict what word could have originally been found in that slot based on the context of the non-masked words.

Next the BERT model makes use of a strategy called “Next Sentence Prediction“ (NSP). During train-
ing, the BERT model will receive pairs of sentences as input. 50 % of the time the sentences will be part of
a sequence in the text, and 50 % of the time the second sentence in the pair will be a random sentence from
somewhere else in the corpus. The task of the BERT model is then to predict whether or not these pairs
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of sentences are part of an existent sequence in the corpus or not (Devlin et al., 2018). This additionally
enhances the context learning of the BERT model.

One of the main strengths with BERT is its efficiency. BERT models that have been pre-trained on large
datasets can be fine-tuned for specialized tasks. Fine-tuning essentially refers to the procedure of re-training
a pre-trained language model on some new data. Instead of having to create and train an entirely new model,
which can be very time-consuming, a general BERT model which has been pre-trained on a large corpus can
be specialized for the task at hand. This can be useful when building BERT models that deal with domain
specific data (Devlin et al., 2018).

2.2.1 Pretraining and models

This study makes use of a pretrained BERT model called “bert-base-swedish-cased“ developed by KBLab at
the National Library of Sweden. The model was trained on a collection of texts from digitized newspapers,
official government reports, the Swedish wikipedia, legal e-deposits and social media. The variety of sources
from which the texts were collected was deliberately introduced to provide a BERT model that could account
for the general aspects of the Swedish language. The texts in total contained about 260 million sentences
and 3500 million tokens, amounting to a total training size of about 18 gigabytes (Malmsten et al., 2020).
Additionally another instance of the same pre-trained model which was fine-tuned on EMR data was used.
The finetuning of this model were based on parameters used in the original BERT paper, observations made
about the data (such as average sentence and word length), hardware limitations and previous research on
EMRs (Jerdhaf, 2021).

2.2.2 KeyBERT

KeyBERT is a keyword extraction technique that falls under the category of the unsupervised learning
approach. The method involves transforming the data into a numerical representation in the shape of
vectors by utilizing pre-trained BERT models. This numerical representation of the data is usually referred
to as embeddings. BERT is a deep-learning model that has shown great results for both similarity- and
paraphrasing tasks. KeyBERT firstly utilizes the BERT models to extract an embedding that represents the
entire document, then extracts word embeddings for N-gram words/phrases in the provided document. In the
third and final step KeyBERT makes use of cosine similarity, a measure of similarity between two sequences
of numbers, to find the word embeddings that are most similar to that of the document. The intuition
then is to essentially find the words or phrases inside the text that are most similar to the document as a
whole. Additionally, an embedding based on a list of terms provided by the user called “seeded terms“ can
be used in conjunction with the document embedding to allow for a more specialized selection of keywords
(Grootendorst, 2020).

2.3 Clinical keyword extractions and the problems with unstruc-
tured medical data

Applications of different NLP techniques on medical data has seen a surge of prevalence in the past few
years. Most often the medical data that is used for these applications involve EMRs written by clinicians
in a free-text format. These EMRs can include information about the patients medical history, discharge
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summaries, family history, progress notes and so on (Tang et al., 2019). Depending on the patient the EMR
can be long and tedious to read. Oftentimes clinicians work with multiple patients at once and may not have
the time to fully decipher what information is of importance to the patients current situation. Being able to
filter through the different notes and only read what is of utmost importance could be very beneficial both
to the clinician and the patient. The patient will be provided with quicker and more accurate care while the
clinician is able to spend more time treating his or her patients. A clinical keyword extractor would be able
to aid clinicians in their work by describing the notes with a few keywords and phrases that give an overview
of what type of information may be found inside.

Clinical keyword extractions may also be beneficial for the large-scale analysis of medical data. Keywords are
essential in many aspects of information retrieval such as text summarization and web searches (Bracewell et
al., 2005). Being able to accurately portray the information that can be found within certain unstructured
forms of medical data will help aid other NLP applications in their efforts to only analyze data that fit their
specific framework. This will save whoever is trying to analyze the data a lot of time and effort. Analyzing
EMRs comes with its difficulties however. The EMR are conducted in an unstructured free-text format where
much of the content revolves around attempts by the clinician to interpret whatever procedures the patient
has gone through. Clinicians also differ in what terms they use to describe a patient’s condition. They may
use different synonyms for the same disease or different grammatical constructions entirely to describe the
relationship between the different medical entities (Krzysztof & Moore, 2002).

