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Abstract 

 

Human error has been the most common cause of car accidents. 

Advances in sensing and data fusion have made recent progress in 

autonomous vehicles that will increase the potential of drastically 

improving safety, efficiency, and cost of transportation.  

 

In this thesis, we present an overview of finding the error probability 

of sensor fusion in automotive driving, and we will investigate the 

collision probabilities in automated vehicles.  

 

In our study, we simulate automated driving systems in a virtual 

environment using real-world maps using MATLAB Automated 

Driving Toolbox, Simulink, and Roadrunner.  

 

During the study, we will investigate different scenarios such as 

weather conditions, noise, lighting, and road conditions with an ‘ego- 

vehicle’ equipped with multiple sensors such as; lidar and vision 

sensors. 
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I. Introduction 

1. History of autonomous vehicles  

 

Historically automated vehicles have been in the robotics engineers' 

imagination for a long time. At the 1939 world's fair General Motors 

presented their vision of automated highways where cars would 

follow the road and maintain safe distances using automatic radio 

control in their Futurama exhibit [13, 11].  

Though in recent car production, some autonomous vehicle features 

such as automated cruise control (ACC), lane keeping assist driver 

assistance (AFIL), adaptive lights (AFL), brake assist (BAS), brake 

assist systems warning of a vehicle in the blind spot (BLIS), and 

systems for monitoring driver fatigue (Driver Alert/Attention Assist) 

[3-5]. There are also systems supported by artificial intelligence, for 

example, for image analysis [5-9], but fully automated vehicles are 

not commercially available. 

 

In recent years, self-driving cars have become among the actively 

discussed and researched topics due to the need for driving 

improvement in terms of safety, efficiency, and cost [3,4]. Within the 

complex driving environment caused by continuous increment of 

road congestion, the suggested solution is advance in sensing and 

data fusion.  

Data collected from different sensors, with information like maps, 

are used to build models of the surrounding traffic scene and encode 
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relevant aspects of the driving problem. These models allow the 

autonomous vehicle to plan how it will drive, optimizing comfort, 

safety, and progress towards its destination.  

Lane-keeping system is an important technology used in autonomous 

vehicles in which vehicles can be run following the anticipant lane 

automatically based on the vehicle-mounted sensors [5]. To plan for 

the trajectory of the autonomous vehicle, we also require models of 

how other traffic participants are likely to move soon and all risks for 

the different potential autonomous vehicle trajectories. 

 

2. Why autonomous vehicles 

 

The autonomous vehicle has been a majors subject due to the 

different impacts that it will have on transportation in terms: 

 

➢ Safety: Human error is estimated to cause at least 90% of 

vehicle accidents. As autonomous vehicles outperform 

human drivers in perception, decision-making and 

execution, adopting them may reduce or eliminate car 

accidents [6]. 

 

➢ Service: Autonomous vehicles will be an accurate 

solution for individuals unable/prohibited from driving 

for various reasons. And in countries with a high 

percentage of senior citizens like Japan and Italy, the need 
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for bus drivers, truck drivers and taxi drivers is high. The 

autonomous vehicle will resolve that shortage in 

transportation at a low cost [6-8]. 

 

➢ Platooning: with autonomous vehicles Platooning will 

increase throughput through large vehicle density, 

advantages of platooning include higher density and the 

reduction of energy consumption. Because of reduced air 

drag due to the small distance between vehicles, empirical 

data from California shows that human drivers need about 

a 1.63-second gap between vehicles so, at the speed of 

100km/h, this leaves around 11% of longitudinal length 

utilization and by using an autonomous vehicle that can 

decrease [6]. 

 

3. Classification of autonomous vehicle 

 

The classification of autonomous vehicles according to the degree of 

involvement of human support relative to the car’s functioning. 

Table.1 presents the driving level according to the International 

Society of Automotive Engineers (ISAE). 
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Table. 1 Autonomous driving levels according to the ISAE 

classification [13]. 

Level Description  

0 The control of the vehicle belongs to the driver. Even if the car 

notifies about the hazards, The driver is responsible for 

monitoring the environment and must be ready to take control. 

1 The vehicle has some support for aspects of driving, e.g., steering 

or acceleration/braking. The driver is responsible for monitoring 

the environment and must be ready to take control. 

2 Partial automation of the vehicle - the use of the system for both 

driving and speed control; the driver is responsible for the 

supervision and implementation of the remaining driving 

elements. The driver is responsible for monitoring the 

environment and must be ready to take control. 

3 Conditional automation of the vehicle. The possibility of taking 

over the car control on all aspects of driving, assuming that the 

driver must be ready at any time to take control of the car. 

4 High level of automation in a vehicle, the car can take control of 

all aspects of driving, even if the human driver does not respond 

to the call to take control. 

5 Full automation of the vehicle - independent driving under all 

conditions 
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4. Challenges, risks, and limitations 

 

Though autonomous vehicles are not commercially available, 

many studies have shown multiple risks, fear, and challenges on 

the subject,  

Below, we listed some risks and costs. 

In terms of safety, as mentioned in [2,14]: 

➢ Crashes would be inevitable. Fatality and injury rates 

would likely increase at least from the short to medium 

term in the testing period of self-driving cars. 

➢ System failures and sudden breakdowns could be fatal to 

both vehicle occupants and other road users. 

 

In terms of economy, as mentioned in [15,16]: 

 

➢ The self-driving capability could be expensive, resulting in 

a disparity in socio-economic access.  

➢ Car-sharing and car-pooling services are heavily skewed; in 

favour of a few groups of people in cities, mainly young, 

highly educated, tech-savvy, and affluent. That may 

continue in the era of autonomous transport.  

➢ Prioritizing investment in autonomous transport could 

negatively affect investment in existing transport services, 

especially public transit. Low-income groups and non-car 

users would be affected as a result. 
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In terms of security and privacy, as mentioned in [14, 15]: 

 

➢ Mass communication, surveillance and data sharing pose 

potential threats to the right to privacy and individual 

freedoms. 

➢ Passenger information and activities took while onboard 

self-driving cars may need recording. 

➢ Data generated by the various models would be saved and 

shared. 

➢ Autonomous cars could become lethal weapons in the 

hands of terrorist organizations, computer hackers, 

disgruntled employers, and hostile nations. 

 

In terms of employment, as mentioned in [8,13-15]: 

 

➢ Reduction in employment in various sectors of the 

transport industry such as haulage, private vehicle hire, 

drivers and technicians are inevitable consequences of 

automated driving.  

➢ In general, low-skilled, routine labour in the private 

sector like cashiers, cleaners and drivers would be the 

most negatively affected by automation as it will take 

over their work.  
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5. Methodology 

 

As the purpose of our study is to simulate the derivation of 

uncertainty-related outcomes of an automatic driving system. We did 

a systematic review of various papers, reports, and articles available 

on the subject online using a set of keywords such as autonomous 

vehicles, autonomous transport, connected vehicles, driverless 

vehicles, self-driving vehicles, physically challenged, disabled or 

disability, safety, privacy, estimation, probability, security and so on,  

then we divided our study into five main phases below:  

 

❖  Development of the automatic driving system  

❖ Simulate the system in real-world tracks with actors and 

collect data on variables 

❖ Generate the probability distribution 

❖ Take sample data from the probability distribution 

❖ Estimate the probability of critical scenarios 

 

However, this is a mass-scale project which requires extensive time 

and resources. In practice, those phases would need a team with 

different competencies. That's why we decided to use some 

alternative ways that will simplify the process and yet covers the 

expectation of this study. 
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II. Development of automatic driving system 

 

We used Matlab® Automatic Driving Toolbox® (ATD) for this 

purpose. Instead of developing algorithms and systems, we used in-

built test benches of Matlab ATD. To narrow the scope, we focused 

on one common driving scenario, the highway lane changing. 

 

1. Highway driving experiment through simulation 

 

We studied the designing and simulation process of lane changing 

manoeuvre by which we went through the developing process of the 

virtual world as we intended to use them during the simulation, and 

we went through the designing process of a motion planner and 

controller. Finally, the last part was about running the simulation and 

testing. There are three categories of the core competencies of the 

autonomous driving system: perception, planning and control [17]. 
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Figure 1: The core competencies of autonomous driving system [17]. 

 

1.1  Perception  

 

Perception is the ability of an autonomous system to collect 

information and extract relevant knowledge from the environment. 

Environmental perception is the ability of the vehicle to identify the 

position of obstacles, detect the signs and road markings, and 

categorize data by their semantic meaning.  

Localization is the vehicle’s ability to determine its position in the 

environment [17]. 
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1.2  Planning 

 

Typically, the vehicle should be able to move from a start location to 

a target destination in an optimized path by avoiding obstacles and 

assuring safety. The process of making decisions to achieve these 

goals is planning. In a broad sense, mission planning is the 

determination of the route between the start toward the destination. 

The vehicle takes a road considering the cost factors such as distance 

and traffic conditions.  

Behavioural planning refers to the decision-making to ensure that 

vehicle achieves the mission planner's prescribed route by following 

road rules and safely interacting with other road users. 

 Motion planning is deciding on a sequence of actions over an 

incident like collision avoidance. 

1.3 Control 

 

Control is the ability of a vehicle to perform planned actions 

generated by the planning processes providing necessary inputs to 

the hardware [17]. Path following refers to following a predefined 

path which does not involve time as a constraint. The vehicle will 

reach the goal at whatever speed by following that path.  

On the other hand, trajectory tracking involves time as a constraint. 

The vehicle has to be at a certain point at a particular time [18]. 
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2. Selection of scenario 

 

A scenario is a temporal sequence of scenes, whereby actions and 

events of the elements involved occur within this sequence [19]. 

Overtaking, vehicle cut-in and lane changing are examples of classes 

of scenarios.  

There are three types of scenarios:  complex, challenging, and critical 

[20]; most of the time, complex and challenging types cannot be 

separated [20]. However, critical scenarios are distinguished using 

matrices like time to collision. For our study, we selected a complex 

scenario type (lane changing), which may become a critical type of 

scenario once there is a collision. 