EMR data can be divided into three different kinds: structured, semistructured and unstructured (Sun
et al., 2017). Structured EMR data contains basic information such as birth data, medications, allergies and
vital signs (height, weight, blood pressure etc). Semistructured EMR data usually take the form of a flow-
chart and include name, value and time-stamps. Unstructured EMR data can be described as a one kind of
narrative data, including documents such as medical notes, surgical records, discharge records and pathology
reports. These unstructured texts include a lot of valuable information about patients but lack a common
structural framework. Sun et al. (2017) further mention improper grammatical use, spelling errors, local
dialects and semantic ambiguity as problems with the unstructured texts. Difficulties pertaining directly to
the phenomena of keyword extraction can be further attributed to the relative scarcity of medical terms in
the sentences that are being analyzed by the keyword extractor. Passages wherein a disease of interest are
mentioned may be far and few between, as there is usually no need to repeatedly mention it. But if the patient
currently is being treated for a specific disease that disease surely should be included as one of the keywords.
Many keyword extractors that are based solely on certain statistical aspects of the document that is being
analyzed will simply not realize the importance of this term. Therefore it is important to make sure that
whatever keyword extraction method that is being applied to the clinical data is capable in understanding
the context needed to find the most suitable keywords.

2.4 Evaluation metrics

2.4.1 Mean Average Precision

A commonly used evaluation metric for language technology is precision. Precision is the number of correct
results divided by the total number of all returned results. When used for the purpose of evaluating automatic
keyword extraction methods, calculating the precision provides the fraction of extracted keywords that are
registered in the gold-standard. The problem with precision as an evaluation metric is that it treats keyword
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extraction as a classification problem. When evaluating keywords however, it is also of interest to consider
the ranks of the candidate keywords. If a candidate keyword holds a high rank, it will appear earlier in the
provided list of candidate keywords and should be considered differently from the candidate keywords with
low ranks. The ranks of the candidates are not reflected in the evaluation result of the regular precision
metric. However, an adaptation of the metric called the “Mean Average Precision“ (MAP) tries to address
this issue by penalizing when irrelevant keywords appear with high rank in the candidate keyword list. MAP
iterates through the candidate keyword list provided by the automatic keyword extractor and looks for the
first relevant keyword it can find. When it finds a relevant keyword it creates a sub-list of the relevant keyword
and all previous irrelevant keywords up until that point and subsequently calculates the precision score for
that sub-list. MAP continues this process until it has finished iterating through the candidate keyword list
and then calculates the mean average precision score for all the sub-lists. This provides us with a metric that
also considers the ranking of keywords as part of the evaluation (Shrivastava, 2020).

2.4.2 Human evaluation and domain expertise

Human evaluations have long been important for applications of natural language processing models such as
keyword extraction. After all, who is a better judge of language than the users themselves? Humans have the
capability to understand fundamental aspects of texts which computers most often struggle to adequately
solve, such as semantics. The use of humans for evaluations comes with its own limitations however, the
obvious one being its time-consuming nature (Doddington, 2002). A somewhat less obvious limitation is the
issue of domain expertise. When attempting to conduct studies within specific fields of inquiry a certain
degree of domain knowledge is required (McCue, 2015). Domain expertise becomes even more important
when trying to create applications with a target audience in mind. Asking a common man to evaluate a
keyword extraction application that is meant to be used by medical professionals will yield different results
than an evaluation performed by a team of domain experts. However, it is important to be aware of what sort
of evaluation is obtained when using domain experts. What is of importance in the domain of dermatology
when evaluating a keyword extractor will differ from that of cardiology.
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3. Data

3.1 Electronic Medical Records

The data used in this thesis is a collection of EMRs that has been collected from two clinics at Linköping
University Hospital; the cardiology clinic and the neurology clinic. The data has been collected through a
period of five years and amount to a total of about 1 million EMRs collected from about 50 000 different
patients. The cardiology clinic has contributed about two thirds of the total EMRs, with the rest contributed
by the neurology clinic. The full distribution of EMRs can be seen in table 1. The EMRs vary in length,
with some of them totalling less than 100 words while others may contain thousands.