Because safe lane changing requires correct behaviour prediction of 

actors other than ego vehicles, human-based driving and most current 

automated driving systems concentrate on the single-vehicle lane 

change with self-detective information. However, with the 

development of vehicle-to-vehicle (V2V) communication, it is 

possible to share information among multiple vehicles. Although 

cooperative lane changes are still a new area with more complicated 

scenarios, they will improve safety and lane-change efficiency [21]. 

For our study, we selected single-vehicle lane changing. 
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3. Highway lane change test bench 

 

We used a test bench model developed by the MathWorks team to 

simulate an automated lane change manoeuvre system. This model 

involves; an automated driving toolbox, model predictive control 

toolbox, and navigation toolbox in MATLAB [22].  

In this model, we can customize perception, planning and control 

competencies. This model uses five vision sensors and one radar 

sensor to detect other vehicles from the surrounding view of the ego 

vehicle. It uses a joint probabilistic data association (JPDA) based 

tracker to track the fused detections from these multiple sensors [22]; 

using these data, the lane change planner generates a feasible 

trajectory executed by the lane change controller. This test bench 

includes six major subsystems [23], as shown in Figure 2.  

They are: 

a. Scenario and environment 

b. Lane change planner and planner configuration 

c. Lane change controller 

d. Vehicle dynamics 

e. Metric assessment 

f. Visualization  
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Figure 2: Test bench major subsystems [22]. 

 

❖ Scenario and environment subsystem  

 

The scenario and environment subsystem read the map data from the 

base workspace and output information about lanes and reference 

paths [23]. This subsystem consists of scenario reader block and 

vehicle to world block. The scenario reader block reads in a driving 

scenario from the workspace.  

This block takes in ego vehicle information to perform a closed loop 

simulation. It outputs ground truth about actors and lane boundaries 

in ego vehicle coordinates. The vehicle to world block converts target 

vehicle positions from vehicle coordinates to world coordinates. 

 



16 

 

❖ Highway lane change planner subsystem  

 

The Highway Lane Change Planner Subsystem plays a role in this 

test model by determining the optimal path to change.  

This subsystem checks for collisions and transforms the global 

coordinates to the Frenet coordinates.Also, it generates multiple 

possible trajectories that the ego vehicle can take. 

Frenet Coordinates are an intuitive way of a road position 

representation than the traditional (x, y) Cartesian Coordinates. 

Frenet coordinates use variable ‘s’ and ‘d’ to describe the position of 

a vehicle in a reference path.  

The ‘s’ coordinate represents the longitudinal displacement and is the 

distance along the path. 

The ‘d’ coordinate represents the lateral displacement and is the side-

to-side position on the road, as in figure 3. 

 

Figure 3: Representation of a reference path in Frenet coordinates 

on a road segment [22]. 
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❖ planner block  

 

Planner block evaluates cost values for all terminal states.   

 

❖ Lane change controller 

 

The lane change controller follows the reference trajectory selected 

by the highway lane change planner with a collision-free optimal 

trajectory as an input from the lane change planner subsystem.  

An input to the controller is a reference point on the path, and another 

input is the longitudinal velocity that comes from the vehicle's 

dynamic subsystems.  

 

The output from the controller feeds into the vehicle dynamics and 

makes this a closed loop system.  

The lane change controller subsystem consists of a virtual lane 

centre, preview curvature, and path following controller blocks. 

The path following the controller block keeps the vehicle travelling 

within a marked highway lane while maintaining a user-set velocity.  

 

✓ The virtual lanes block creates a virtual lane from the path 

points. The controller must know the lateral deviation and 

relative yaw angle accordingly to the virtual lane.  
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✓ The preview curvature block converts trajectory to curvature 

input which is required because the ego vehicle needs to track 

the curvature while its longitudinal velocity is also changing.  

 

✓ Path following for lane change first needs lateral control that 

keeps the ego vehicle travelling along the centre line of its lane 

by adjusting the steering of the ego vehicle and is called lane-

keeping assist.  

 

✓ Secondly, longitudinal control maintains a user-set velocity of 

the ego vehicle and is known as cruise control.  

 

There are reasons to use adaptive model predictive control 

(MPC) instead of classical Proportional-Integral-Derivative 

controllers (PID). Tuning the Proportional-Integral-Derivative 

controllers (PID) for larger systems is challenging. Model 

predictive control (MPC) can handle multi-input multi-output 

allowing the controller to respond to data from various sensors. 

It can consider the constraints from these sensors, like slowing 

down the vehicle if a corner and stopping when a sign is 

detected. It is known as a preview capability.   

A traditional predictive controller model is ineffective at 

handling the varying dynamics as it uses a constant internal 

plant model. Therefore, the adaptive model is preferred. 
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✓ The patch following controller, which is inside this subsystem, 

controls the lateral and longitudinal motion. Lateral control 

proposes the steering angle as longitudinal control suggesting 

longitudinal acceleration.  

 

✓ Vehicle dynamics are responsible for the ego vehicle's 

longitudinal, lateral and yaw motion. This subsystem contains 

pre-built vehicle models that can be customized and 

parameterized. The outputs from this subsystem have the 

information about the position, velocity, yaw, yaw rate and the 

ego actor id.  