Clinics Tokens EMRs Patients

Neurology 25 440 484 314 669 14 526
Cardiology 45 780 055 664 821 34 044

Total 71 220 539 979 490 48 088

Table 1: Number of tokens, EMRs and patients per clinic

3.2 Data preprocessing

Different keyword extraction models differ in their criteria for what type of preprocessing they require.
Statistical methods, such as YAKE!, do not like noisy data. A substantial amount of the noise in the EMR
dataset consisted of faulty sentence compositions caused by a lack of punctuation. For the YAKE! method,
that puts a strong emphasis on how early in a sentence a word occurs, this sort of noise causes an obvious
problem. Unsupervised learning methods that use embeddings on the other hand, such as KeyBERT, are less
affected by noisy data. In some cases noise in the form of human errors like the misspelling of words might
even be helpful in discovering the intrinsic properties of the text. However, to safeguard the result from
inconsistencies that could be attributed to the noisy sentence compositions the keyword extraction methods
were only applied on records where these errors did not occur.

3.3 Ethical considerations

Various precautions were taken to protect the integrity and privacy of the patients and doctors mentioned in
the EMR data. Prior to gaining access to the data a confidentiality agreement was signed. The data could
only be accessed through locally stationed computers or through a secure virtual connection to the local
computers. The virtual connection required login credentials to the virtual environment and to the computer
itself. The login credentials were handed out by local personnel at the hospital IT section. No files could be
moved from the virtual environment to the host computer and the host computer had no access to the internet.
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The content of the EMRs has not been fully anonymized and can therefore be used to identify patients
or medical staff. Because of this, the data can not be shared with the public. Examples of keywords provided
by the applications used in the thesis will nevertheless be discussed to some extent, given that the individual
keywords do not include any identifiable information.
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4. Method

4.1 Implementation of keyword extractors

Two different keyword extractors were applied on the EMR dataset; the statistical method YAKE! and the
unsupervised learning method KeyBERT.

4.1.1 YAKE! implementation

A Python implementation of the YAKE! algorithm that had been distributed by the creators on github was
used in the experiment (LIAAD, 2022). The parameters used were based largely on what was used in the
original YAKE! thesis. The alternative to get rid of Swedish stopwords was used. Stopwords are common
words who occur in all forms of texts but provide little to no meaning in and of themselves (Rajaraman,
2011). Some examples of Swedish stopwords are och, att, så and av. After some trial and error, the window
size, the deduplication threshold and deduplication algorithm were all selected based on having shown the
best performance in the thesis by the YAKE! creators, as the performance seemed to be negatively impacted
when deviating from these values. In table 2 all the parameters that were given to the algorithm can be
seen. The maximum length of the keywords (max ngram size) were picked based on observations made by
the authors of the YAKE! thesis during their experiments.

Parameter Value

language sv
max ngram size 3

deduplication threshold 0.9
deduplication algorithm seqm

window size 1
num of keywords 15

Table 2: YAKE! parameters

4.1.2 KeyBERT implementation

A Python implementation of KeyBERT distributed on github by the author of the original article was used
in the experiment (Grootendorst, 2022). Two different BERT models were used for two different applications
of the KeyBERT method. One of the applications used only the regular Swedish BERT model to create
its embeddings while the other was also fine-tuned on the EMR data. In all other respects however both
KeyBERT applications were identical.
The parameters that were used in the KeyBERT implementation were based on recommendations from the
author of the algorithm (Grootendorst, 2021). The parameters can be seen in figure 3. Maximal Margin
Relevance (MMR) was promoted by the author as a way to diversify the result of the application. MMR
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takes into consideration how similar a keyword is to already selected keywords. Depending on a diversity
threshold value that range from 0 to 1, with 0 being not diverse at all and 1 being the most diverse, candidate
keywords will be rejected if they are too similar to already selected keywords. A diversity value of 0.7 was
hence chosen to help diversify the result of the extracted keywords.
The same stopwords, number of keywords (top n) and maximum length of the keywords (keyphrase ngram
range) were used as in the corresponding values of the YAKE! implementation. This decision was made for
two reasons: firstly, unlike the creators of YAKE! the author did not provide any guidance for what values
might be best suited for the parameters; and secondly, to ensure that any differences in performance between
the two implementations could only be attributed to intrinsic properties of each application.

Parameter Value

use mmr True
diversity 0.7
stopwords YAKE! stopword list

keyphrase ngram range 1, 3
top n 15

Table 3: KeyBERT parameters

4.2 Human evaluation and creation of gold-standard data

Evaluation measures for keyword extraction usually rely on some form of gold-standard data that the ex-
tracted keywords can be compared to. As no such gold-standard data was available for the EMR dataset,
part of the process involved trying to create it. This is a task that requires knowledge about the domain
and the language used within it. To manage this, the gold-standard was created in collaboration with three
radiologists via an human evaluation task.

For the human evaluation task 60 texts containing a patients full medical history were chosen from the
EMR dataset. 30 of the histories came from the neurology data, 30 were picked from the cardiology data.
The lengths of the patient histories varied from about 100 to 1000 tokens. From each patient history a set
of candidate keywords were extracted using both the YAKE! application and the KeyBERT application. As
these keywords are to behave as a form of baseline for further evaluations, the KeyBERT application using
the regular Swedish BERT model without fine-tuning on the EMR data was chosen for the implementation.
This also ensured that both the statistical approach and the unsupervised learning approach were represented
in the human evaluation task. For each patient history, the applications extracted 15 candidate keywords
each. As there is no real consensus on how many keywords should be extracted from any text of a certain
length, 15 keywords were chosen to ensure that each history was provided with a healthy amount of keywords
for the experts to evaluate. The extracted candidate keywords from each application were then merged to
create a combined list where redundant keywords that were chosen by both applications were removed. Fur-
thermore, candidate keywords that were part of larger compositions of keywords were also removed. This
means that if for example both “broken left leg“ and “left leg“ were initially included as candidate keywords,
only “broken left leg“ would make it to the human evaluation task. Both the merging and the removal of
redundant keywords was done to make the tedious evaluation process a tad easier for the experts.
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An excel file was created where each sheet corresponded to one patient history. After reading the patient
history in full, the experts had to decide whether or not a corresponding keyword provided an important
piece of information about the patient’s health. Given their background in radiology, “important“ information
about the patient’s health was interpreted by the experts as keywords with some relation to implants. They
were then afforded three options; check a cell in the “YES“ column for yes, in the “NO“ column for no or in
the “UNSURE“ column if they could not decide. Finally, the experts were also prompted to provide their own
suggestions of keywords from the patient history if they felt a word had been missed by the keyword extractors.

A gold standard of keywords for each patient history used in the human evaluation task was then cre-
ated. Any keyword from the task that was rated positively by at least 2 of the 3 experts was included in
the gold-standard dataset. To validate the ratings given by the experts an inter-rater reliability test was
performed using Fleiss’ kappa and Krippendorff’s alpha. Fleiss’ kappa measures the agreement between
more than two raters where agreement due to chance is factored out (Fleiss, 1971). Krippendorff’s alpha
is similar to the kappa measurement but puts stronger emphasis on disagreement between the raters rather
than agreement (Krippendorff, 2013).