 

❖ Matrices and visualization subsystems  

 

Matrices and visualization subsystems are used to monitor the test 

bench parameters and visualize them. 

 

III. Simulate the system in real world tracks with actors and 

collect data on variables 

 

We used the RoadRunner component of Matlab and OpenStreetMap 

to use real-world maps in simulations [25]. We used a Swedish road 

precisely in jönköping. After performing a simulation for each time 

frame, data such as; velocity, acceleration, and position could be 

collected; with these data in the future, we could identify the events 
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where two vehicles are close to each other to make the possibility for 

a collision. For such an event, we can calculate the time-to-collision 

(TTC). However, one simulation takes considerable time and 

computer power, and it was not practical to perform many 

simulations, such as 10,000, using our computers. Therefore, we 

used the highD dataset with the information on vehicle movement on 

a highway in Germany. Here we substitute the data which needs to 

be generated after many simulations in Matlab with this dataset. 

 

1. RoadRunner 

 

RoadRunner is an interactive editor that lets you design 3D scenes 

for simulating and testing automated driving systems. To customize 

Roadway scenes, you create region-specific road signs and markings. 

Then we insert signs, signals, guardrails, road damage, foliage, 

buildings, and other 3D models. RoadRunner provides tools for 

setting and configuring traffic signal timing, phases, and vehicle 

paths at intersections. 

RoadRunner supports lidar point cloud visualization, aerial imagery, 

and GIS data. You can import and export road networks.  

Below we presented some figures on what road design may look like 

in RoadRunner. 
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Figure 4: An example of a small road and one vehicle in 

RoadRunner. 

 

 

Figure 5: A 3D view of an example of a small road and one vehicle 

in RoadRunner. 
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2. OpenStreetMap (OSM) 

 

Crowdsourced mapping and citizen-driven spatial data collection are 

radically changing the relationship between traditional map 

production and those individuals and organizations that consume the 

data [25]. In the past, professionals created maps under the domain 

of the national mapping agencies. The evolution of online mapping 

tools, the access to high-resolution satellite imagery, and mobile 

devices with GPS for geotagging features empowered the citizens to 

produce maps. OpenStreetMap (OSM) is one of the most successful 

and cited examples [26]. This concept is called Volunteered 

Geographic Information (VGI). 

The OpenStreetMap (OSM) project started in 2004. Now it has 

become the most famous VGI project. OpenStreetMap (OSM) can 

be of use in many areas such as Data Download Applications and 

Services, Education and Research Use of OSM, Disaster and 

Humanitarian OSM, Government and Industry Usage, Visualization 

of OSM Data, Software (OSM Editors, Routing Services, Vector 

Rendering, other services), Quality Assurance for OSM, and Games 

and Leisure [27].  

 In the project, we used a road in Jonkoping, Sweden (see Appendix). 
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3. HighD dataset 

 

To get a highD dataset, remotely controlled aerial vehicles such as 

drones recorded German highway traffic. Computer vision 

algorithms extracted those trajectories.  

By using neural networks, vehicles were detected and localized in 

every frame. 

To smooth trajectories from those detections, they tracked vehicles 

over time. With Bayesian smoothing, the movement was smoothed 

[29]. 

 

IV. Generate the probability distribution 

 

Within the last ten years, several projects have been dealing with 

collecting driving data recorded with onboard sensors[28]. EuroFOT 

in Europe, SHRP 2 in the United States, Next Generation SIMulation 

(NGSIM), KITTI, and Cityscapes are examples [29]. 

In the highD dataset we used, post-processed trajectories of cars and 

trucks from drone video recordings on German highways around 

Cologne in 2017 and 2018 [29], some key facts of the dataset are 

given below [30].  

 

➢ In the dataset, they recorded around 110 500 vehicles. 

➢ the total driven distance is 45 000 km, 

➢ the total driven time is 447 h, 
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➢ 11 000 lane changes, 5 600 were completely performed in the 

observed area, 

➢ 850 cut-in manoeuvres: THW from around 0.1 – 4 s with a 

distribution peak at 1s, 

➢ proportion of 77% passenger cars, 23% trucks, 

➢ 6 locations around Cologne (2 or 3 lanes per direction), 

➢ 60 videos recorded at 25 fps and 4K resolution, 

➢ the average video length is 17 min (a total of 16.5 h), 

➢ the pixel resolution is 1 PBX = 10 cm, 

➢ each vehicle is visible for a median of 14 s, 

➢ the recording time was between 08 a.m. and 5 p.m., 

➢ sunny weather and low wind conditions during the recordings.  

The data is in CSV files. The variables such as velocity, distance, 

acceleration, time-to-collision (TTC), and time headway (THW) are 

available for each recorded time frame. We developed the probability 

distribution function for time-to-collision (TTC) after a data analysis 

for the highD dataset. For our study, we considered the events where 

time-to-collision (TTC) is less than 200s to build the probability 

distribution. 