4.3 Automatic evaluation

Using the gold-standard set of keywords created via the human evaluation task an automatic evaluation was
performed. Each patient history in the evaluation dataset had 1-4 gold-standard keywords associated with
them, with an average of 2 gold-standard keywords for each history. The patient histories were given to the
keyword extraction applications that each extracted a ranked distribution of 15 candidate keywords. Each
keyword in the ranked distribution were then compared to each gold-standard keyword to check for matches.
A candidate keyword was considered a match if it was contained within the gold-standard keyword. This
would for example match “left leg hurts“ with “leg hurts“ even though the two phrases are not a perfect match.
These type of matches are called “PartOf“ matches and were used in conjunction with “exact“ matches. This
type of approximate matching approach have been observed to be more similar to how human rating works
(Zesch & Gurevych, 2009). A sublist of each candidate keyword up until a match was found would then be
created. A precision score for this sublist was then calculated, before continuing to check for matches. When
the list of candidate keywords had been either fully exhausted, meaning the application could not match all
the gold-standard keywords, or each gold-standard keyword had been matched, an average precision score
of the patient history was calculated. Finally, when all averages had been collected the MAP score was
calculated.
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5. Results

5.1 Results of manual evaluation

The individual ratings of each rater was compared using the Fleiss’ kappa and Krippendorff’s alpha based
on 1152 keywords. The kappa score of 0.423 indicated a moderate agreement between the raters (Landis &
Koch, 1977), the same indication was given by the alpha score (Krippendorff, 2011).

Keywords Fleiss’ kappa Krippendorff’s alpha

1152 0.423 0.424

Table 4: Inter-rater agreement

A full breakdown of each respective rater and their given ratings can be seen in table 5. As can be seen
in the Y column, very few keywords were rated by the experts as giving important information about the
patient’s health. The amount of unsure responses, which can be seen in the U column, were also very low
when compared to the N column. 44 keywords were rated U, while 39 were rated Y. Interestingly, the amount
of given suggestions only amounted to 25 keywords, stemming from a total of 14 different histories, indicating
that most of the patient histories did not include any important information at all in regards to their domain
of expertise.

Rater Y N U Suggestions

1 9 1138 5 11
2 20 1111 21 6
3 10 1124 18 8

Table 5: All ratings per rater

The manual evaluation performed by the experts resulted in a total of 30 keywords which were rated positively
or suggested by at least two of the three raters. Before including the keywords in the final set of gold-standard
keywords, a minor cleaning process of the keywords was performed. A few instances of duplicates with very
slight spelling differences were found in some of the subsets of keywords; for example “medtronic-pacemaker
som impl“ and “medtronic pacemaker impl“. As to not penalize the extraction applications for essentially
not extracting the same candidate keyword twice, the duplicate version with the most complex spelling were
excluded from the final set of gold-standard keywords. In the case of the two examples given earlier, the
latter would be included. The final total amount of keywords included in the gold-standard were 25, about
2 % of the total rated keywords. 14 of the 60 initial patient histories used in the evaluation had at least
one gold-standard keyword associated with them and were thereby included in the set of patient histories
used in the automatic evaluation. A full breakdown of the initial amounts of keywords and patient histories
compared to what was then included in the gold-standard for the automatic evaluation can be seen in table
6.
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Values Initial amount Gold-standard amount

Patient histories 60 14
Keywords 1152 25

Table 6: Results of manual evaluation

5.2 Results of automatic evaluation

The MAP score of each keyword extraction application can be seen in table 7. The observed map scores
are very low, with both the KeyBERT applications only reaching a MAP score of about 4.5 %. The YAKE!
application performed the best out of the three, although still only achieving a MAP score of 8 %. When
only considering the patient histories for which the applications were able to successfully match at least one
of the gold-standard keywords, the YAKE! application reached a MAP score of about 19 %. The KeyBERT
application using the fine-tuned BERT model slightly outperformed the base model in both MAP scores,
however, 90 % of the matches of the base model were exact matches while the fine-tuned version only reached
an exact matching percentage of 37.5 %.

Application MAP Exact matches PartOf matches MAP excluding unsuccessful attempts

KeyBERT-base 0.043 9 1 0.08
KeyBERT-finetuned 0.048 3 5 0.10

YAKE! 0.081 4 7 0.1875

Table 7: Result of automatic evaluation
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6. Discussion

6.1 Manual evaluation and creation of gold-standard keywords

The results of the manual evaluation were somewhat less extensive than first anticipated, as most of the
patient histories that were used included no implant-related terms. However, the overall ratings of the
experts were fairly similar. This indicates that an annotation task of this sort would be useful in trying to
create gold-standard data. The importance of giving the rater the opportunity to essentially abstain from
giving a definite answer was shown by the amount of unsure ratings. Rating keywords based on domain
knowledge is a complex issue and allowing the raters to sometimes simply refrain from answering will solidify
the integrity of the ratings given to the keywords that fall under the N or Y category. The lack of identified
relevant keywords likely stem from the fact that the patient histories included in the evaluation in most cases
had no association with the domain expertise of the three raters. This becomes apparent not only when
considering how few keywords were rated as acceptable by the experts, but also when considering the small
amount of suggestions given. As was touched upon in section 2.4.2, practitioners in different fields of medicine
will interpret what is of importance in a patient history in different ways. The solution to this problem would
most likely involve trying to first establish a gold-standard set of patient histories containing domain-specific
terms of interest. A small step towards this has been achieved with the manual evaluation performed in this
experiment, although a bigger set of patient histories would certainly be preferred in any future work.

6.2 Automatic evaluation, baseline and the limits of unsupervised
learning approaches

None of the applications performed well in the automatic evaluation, with the YAKE! application slightly
outperforming both the KeyBERT applications in terms of MAP scores. When only considering the patient
histories for which the applications were successful in matching at least one gold-standard keyword, the MAP
scores doubled for each application. The low scores likely reflect the main problem of using general models
for domain-specific tasks, namely its inability to generalize to anything other than the main identity of the
text. KeyBERT and YAKE! are both likely to do well in domain-specific tasks with a focus on terms directly
related to the domain of the text, but will falter whenever the task deviates from that domain. The data
used in these experiments, as previously mentioned in section 3.1, included patient histories from a cardiology
and neurology clinic. For the implant-focused keyword extraction to be successful when using applications
such as YAKE! and KeyBERT, the implants would likely have to be the main “ìssue“ covered in the patient
history. Instead, as neither YAKE! or KeyBERT make use of any training data, the applications will tend to
put their focus on attaining the most general distribution of keywords in regards to the texts content. In the
end the YAKE! MAP score of about 19 % when only considering patient histories from which the application
was able to successfully match at least one gold-standard keyword is likely the best contender for a simple
first baseline of implant-focused keyword extraction.
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6.3 Tendencies of the different keyword distributions

The distribution of keywords that were extracted differed somewhat between all three applications. KeyBERT-
finetuned showed a bigger tendency towards including detailed information such as dosage when an oppor-
tunity to do so appeared. Misspelled words that were ignored by the other two applications were also very
often extracted by KeyBERT-finetuned. This was likely a direct result of the finetuning on the EMR data,
as neither KeyBERT-base or YAKE! showed the same tendency. In table 8, the top 3 extracted candi-
date keywords by each application for a singular patient history from the cardiology data can be seen. For
KeyBERT-finetuned, two of three keywords is a combination of a misspelled word together with some form
of medical information (I count the word “pat“, short for patient, as a form of medical information). The
misspelled words are hjäöortinfarkt (should be hjärtinfarkt, heart attack in english) and fäljande (should
be följande, following in english). The word “pat“, found in the second keyword of the KeyBERT-finetuned
distribution, is an uncommon abbreviation of the word “patient“ that neither KeyBERT-base nor YAKE!
included in their distributions. In general, the two other applications would ignore misspelled words and
uncommon abbreviations altogether. Even though the finetuning did not result in a performance that were
significantly better than KeyBERT-base in this particular task, it seemed to show inclinations towards being
better suited at recognizing distinct characteristics of the language used in EMR data. The YAKE! applica-
tion would when possible lean towards including names of both patients and procedures in its distribution.
This was likely a direct consequence of how the YAKE! model in general will give higher scores to words
that include capitalized letters. As many of the gold-standard keywords were in fact related to different
kinds of radiology procedures, this particular feature might have been a big contributing factor to why the
application did better than the others at the task of finding keywords which the radiologists found to be
indicative of giving important information about the patient’s health. In general the three applications saw
a decent amount of overlap in the type of words or phrases they extract. All three applications mainly
provided distributions which contained medical information found in the text, albeit with slight differences.
KeyBERT-base provided a more general distribution of keywords that more often than not included some sort
of medical information. KeyBERT-finetuned on the other hand put stronger emphasis on singular medical
terms with a more protruding nature. Finally, the YAKE! application leaned towards providing a distribution
that contained names of both people and procedures.