 

1. Time to collision (TTC) 

 

Finding a collision-free optimal trajectory estimation theory must be 

applied as in [1,2] is defined as a process of inferring the value of a 

quantity from indirect, inaccurate, and uncertain observations. 
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Estimators are into two classes: 

Parameter estimators: deals with time-invariant system 

State estimators: deals with time-variant system 

For our project’s sake, we will only consider a state estimator. In our 

project, we used estimation theory to see how an automated vehicle 

(V1) determine the velocity of the second vehicle (V2) in the front to 

make some decision such as increasing or decreasing the speed and 

lane changing. 

 

❖ Measurement (input data) 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

    𝒅(𝒕) 

 

 

                                                                    

𝒕

     𝒕𝒊                                        𝒕𝒊+𝟏              

 

                       

Input data 

𝑡𝑖𝑚𝑒 𝑡𝑖    𝑖 = 1,… ,16000 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑(𝑡𝑖) > 0  𝑖 = 1,… ,16000 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣(𝑡𝑖) ≥ 0   𝑖 = 1,… ,16000 
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Statistical model 

A. general case 

 

Given a general case measurement model 

 

{
 
 

 
 

𝑣(𝑡𝑖) =   𝑣 + 𝑤𝑖
        𝑣(𝑡𝑖+1) =   𝑣 + 𝑎 (𝑡𝑖+1 − 𝑡𝑖  )+𝑤𝑖+1

.

.

.
   𝑣(𝑡𝑖+𝐼) =   𝑣 + 𝑎 (𝑡𝑖+𝐼 − 𝑡𝑖  )+𝑤𝑖+𝐼

                                           (1) 

 

where 𝑣 is velocity, a is acceleration, 𝑡𝑖  is time and 𝑤𝑖 is zero mean 

uncorrelated Gaussian noise with variance 𝜎2 

 

                                    𝐸(𝑤𝑖𝑤𝑗) = 𝜎2𝜎𝑖𝑗                                                 (2)      

Definitions  

𝑣(𝑡) =
𝑑

𝑑𝑡
 𝑑(𝑡) 

      𝑣(𝑡) < 0      𝑑(𝑡) 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛 

𝑎(𝑡) =
𝑑

𝑑𝑡
 𝑣(𝑡) 

𝑎(𝑡) < 0       𝑣(𝑡) 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 

      𝒗(𝒕)  

 

 

 

 

                                                                         t 

       𝒕𝒊                                                 𝒕𝒊+𝟏     
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(

  
 

𝑣(𝑡𝑖)
      𝑣(𝑡𝑖+1)

..

.
      𝑣(𝑡𝑖+𝐼))

  
 

⏟        
𝑥

= 

(

 
 
 
 

     
1 
1
.
.
.
1

      

     
0 

𝑡𝑖+1 − 𝑡𝑖
.
.
.

𝑡𝑖+𝐼 − 𝑡𝑖

      

)

 
 
 
 

 

⏟              
𝐻

 (
𝑣
𝑎
)⏟

θ 

+

(

 
 
 
 

     
𝑤𝑖  
𝑤𝑖+1
.
.
.

𝑤𝑖+𝐼

 

)

 
 
 
 

⏟      
𝑤

              (3) 

so that 

                                   𝑥 = 𝐻θ + w,                                                  (4) 

where  

                               𝐶 = 𝐸{𝑤𝑤𝑇} = 𝜎2𝐼,                                         (5) 

 

   and                                𝐶−1 =
1

𝜎2
I,                                                 (6) 

 

where 𝑥 is a random measurement, θ is the unknown (deterministic) 

parameter to be estimated, and 𝐶 is covariance matrix. 

Based on the statistical model, as in [1] it can be shown that the 

Fisher information matrix I(θ) is given by   

 

                         𝐼(𝜃) = 𝐻𝑇𝐶−1𝐻 = 
1

𝜎2
  𝐻𝑇𝐻,                                           (7)         

and Maximum Likelihood (ML) estimate 𝜃ML (𝑥) is given by  

 

               𝜃ML(𝑥) = (𝐻𝑇𝐶−1𝐻) −1 𝐻𝑇𝐶−1𝑥 = (𝐻𝑇𝐻) −1𝐻𝑇𝑥.        (8) 
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B. special case 

❖ Two-point estimation of 𝒗 and 𝒂 

 

Given a special case measurement model 

 

{
𝑣(𝑡𝑖) =   𝑣 + 𝑤𝑖

        𝑣(𝑡𝑖+1) =   𝑣 + 𝑎 (𝑡𝑖+1 − 𝑡𝑖  )+𝑤𝑖+1
 ,                                               (9) 

 

where 𝑣 is velocity, a is acceleration, 𝑡𝑖  is time and 𝑤𝑖 is zero mean 

uncorrelated Gaussian noise with variance 𝜎2 

 

(
𝑣(𝑡𝑖)

      𝑣(𝑡𝑖+1)
)

⏟        
𝑥

= (

     
1 
1
      

     
0 

𝑡𝑖+1 − 𝑡𝑖
  )

⏟            
𝐻

(
𝑣
𝑎
)⏟
θ

+ (

     
𝑤𝑖  
𝑤𝑖+1

 ) 
⏟    

𝑤

,                       (10) 

so that 

                                 𝑥 = 𝐻θ + w ,                                                       (11) 

where 𝑥 is a random measurement, θ is the unknown (deterministic) 

parameter to be estimated, and 𝐶 is covariance matrix. 