Application Keywords

KeyBERT-base ökat symptombild, faxat, ioleostomi diskuteras
KeyBERT-finetuned hjäörtinfarkt hand behandlas, pat tagit fäljande, beskriver ökande anginösa

YAKE! ileostomi pga tarmischemi, träffar patienten, avdelning efter colektomi

Table 8: Top 5 ranked keywords of each application for a singular patient history

6.4 Possible improvements of the applications

The results of the YAKE! application is unlikely to be improved upon as the statistical underlining of
the model will remain the same regardless of any finetuning done to its parameters. It might be possible
to impose certain restrictions on what kind of keywords are to be allowed in its final distribution by, for
example, incorporating more linguistic knowledge or matching them with a list of implant-focused terms.
This would defeat the purpose of using an unsupervised approach, and in this case you might as well just
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make use of a supervised approach instead. The results of the KeyBERT applications however could likely be
improved without the introduction of explicit supervision. As described in section 2.2.2, KeyBERT utilizes
BERT-embeddings to guide its final distribution of keywords towards ones that are similar to the document
as a whole. In addition to this document embedding, a set of seeded terms could be given to the model.
The model will then be instructed to not only consider the document embedding when selecting candidate
keywords, but also the embeddings provided by the set of seeded terms. If a set of implant-related terms
were available to use for this purpose it would likely change the results for the better.
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7. Conclusions and future work

Clinical data remains a rather unexplored area of automated text, implant-focused keyword extraction even
less so.

The first research question of this thesis inquired about potential limitations of unsupervised keyword
extraction approaches when posed with the domain-specific task of implant-focused keyword extraction from
EMRs. The results of KeyBERT and YAKE! applications indicate that the main limitation of these ap-
proaches for this type of task is also what is regarded as their main strength; their ability to capture the
general content of a text. Unless the implants are closely related to the main content of the text, the ap-
plications will not include them in their distribution of candidate keywords. As the data that was used for
the experiments were by and large “about“ something different from the implant-related terms found in the
text, basic implementations of unsupervised approaches will fail in recognizing them as important. Slight
adjustments to the KeyBERT application in the use of seeded terms will probably improve upon its ability
to extract implant-related keywords, whilst the YAKE! application is unlikely to be improved at all.

The second research question asked whether a general language transformer model, like the Swedish
BERT, can be applied to domain-specific keyword extraction. The results of the experiments with Key-
BERT, albeit stemming from a small sample size, indicate that a general model such as Swedish BERT
perform very similarly to a BERT model that has been finetuned on domain-specific data. Neither the
finetuned model nor the general model performed well when tasked to extract implant-focused terms from
patient histories in which the implants only held a loose association to the main content of the text. The final
distributions of keywords for both models however give some indications of being better suited in dealing
with simpler domain-specific tasks such as extracting heart-related terms from cardiology data.

The third and final research question was aimed at exploring the possibilities of using unsupervised
approaches as a crutch in creating a domain-specific gold-standard of keywords. KeyBERT and YAKE! appli-
cations were utilized to select keywords for an annotation task that were to be performed by three radiologists.
The results of the annotation task indicated that the unsupervised applications were able to include about two
thirds of the implant-related terms detected in the patient histories. The rest had to be included as sugges-
tions by the radiologists themselves. The ratings given by the three radiologists showed a moderate agreement

This thesis provided the basic foundational groundwork for the complex issue of clinical keyword extraction;
the limitations of unsupervised approaches, the applicability of general language transformer models such
as Swedish BERT to domain-specific tasks and finally the problems associated with creating gold-standard
data. Further research is needed however, perhaps involving the possible modifications of KeyBERT dis-
cussed in chapter 6.4. Additionally, research that helps establish a larger set of gold-standard for patient
histories containing implant-related keywords would strengthen the foundational work provided here. This
will in turn open up possible avenues to areas involving supervised keyword approaches, enabling an enhanced
understanding of how to handle clinical data.
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