𝐻 = (

     
1 
1
      

     
0 
𝑇𝑖
   ) ,                  𝐻−1 =

1

𝑇
(
𝑖

     
𝑇𝑖  
−1
      

     
0 
1
  ) ,               (12) 

 

                                  𝑇𝑖 = 𝑡𝑖+1 − 𝑡𝑖.                                                        (13) 

 

Maximum Likelihood (ML) estimate 𝜃ML (𝑥) is given by 

𝜃ML (𝑥) = (
𝑣̂
𝑎̂
) = (𝐻𝑇𝐻) −1𝐻𝑇𝑥 = 𝐻−1𝐻 −𝑇𝐻𝑇𝑥 = 𝐻−1 𝑥          (14)       
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=
1

𝑇
(
𝑖

     
𝑇𝑖  
−1
      

     
0 
1
  ) (

𝑣(𝑡𝑖)
      𝑣(𝑡𝑖+1)

) =
1

𝑇
(
𝑖

     
𝑇𝑖  𝑣(𝑡𝑖)

      𝑣(𝑡𝑖+1) − 𝑣(𝑡𝑖)
  )        (15) 

= (

     
 𝑣(𝑡𝑖)

 𝑣(𝑡𝑖+1)−𝑣(𝑡𝑖)

𝑇𝑖

) ,                                                                                      (16) 

and this result is physically reasonable as it can be seen clearly 

bellow 

 

{
𝑣̂(𝑡𝑖) =            𝑣(𝑡𝑖)

 𝑎̂(𝑡𝑖) =
𝑣(𝑡𝑖+1)−𝑣(𝑡𝑖)

𝑡𝑖+1−𝑡𝑖

   ,  and can be done for 𝑖 = 1, … ,15999        (17) 

 

and Fisher information is  

 𝐼(𝜃) = 
1

𝜎2
  𝐻𝑇𝐻 = 

1

𝜎2
 (

     
1 
0
      

     
1
𝑇𝑖
   ) (

     
1 
1
      

     
0 
𝑇𝑖
   )                                  (18) 

then we got 

              𝐼(𝜃) =  
1

𝜎2
(

     
2 
𝑇𝑖
      

     
𝑇𝑖
𝑇𝑖
2
   ),                                                                (19) 

and 

                       𝐼−1(𝜃) = 
𝜎2

𝑇𝑖
2 (

     
𝑇𝑖
2 

−𝑇𝑖
      

     
−𝑇𝑖
2
   ).                                     (20) 

 

Because estimation error can result in the wrong decision of our 

automated vehicle, we used Cramer-Rao lower bound to determine 

the best estimation possible.  
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Cramer-Rao lower bound is given by  

 

𝐸(|𝑣̂(𝑡𝑖) − 𝑣|
2) ≥ [𝐼−1(𝜃)]11 = 𝜎2,                                                       (21) 

𝐸(|𝑎̂(𝑡𝑖) − 𝑎|
2) ≥ [𝐼−1(𝜃)]22 =

2𝜎2 

𝑇𝑖
2   .                                                                 (22) 

 

1. Investigation on how Cramer-Rao lower bound depend on 

𝑻𝒊 

 

As it can be seen the first element of the Cramer-Rao bound   

 

𝐶𝑅𝐿𝐵(𝑣) = [𝐼−1(𝜃)]11 = 𝜎2 ,                                                                                         (23) 

does not depend on 𝑇𝑖.  

But the second element of the Cramer-Rao bound which is  

𝐶𝑅𝐿𝐵(𝑎) = [𝐼−1(𝜃)]22 =
2𝜎2 

𝑇𝑖
2  ,                                                        (24) 

it does depend on 𝑇𝑖. 
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Figure 6: CRLB(a) 

 It can be difficult to know how accurate must the 𝑎̂-estimate be to 

be useful for Time to collision (TTC).  

2. Relative error  

Let assume that we require that the relative error 

 
√𝐸(|𝑎̂(𝑡𝑖)−𝑎|

2) 

𝑎
≤ 0.03 (3%)                                                                (25) 

we have 

                                     
√[𝐼−1(𝜃)]11 

𝑣
≤ 0.03                                        (26)                                  

And                                
√[𝐼−1(𝜃)]22 

𝑎
≤  0.03                                     (27) 
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For good estimation: 

• 
√𝐶𝑅𝐿𝐵(𝑣)

𝑣̂
≤ 0.03 ,                                       (28) 

which means                 

                                
𝜎

𝑣̂
≤  0.03                                                     (29) 

 

• 
√𝐶𝑅𝐿𝐵(𝑎)

𝑎̂
≤ 0.03 ,                                   (30) 

which means                     
√2𝜎
𝑇𝑖
𝑎̂

≤ 0.03                                          (31) 

According to the assumption we made about relative error, for a good 

estimation 
√2𝜎
𝑇𝑖
𝑎̂

≤ 0.03  
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Figure 7: Relative error 

❖ Multi-point estimation 

 

Let consider 16754 incidents of 22539 vehicles. For TTC = 𝑇𝑖 , time 

to collision at time 𝑡𝑖, based on measurements 𝑑(𝑡𝑖) and 𝑣(𝑡𝑖). 

 

Model:  

                  𝑑(𝑡) = 𝑑(𝑡𝑖) + 𝑣(𝑡𝑖)𝑡 = 0 ,                                                     (32)             

                    𝑡 = −
𝑑(𝑡𝑖)

𝑣(𝑡𝑖)
,                                                                                     (33) 
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note that 

                                    𝑣(𝑡𝑖) < 0, otherwise 𝑡 = ∞,                       (34) 

                                    𝑑(𝑡𝑖) > 0  (No collision).                          (35) 

 

The histogram of the time to collision (TTC) generated in MATLAB 

is given in figure 8.  

 

 

Figure 8: Histogram of the incidents where time-to-collision (TTC) 

< 200 s 

The probability density function in the histogram is not continuous. 

The Kernel density estimation is for solving the problem of 

discontinuity. In a non-parametric system, the kernel density method 
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estimates the distribution density function of the scenario parameters 

[31]. 

The formula of Kernel density estimation is: 

 

                       𝑝̂(𝑥) =
1

ℎ𝑁
∑ 𝐾 𝑁
𝑖=1 (

𝑥−𝑥𝑖

ℎ
)                                    (36) 

 

where 𝑝̂(𝑥) is the estimated distribution density function; 𝐾(𝑥) is the 

kernel function, and the Gaussian kernel function is selected; 𝑁𝑘 is 

the sample number of the distribution to be estimated; 𝑥 is the 

random variable; 𝑥𝑖  is the sample; and ℎ is the bandwidth, ℎ > 0 

[31]. The probability distribution function generated in MATLAB is 

given in figure 9. 

 

 

Figure 9: probability distribution of the TTC 
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V. Estimate the probability of critical scenarios 

 

Critical scenario metrics include time-to-collision (TTC), braking 

time, expected deceleration, and so on [31]. For this study, we 

selected TTC to define the critical events.  

Where 𝑇𝑇𝐶 is the collision time, 𝑑𝑎 is the distance between the ego-

vehicle and the preceding vehicle, and ∆𝑉 is the relative speed of the 

ego-vehicle and the preceding vehicle [31]. 

We found two sources which propose two different matrices. Xia Q 

and team propose the matrix given in table 2 [31] while Benmimoun 

M and team propose the matrix given in table 3 [32]. 

 

Table 2: Critical scenario matrix based on time-to-collision (TTC) by 

Xia Q and team [31]. 

TTC range / sec Condition 

TTC <= 0 Collision condition 

0 < TTC < 0.5 Pre-collision condition 

0.5 < TTC < 2.5 Dangerous condition 

2.5 < TTC Safe condition 
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Table 3: Critical scenario matrix based on TTC by Benmimoun and 

team [32]. 

Incident 

level 

Thresholds due to 

Time headway (THW) 

Or 

Thresholds due to 

Time to collision (TTC) 

THW [s] Relative 

velocity 

TTC [s] Status brake 

light [–] 

Level 1 
0.5 > 20 1.75 Off 

0.35 > 10 - - 

Level 2 0.35 > 20 < 1 On 

Level 3 - - < 1 Off 

 

Capturing the velocity and distance data for several lane-changing 

events in MATLAB simulation was a time and resource-consuming 

task. Therefore, we decided to use the collected dataset from other 

researchers to replace the thousand-plus simulations. 

 

1. Estimation for probability 

 

The probability of a critical scenario is then calculated. The 

probabilities according to the critical scenario matrix is given below. 
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Table 4: Probability according to the critical scenario. 

TTC range / 

sec 

Condition Probability respectively to 

condition  

TTC <= 0 Collision condition 0.00000 

0 < TTC < 0.5 Pre-collision 

condition 

5.97 x 10-5 

0.5 < TTC < 

2.5 

Dangerous condition 0.00781 

2.5 < TTC Safe condition 0.99212 

 

❖ Velocity and acceleration (estimated) data 

 

Model:  

𝑑(𝑡) = 𝑑(𝑡𝑖) + 𝑣̂(𝑡𝑖) + 𝑎̂(𝑡𝑖)
𝑡2

2
= 0,                                                   (37) 

(

𝑑

𝑑𝑡
𝑑(𝑡) =  𝑣̂(𝑡𝑖)

𝑑2

𝑑𝑡2
𝑑(𝑡) = 𝑎̂(𝑡𝑖)

),                                                                            (38) 

 

complete the squares  

(𝑡 +
𝑣̂(𝑡𝑖)

𝑎̂(𝑡𝑖)
)
2

= 
𝑣̂2(𝑡𝑖)

𝑎̂2(𝑡𝑖)
− 2

𝑑(𝑡𝑖)

𝑎̂(𝑡𝑖)
,                                                                 (39) 

𝑡 = −
𝑣̂(𝑡𝑖)

𝑎̂(𝑡𝑖)
±√ 

𝑣̂2(𝑡𝑖)

𝑎̂2(𝑡𝑖)
− 2

𝑑(𝑡𝑖)

𝑎̂(𝑡𝑖)
,                                                          (40) 

we have two solutions  𝑡1 and 𝑡2. 
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• If 𝑡 is complex value, there is no solution     → put 𝑡 = ∞ 

(
𝑣̂2(𝑡𝑖)

𝑎̂2(𝑡𝑖)
< 2

𝑑(𝑡𝑖)

𝑎̂(𝑡𝑖)
),                                                                             (41) 

• If  𝑡1 < 0  and 𝑡2 < 0  , there is no solution     → put 𝑡 = ∞ 

• If  𝑡1 < 0  and 𝑡2 > 0   → put 𝑡 = 𝑡2 

 

• If  𝑡2 < 0  and 𝑡1 > 0   → put 𝑡 = 𝑡1 

 

• If  𝑡1 > 0  and 𝑡2 > 0   → put 𝑡 = min( 𝑡1, 𝑡2) 

 

VI. Conclusion  

 

By all indications, it is no longer a matter of if, but of when, 

autonomous vehicles will be on our highways and city streets, and in 

numbers sufficient to make a difference to the operational 

performance of our transportation networks. Through our project we 

have been able to realize the challenges which automated vehicle are 

facing and we found that most of technical challenges maybe 

overcome by improvement in sensor function fusion and state 

estimation and but most of emotions and economical challenges can 

be overcome through better planning before shifting to the automated 

vehicles. 
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Appendix  

 

Real world map in Matlab. 

 

As part of simulation real world map must be included to study how 

automated vehicle may react. For our study a road in Jönköping 

precisely Ekhagen was used, we generated a Matlab code for the road 

design with geographic coordinates. 

 

Function scenario = createDrivingScenario() 

% createDrivingScenario Returns the drivingScenario defined in the 

Designer 

% Construct a drivingScenario object. 

Scenario = drivingScenario(‘GeographicReference’, [57.7795 

14.1874 0], ... 

    ‘VerticalAxis’, ‘Y’); 

% Add all road segments 

roadCenters = [1243.137 -189.7562 -0.1236781; 

    1250.246 -188.1947 -0.1250182]; 

laneSpecification = lanespec([1 1]); 

road(scenario, roadCenters, ‘Lanes’, laneSpecification, ‘Name’, 

‘114325524’); 

  

roadCenters = [2002.674 -478.3759 -0.3315872; 

    2006.574 -507.0973 -0.3350277; 
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    2009.648 -526.3857 -0.3375552; 

    2011.914 -548.6593 -0.3401442; 

    2016.26 -565.3297 -0.3429684; 

    2018.525 -571.1312 -0.3441994; 

    2022.98 -580.8073 -0.3464811; 

    2030.079 -592.6985 -0.3498246; 

    2050.768 -625.8439 -0.359592; 

    2065.966 -650.5054 -0.3669514; 

    2083.1 -677.7275 -0.375344; 

    2094.69 -697.2341 -0.3812323; 

    2109.162 -720.1584 -0.3885361; 

    2128.144 -751.7674 -0.3984716; 

    2148.835 -785.7699 -0.4094887; 

    2156.119 -797.3601 -0.4133787; 

    2161.526 -806.0554 -0.4162972; 

    2178.435 -833.2104 -0.4255241; 

    2191.657 -853.2616 -0.4326924]; 

laneSpecification = lanespec([1 1]); 

road(scenario, roadCenters, ‘Lanes’, laneSpecification, ‘Name’, 

‘Ekhagsringen’); 

roadCenters = [2075.265 -230.3991 -0.3409658; 

    2069.655 -255.4944 -0.3401028; 

    2066.482 -263.5038 -0.3394021; 

    2062.219 -270.2887 -0.3383096; 

    2058.926 -276.583 -0.3375179; 
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    2050.353 -289.6404 -0.3353421; 

    2045.353 -297.8734 -0.3341197; 

    2039.432 -307.6216 -0.3326906; 

    2030.438 -323.6751 -0.3306219; 

    2019.511 -342.2912 -0.3281325; 

    2008.71 -363.8696 -0.325924; 

    2003.85 -377.5376 -0.3251928; 

    1999.529 -400.4827 -0.325239; 

    1998.272 -419.9404 -0.3260966; 

    1999.451 -446.7363 -0.328285; 

    2002.674 -478.3759 -0.3315872]; 

laneSpecification = lanespec([1 1]); 

road(scenario, roadCenters, ‘Lanes’, laneSpecification, ‘Name’, 

‘Ekhagsringen’); 

roadCenters = [2228.57 -432.3825 -0.4030546; 

    2106.429 -454.3332 -0.3631718; 

    2038.058 -473.7696 -0.3424251; 

    2007.345 -477.5717 -0.3329917; 

    2002.674 -478.3759 -0.3315872]; 

laneSpecification = lanespec([1 1]); 

road(scenario, roadCenters, ‘Lanes’, laneSpecification, ‘Name’, 

‘Stockrosgatan’) 


